
1/57Andries van Dam © 2023 10/11/23

Lecture 10
Graphics Part II – Animations & Shapes

2/57Andries van Dam © 2023 10/11/23

Outline

• EventHandlers

• Lamda Expressions

• Animation

• Layout Panes

• Java FX Shapes

3/57
Andries v an Dam © 2023 10/5/23

EventHandlers (1/3)

• Button click causes JavaFX to generate a
javafx.event.ActionEvent

o ActionEvent is only one of many JavaFX EventTypes that are
subclasses of Event class

• Classes that implement EventHandler interface can
polymorphically handle any subclass of Event

o when a class implements EventHandler interface, it must specify
what type of Event it should know how to handle

o how do we do this?

4/57
Andries v an Dam © 2023 10/5/23

EventHandlers (2/3)
• EventHandler interface declared as:

public interface EventHandler<T extends Event>…
o the code inside literal < > is known as a “generic parameter” – this is magic for now

o lets you specialize the interface method declarations to handle one specific specialized
subclass of Event

o forces you to replace what is inside the literal < > with some subclass of Event, such as
ActionEvent, whenever you write a class that implements EventHandler interface

5/57
Andries v an Dam © 2023 10/5/23

EventHandlers (3/3)
• EventHandler interface only has one method, the handle method

• Parameter of handle will match the generic parameter of EventHandler type
o in this case ActionEvent since Buttons generate ActionEvents

o JavaFX generates the specific event for you and passes it as an argument to your
handlemethod

o Note we don’t actually use the data contained in an ActionEvent parameter for
button click handlers, but for MouseEvents and KeyEvents, you will need to use the
event parameter (next lecture!)

6/57
Andries v an Dam © 2023 10/5/23

Registering an EventHandler (1/2)

• How do we let a Button know which EventHandler to execute when it’s
clicked?

• We must register the EventHandlerwith the Button via the Button’s
setOnActionmethod so that JavaFX can store the association with the
EventHandler and call it when the Button is clicked
o note the “generic parameter” <ActionEvent> since button clicks generate

ActionEvents

7/57
Andries v an Dam © 2023 10/5/23

Registering an EventHandler (2/2)

public class MyClickHandler implements EventHandler<ActionEvent> {
private Label label;
public MyClickHandler(Label myLabel) {

this.label = myLabel;
}

@Override
public void handle(ActionEvent e) {

int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
this.label.setTextFill(customColor);

}
}

public class PaneOrganizer {

public PaneOrganizer() {
// previous code elided
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
btn.setOnAction(new MyClickHandler(label));

}
}

1. Write custom EventHandler class
(MyClickHandler), implementing
handle with previous code to generate
Color

o must create an association with the
Label so the handler knows which
Label to change

2. In PaneOrganizer, register the

EventHandlerwith the Button, using

setOnActionmethod

3. When Button is clicked, handle
method in MyClickHandler is passed

an ActionEvent by JavaFX and is

then executed

8/57Andries van Dam © 2023 10/11/23

Outline

• EventHandlers

• Lamda Expressions

• Animation

• Layout Panes

• Java FX Shapes

9/57
Andries v an Dam © 2023 10/5/23

Lambda Expressions (1/3)

• Creating a separate class MyClickHandler is not the
most efficient solution

o more complex EventHandlers may have tons of
associations with other nodes, all to implement one handle
method

• Since EventHandler interface only has one method, we
can use special syntax called a lambda expression
instead of defining a separate class for implementation
of handle

10/57
Andries v an Dam © 2023 10/5/23

Lambda Expressions (2/3)
• Lambda expressions have

different syntax with same
semantics as typical method

o first parameter list

o followed by ->

o then an arbitrarily complex
method body in curly braces

▪ in CS15, lambda expression
body will be one line calling
another method, typically written
yourself in the same class; in this
case changeLabelColor

▪ can omit curly braces when
method body is one line

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent e) ->

this.changeLabelColor(label));
}

public void changeLabelColor(Label myLabel) {
int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
myLabel.setTextFill(customColor);

}
}

method
body

parameter

11/57
Andries v an Dam © 2023 10/5/23

Lambda Expressions (3/3)

• Lambda expression
shares scope with its
enclosing method

o can access myLabel or
btn without setting up a
class association

• Lambda expression body
is then stored by JavaFX
to be called once the
button is clicked

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent e) ->

this.changeLabelColor(label));
}

public void changeLabelColor(Label myLabel) {
int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
myLabel.setTextFill(customColor);

