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Robust statistics [1,6] has attracted much attention recently within the computational geometry commu-
nity due to the natural geometric formulation of many of its problems. In contrast to least-squares regres-
sion, in which measurement error is assumed to be normally distributed, robust estimators allow some of
the data to be affected by completely arbitrary errors; the breakdown value of an algorithm measures how
many erroneous data points can be tolerated.

Recently, Rousseeuw and Hubert [2, 4, 5] introduced regression depth as a quality measure for robust
linear regression: in statistical terminology, the regression depth of a hyperplane H is the smallest number
of residuals that need to change sign to make H a nonfit. This definition has convenient statistical proper-
ties such as invariance under affine transformations; hyperplanes with high regression depth behave well in
general error models, including skewed or heteroskedastic error distributions.

Geometrically, the regression depth of a hyperplane is the minimum number of points intersected by
the hyperplane as it undergoes any continuous motion taking it from its initial position to vertical. The con-
tractible hull of a data set is the set of hyperplanes having nonzero regression depth. In the dual setting of
hyperplane arrangements, the directional depth of a ray is the number of planes that are touched by or par-
allel to the ray; the hyperplane depth of a point is the minimum directional depth of any ray containing the
point, and the contractible hull of an arrangement is the set of points not in the interior of an infinite cell.
Standard techniques of projective duality transform any statement about regression depth to a mathemati-
cally equivalent statement about hyperplane depth and vice versa.

Rousseeuw and Hubert [4, 5] showed that the regression depth of n points in d dimensions is upper
bounded by dn/(d+1)e; i.e., there exist point sets for which no hyperplane has regression depth larger than
this bound. For bivariate data, they found a simple linear-time construction, the catline, which achieves the
optimal dn/3e bound. These facts, together with an analogy to center points (points such that any halfspace
containing them also contains many data points), led to the following conjectures:

Conjecture 1 (Rousseeuw and Hubert). For any d-dimensional set of n points there exists a hyperplane
having regression depth dn/(d + 1)e.

Conjecture 2 (Rousseeuw and Hubert). Any point set can be partitioned into dn/(d+1)e subsets such that
the intersection of the contractible hulls of the subsets is nonempty.

Steiger and Wenger [8] made some progress on Conjectures 1 and 2: they found a constant cd (depend-
ing on the dimension d) such that any point set can be partitioned into cdn subsets such that the subsets’
contractible hulls have nonempty common intersection. Note that any hyperplane in this intersection must
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have regression depth at least cdn. Their value cd is not stated explicitly, however it appears to be quite
small: roughly 1/(6d2

(d + 1)).
Questions of computational efficiency of problems related to regression depth have also been studied.

Rousseeuw and Struyf [7] described algorithms for testing the regression depth of a given hyperplane. The
same paper also considers algorithms for testing the location depth of a point (its quality as a center point).
One can find the hyperplane of greatest regression depth for a given point set in time O(nd) by a breadth first
search of the dual hyperplane arrangement; standard ε-cutting methods [3] can be used to develop a linear-
time approximation algorithm that finds a hyperplane with regression depth within a factor (1−ε) of the op-
timum in any fixed dimension. For bivariate data, van Kreveld, Mitchell, Rousseeuw, Sharir, Snoeyink, and
Speckmann have recently found an algorithm for finding the optimum regression line in time O(n log2 n)

(Jack Snoeyink, personal communication).
Our main result is to prove the truth of Conjecture 1. We do this by finding a common generalization of

location depth and regression depth that formalizes the analogy between these two concepts: the crossing
distance between a point and a plane is the smallest number of sites crossed by the plane in any continuous
motion from its initial location to a location incident to the point, the location depth of a point is just its
crossing distance from the plane at infinity, and the regression depth of a plane is just its crossing distance
from the point at vertical infinity. We then prove the conjecture by using Brouwer’s fixed point theorem to
find a projective transformation that maps the point at vertical infinity to a center point of the transformed
sites; the inverse transformation maps the plane at infinity to a deep plane.

We also improve the partial result of Steiger and Wenger on Conjecture 2: we show that one can always
partition a data set into dn/d(d + 1)e subsets with nonintersecting contractible hulls; we further improve
this to b(n+1)/6c for d = 3. Our technique of projective transformation also sheds some light on issues of
computational complexity: the two problems of testing regression depth and location depth considered by
Rousseeuw and Struyf are in fact computationally equivalent. Known NP-hardness results for center points
then lead to the observation that testing regression depth is NP-hard for data sets of unbounded dimension.
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