}
}

12/57
Andries v an Dam © 2023 10/5/23

The Whole App:

ColorChanger

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.application.Application;

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(),180,80);
stage.setScene(scene);
stage.setTitle("Color Changer");
stage.show();

}
}

import javafx.scene.layout.VBox;
import javafx.scene.control.Label;
import javafx.scene.control.Button;
import javafx.event.ActionEvent;
import javafx.scene.paint.Color;

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent event) ->

this.changeLabelColor(label));
}

public VBox getRoot() {
return this.root;

}

private void changeLabelColor(Label myLabel) {
int red = (int) (Math.random() * 256);
int green = (int) (Math.random() * 256);
int blue = (int) (Math.random() * 256);
Color customColor = Color.rgb(red, green, blue);
myLabel.setTextFill(customColor);

}
}

13/57Andries van Dam © 2023 10/11/23

Note: Logical vs. Graphical Containment/Scene Graph

• Graphically, VBox is a pane contained within Scene, but logically, VBox is
contained within PaneOrganizer

• Graphically, Button and Label are contained within VBox, but logically, Button
and Label are contained within PaneOrganizer, which has no graphical
appearance

• Logical containment is based on where instances are instantiated, while graphical
containment is based on JavaFX elements being added to other JavaFX elements
via getChildren.add(…)method, and on the resulting scene graph

SceneVBox
Button

Label

Stage

14/57Andries van Dam © 2023 10/11/23

Outline

• EventHandlers

• Lamda Expressions

• Animation

• Layout Panes

• Java FX Shapes

15/66Andries van Dam © 2022 10/11/22

Animation – Change Over Time

• Suppose we have an alien Shape we would
like to animate (e.g. make it move across the
screen)

• As in film and video animation, we can create
apparent motion with many small changes in
position (e.g., Flipbook Animation:
https://www.youtube.com/watch?v=ntD2qiGx-
DY)

• If we move fast enough and in small enough
increments, we get smooth motion

• Same goes for size, orientation, shape
change, etc…

• How to orchestrate a sequence of incremental
changes?

o Use a Timeline where we define changes at
specific instants

0 0 : 0 00 0 : 0 10 0 : 0 20 0 : 0 30 0 : 0 40 0 : 0 50 0 : 0 60 0 : 0 7

https://www.youtube.com/watch?v=ntD2qiGx-DY
https://www.youtube.com/watch?v=ntD2qiGx-DY

16/57Andries van Dam © 2023 10/11/23

Introducing Timelines (1/3)

• The Timeline sequences (puts in order) one or more
KeyFrames

o a KeyFrame can be thought of as a singular snapshot

o constructed with an associated Duration and EventHandler

o in our simple use of JavaFX KeyFrames, each lasts for its
entire Duration without making any changes

o when the Duration ends, the EventHandler updates variables
to affect the animation

17/66Andries van Dam © 2022 10/11/22

KeyFrame KeyFrame

Handler

T
i
m
e
L
i
n
e

Duration Duration

Handler

KeyFrame

Duration

Handler

etc.
KeyFrame

Introducing Timelines (2/3)

18/66Andries van Dam © 2022 10/11/22

KeyFrame

Handler

T
i
m
e
L
i
n
e

Duration

Introducing Timelines (3/3)

HandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandlerHandler

We can do simple animation using a single KeyFrame that is repeated a fixed or indefinite number of

times EventHandler is called, EventHandler makes incremental changes to time-varying variables

(e.g., (x, y) position of a shape)

19/57Andries van Dam © 2023 10/11/23

• javafx.animation.Timeline is used to sequence one or more
javafx.animation.KeyFrames or run through them cyclically

o each KeyFrame lasts for its entire Duration until its time interval ends and EventHandler
is called to make updates

• First, we instantiate a KeyFrame, and pass in

o a Duration (e.g. Duration.seconds(0.3)or Duration.millis(300)), which defines
time that each KeyFrame lasts

o an EventHandler of type ActionEvent that defines what should occur upon completion of
each KeyFrame

• KeyFrame and Timeline work together to control the animation, but our
application’s EventHandler is what actually causes variables to change

• From last lecture: we can use lambda expressions to represent the
EventHandlers instead of creating a separate class

Using JavaFX Timelines (1/2)

20/57Andries van Dam © 2023 10/11/23

Using JavaFX Timelines (2/2)

• Next, we instantiate our Timeline, setting its CycleCount property

o defines number of cycles in Animation

o setting CycleCount to Animation.INDEFINITE will let Timeline run
forever or until we explicitly stop it

• We pass our new KeyFrame into Timeline

• After setting up Timeline, in order for it to start, we must call

timeline.play();

21/57Andries van Dam © 2023 10/11/23

Our First JavaFX animation: Clock

• Simple example of discrete (non-

smooth) animation

• Specifications: App should display

current date and time, updating

every second

• Useful classes:
o java.util.Date
o javafx.util.Duration
o javafx.animation.KeyFrame
o javafx.animation.Timeline

22/57Andries van Dam © 2023 10/11/23

Process: Clock
1. Write App class that extends

javafx.application.Application and implements

start (Stage)

2. Write a PaneOrganizer class that instantiates root node

and returns it in a public getRoot()method. Instantiate a

Label and add it as root node’s child. Factor out code for

Timeline into its own method.

3. In our own setupTimeline(), instantiate a KeyFrame
passing in Duration and a lambda expression (defined

later) as our EventHandler. Then instantiate Timeline,

passing in our KeyFrame, and play Timeline

4. Define lambda expression to represent our EventHandler
– for every ActionEvent, update the text on the Label

Stage

Label
VBox

Scene

23/57Andries van Dam © 2023 10/11/23

Clock: App class (1/3)

1a. Instantiate a PaneOrganizer
and store it in the local variable

organizer

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();

}

}

Note: Exactly the same process as in ColorChanger’s App [Lecture 9]

24/57Andries van Dam © 2023 10/11/23

1a. Instantiate a PaneOrganizer
and store it in the local variable

organizer

1b. Instantiate a Scene, passing in

organizer.getRoot(), and

desired width and height of

Scene

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene =

new Scene(organizer.getRoot(), 300,200);

();

}

}

Note: Exactly the same process as in ColorChanger’s App [Lecture 8]

Clock: App class (2/3)

25/57Andries van Dam © 2023 10/11/23

1a. Instantiate a PaneOrganizer
and store it in the local variable

organizer

1b. Instantiate a Scene, passing in

organizer.getRoot(),

desired width and height of the

Scene

1c. Set the Scene, set the Stage’s

title, and show the Stage!

Note: Exactly the same process as in ColorChanger’s App [Lecture 9]

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene =

new Scene(organizer.getRoot(),300,200);

stage.setScene(scene);
stage.setTitle("Clock!");
stage.show();

}

}

Clock: App class (3/3)

26/57Andries van Dam © 2023 10/11/23

Process: Clock

1. Write App class that extends

javafx.application.Application and implements

start(Stage)

2. Write a PaneOrganizer class that instantiates root

node and returns it in a public getRoot()method.

Instantiate a Label and add it as root node’s child.

Factor out code for Timeline into its own method,

which we’ll call setupTimeline()

3. In our own setupTimeline(), instantiate a KeyFrame
passing in Duration and a lambda expression (defined

later) as our EventHandler. Then instantiate a Timeline,

passing in our KeyFrame, and play the Timeline

4. Define lambda expression to represent our EventHandler
– for every ActionEvent, update the text on the Label

Stage

Label
VBox

Scene

27/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer Class (1/3)

2a. In the PaneOrganizer class’

constructor, instantiate a root VBox
and set it as the return value of a

public getRoot()method

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();

}

public VBox getRoot() {
return this.root;

}

}

28/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer Class (2/3)

2a. In the PaneOrganizer class’

constructor, instantiate a root VBox
and set it as the return value of a

public getRoot()method

2b. Instantiate a Label and add it to

the list of the root node’s children

public class PaneOrganizer {
private VBox root;
private Label label;

public PaneOrganizer() {
this.root = new VBox();
this.label = new Label();
this.root.getChildren().add(this.label);

}

public VBox getRoot() {
return this.root;

}

}

29/57Andries van Dam © 2023 10/11/23

public class PaneOrganizer {
private VBox root;
private Label label;

public PaneOrganizer() {
this.root = new VBox();
this.label = new Label();
this.root.getChildren().add(this.label);

this.setupTimeline();
}

public VBox getRoot() {
return this.root;

}

}

2a. In the PaneOrganizer class’

constructor, instantiate a root VBox
and set it as the return value of a

public getRoot()method

2b. Instantiate a Label and add it to

the list of the root node’s children

2c. Call setupTimeline(); this is

another example of delegation to a

specialized “helper method” which we’ll

define next !

Clock: PaneOrganizer Class (3/3)

30/57Andries van Dam © 2023 10/11/23

Process: Clock

1. Write an App class that extends

javafx.application.Application and implements

start(Stage)

2. Write a PaneOrganizer class that instantiates the root

node and returns it in a public getRoot()method.

Instantiate a Label and add it as the root node’s child.

Factor out code for Timeline into its own method

3. In setupTimeline(), instantiate a KeyFrame, passing

in Duration and a lambda expression (defined later)

as our EventHandler. Then instantiate a Timeline,

passing in our KeyFrame, and play the Timeline

4. Define lambda expression to represent our EventHandler
– for every ActionEvent, update the text on the Label

Stage

Label
VBox

Scene

31/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class - setupTimeline() (1/4)

Within setupTimeline():

3a. Instantiate a KeyFrame,

which takes two parameters:

Duration and EventHandler

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

,

);

}

}

32/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class - setupTimeline() (1/4)

Within setupTimeline():

3a. Instantiate a KeyFrame,

which takes two parameters:

Duration and EventHandler

○ want to update text of label

each second – therefore make

Duration of the KeyFrame 1

second

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

Duration.seconds(1), //how long

);

}

}

33/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class - setupTimeline() (1/4)

Within setupTimeline():

3a. Instantiate a KeyFrame,

which takes two parameters:

Duration and EventHandler

○ want to update text of label

each second – therefore make

Duration of the KeyFrame 1

second

○ for the EventHandler
parameter, pass a lambda

expression (to be defined later)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

Duration.seconds(1), //how long
(ActionEvent e) ->
this.updateLabel()); //event handler

}

}

Note: JavaFX automatically calls

this.updateLabel at end of each KeyFrame,

which in this case changes the label text, and then

lets the next 1 second cycle of KeyFrame start

34/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class- setupTimeline() (2/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

Timeline timeline = new Timeline(kf);

.play();
}

}

Within setupTimeline():

3a. Instantiate a KeyFrame

3b. Instantiate a Timeline,

passing in our new KeyFrame

35/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class- setupTimeline() (3/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

Timeline timeline = new Timeline(kf);

timeline.setCycleCount(Animation.INDEFINITE);
.play();

}

}

Within setupTimeline():

3a. Instantiate a KeyFrame

3b. Instantiate a Timeline,

passing in our new KeyFrame

3c. Set CycleCount to

INDEFINITE

36/57Andries van Dam © 2023 10/11/23

Clock: PaneOrganizer class- setupTimeline() (4/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

Timeline timeline = new Timeline(kf);

timeline.setCycleCount(Animation.INDEFINITE);
timeline.play();timeline.play();

}

}

Within setupTimeline():

3a. Instantiate a KeyFrame

3b. Instantiate a Timeline,

passing in our new KeyFrame

3c. Set CycleCount to

INDEFINITE

3d. Play, i.e. start Timeline

37/57Andries van Dam © 2023 10/11/23

Process: Clock

1. Write an App class that extends

javafx.application.Application and implements

start(Stage)

2. Write a PaneOrganizer class that instantiates the root

Node and returns it in public getRoot()method.

Instantiate a Label and add it as root node’s child. Factor

out code for Timeline into its own method.

3. In setupTimeline(), instantiate a KeyFrame passing in

a Duration and a lambda expression (defined later) as

our EventHandler. Then instantiate a Timeline, passing

in our KeyFrame, and play the Timeline

4. Define a lambda expression to represent our

EventHandler – for every ActionEvent, update the text

on the Label

Stage

Label
VBox

Scene

38/57Andries van Dam © 2023 10/11/23

4a. The last step is to create our
TimeHandlerand implement

handle(), specifying what to occur at

the end of each KeyFrame – called

automatically by JavaFX

Clock: EventHandler: lambda expression (1/3)
public class PaneOrganizer {

private Label label;
//other code elided

private void setUpTimeline () {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

//other code elided
}

private void updateLabel() {

}
}

39/57Andries van Dam © 2023 10/11/23

4a. The last step is to create our
TimeHandlerand implement

handle(), specifying what to occur at

the end of each KeyFrame – called

automatically by JavaFX

4b. java.util.Date represents a specific

instant in time. Date is a representation

of the time, to the nearest millisecond,

at the moment the Date is instantiated

Clock: EventHandler: lambda expression (2/3)
public class PaneOrganizer {

private Label label;
//other code elided

private void setUpTimeline () {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

//other code elided
}

private void updateLabel() {
Date now = new Date();

}
}

40/57Andries van Dam © 2023 10/11/23

4a. The last step is to create our
TimeHandlerand implement

handle(), specifying what to occur at

the end of each KeyFrame – called

automatically by JavaFX

4b. java.util.Date represents a specific

instant in time. Date is a representation

of the time, to the nearest millisecond,

at the moment the Date is instantiated

4c. Because our Timeline has a Duration
of 1 second, each second a new Date
will be generated, converted to a
String, and set as the label’s text.

This will appropriately update label
with correct time every second!

Clock: EventHandler: lambda expression (3/3)
public class PaneOrganizer {

private Label label;
//other code elided

private void setUpTimeline () {
KeyFrame kf = new KeyFrame(

Duration.seconds(1),
(ActionEvent e) ->
this.updateLabel()); //event handler

//other code elided
}

private void updateLabel() {
Date now = new Date();

//this.label instantiated in
//constructor of PO

this.label.setText(now.toString());
}

}
toString() converts the Date into
a String with year, day, time etc.

41/57Andries van Dam © 2023 10/11/23

The Whole App: Clock
//App class imports
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.application.*;
// package includes Pane class and its subclasses
import javafx.scene.layout.*;
//package includes Label, Button classes
import javafx.scene.control.*;
//package includes ActionEvent
import javafx.event.ActionEvent;
import javafx.util.Duration;
import javafx.animation.Animation;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import java.util.Date;

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(), 300, 200);
stage.setScene(scene);
stage.setTitle("Clock");
stage.show();

}

public static void main(String[] args) { launch(args); }
}

public class PaneOrganizer {
private VBox root;
private Label label;

public PaneOrganizer() {
this.root = new VBox();
this.label = new Label();
this.root.getChildren().add(this.label);
this.setupTimeline();

}

public VBox getRoot() {
return this.root;

}

private void setupTimeline() {
KeyFrame kf = new KeyFrame(Duration.seconds(1),

(ActionEvent e) -> this.updateLabel());
Timeline timeline = new Timeline(kf);
timeline.setCycleCount(Animation.INDEFINITE);
timeline.play();

}

private void updateLabel() {
Date now = new Date();
this.label.setText(now.toString());

}

}

42/57Andries van Dam © 2023 10/11/23

Outline

• EventHandlers

• Lamda Expressions

• Animation

• Layout Panes

• Java FX Shapes

43/57Andries van Dam © 2023 10/11/23

Layout Panes

• Until now, we have been adding all our GUI components to a
VBox
o VBoxes lay everything out in one vertical column

• What if we want to make some more interesting GUIs?

• Use different types of layout panes!

o VBox is just one of many JavaFX panes – there are many more
options

o we will introduce a few, but check out our documentation or Javadocs
for a complete list

https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/edit
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/package-summary.html

44/57Andries van Dam © 2023 10/11/23

HBox

• Similar to VBox, but lays everything out in a
horizontal row (hence the name)

• Example:
// code for setting the scene elided
HBox buttonBox = new HBox();
Button b1 = new Button(“Button One”);
Button b2 = new Button(“Button Two”);
Button b3 = new Button(“Button Three”);
buttonBox.getChildren().addAll(b1, b2, b3);

• Like VBox, we can set the amount of horizontal
spacing between each child in the HBox using
the setSpacing(double) method

buttonBox.setSpacing(20);

45/57Andries van Dam © 2023 10/11/23

BorderPane (1/2)

• BorderPane lays out children in top,
left, bottom, right, and center positions

• To add things visually, use
setLeft(Node), setCenter(Node),
etc.

o this includes an implicit call to
getChildren().add(…)

• Use any type of Node – Panes (with their
own children), Buttons, Labels, etc.!

46/57Andries van Dam © 2023 10/11/23

BorderPane (2/2)
• Remember our VBox example from earlier?

VBox buttonBox = new VBox();

Button b1 = new Button(“Top”);

Button b2 = new Button(“Middle”);

Button b3 = new Button(“Bottom”);

buttonBox.getChildren.addAll(b1,b2,b3);

buttonBox.setSpacing(8);

buttonBox.setAlignment(Pos.TOP_CENTER);

• We can make our VBox the center of this
BorderPane

BorderPane container = new BorderPane();
container.setCenter(buttonBox);

• No need to use all regions – could just use a
few of them

• Unused regions are “compressed”, e.g. could
have a two-region (left/right) layout without a
center

Note: we didn’t have to call
container.getChildren.add(buttonBox),

as this call is done implicitly in the
setCenter() method!

47/57Andries van Dam © 2023 10/11/23

Absolute Positioning

• Until now, all layout panes we have seen have performed
layout management for us

o what if we want to position our GUI components freely ourselves?

• Need to set component’s location to exact pixel location on
screen

o called absolute positioning

• When would you use this?

o to position shapes – stay tuned!

48/57Andries van Dam © 2023 10/11/23

Pane

• Pane allows you to lay things out completely freely, like on an art canvas
– DIY graphics! More control, more work 😉

• It is a concrete superclass to all more specialized layout panes seen
earlier that do automatic positioning

o we can call methods on its graphically contained children (panes, buttons,
shapes, etc.) to set location within pane

▪ for example: use setX(double) and setY(double) to position a Rectangle, one of the
primitive shapes

o Pane performs no layout management, so coordinates you set determine where
things appear on the screen

49/57Andries van Dam © 2023 10/11/23

Creating Custom Graphics

• We’ve now introduced you to using JavaFX’s native UI elements

o ex: Label and Button

• Lots of handy widgets for making your own graphical applications!

• What if you want to create your own custom graphics?

• This lecture: build your own graphics using the
javafx.scene.shape package!

50/57Andries van Dam © 2023 10/11/23

Outline

• EventHandlers

• Lamda Expressions

• Animation

• Layout Panes

• Java FX Shapes

51/57Andries van Dam © 2023 10/11/23

javafx.scene.shape Package

• JavaFX provides built-in classes to represent 2D shapes, such
as rectangles, ellipses, polygons, etc.

• All these classes inherit from
abstract class Shape, which
inherits from Node
o methods relating to rotation and

visibility are defined in Node

o methods relating to color and

border are defined in Shape

o other methods are implemented

in the individual classes of

Ellipse, Rectangle, etc.

52/57Andries van Dam © 2023 10/11/23

Shape Constructors
• Rectangle(double width, double height)
• Ellipse(double radiusX, double radiusY)
• Polygon(double … points)

o the “…” in the signature means that you can pass in as many points as
you would like to the constructor

o pass in Points (even number of x and y coordinates) and Polygon will
connect them for you

o passing points will define and position the shape of Polygon- this is not
always the case with other Shapes (like Rectangle or Ellipse)

o example: new Polygon(0,10,10,10,5,0)

• Each of these Shape subclasses have multiple constructors (same
name, different parameter lists) This is called method overloading –
we’ll come back to it during Design Patterns. Check out the JavaFX
documentation for more options!

o for example, if you wanted to instantiate a Rectangle with a given position
and size:
Rectangle(double x, double y, double width, double height)

o you could also instantiate a Rectangle with a given width, height, and color:
Rectangle(double width, double height, Paint fill)

(0,10) (10,10)

(5, 0)

Default position for Shape
with this constructor
would be (0,0)

53/57Andries van Dam © 2023 10/11/23

Shapes: Setting Location

• JavaFX Shapes have different behaviors (methods) for setting
their location within their parent’s coordinate system

o Rectangle: use setX(double) and setY(double)

o Ellipse: use setCenterX(double) and
setCenterY(double)

o Polygon: use setLayoutX(double) and
setLayoutY(double)

• JavaFX has many different ways to set location

o from our experience, these are the most straightforward ways

o if you choose to use other methods, be sure you fully
understand them or you may get strange bugs!

o check out our JavaFX documentation and the Javadocs for
more detailed explanations!

Rectangle

location

location

Ellipse

location

Polygon

https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/
https://docs.oracle.com/javase/8/javafx/api/index.html?javafx/scene/shape/Shape.html

54/57Andries van Dam © 2023 10/11/23

Shapes: Setting Size

• JavaFX Shapes also have different behaviors
(methods) for altering their size

o Rectangle: use setWidth(double) and
setHeight(double)

o Ellipse: use setRadiusX(double) and
setRadiusY(double)

o Polygon: use setScaleX(double) and
setScaleY(double)

▪ multiplies the original size in the X or Y dimension by the
scale factor

• Again, this is not the only way to set size for Shapes
but it is relatively painless

o reminder: JavaFX documentation and Javadocs!

Rectangle

Ellipse

Polygon

width

h
e

ig
h
t

radiusY
radiusX

s
c
a
le

Y
 *

 H
e

ig
h
t

scaleX * Width

http://cs.brown.edu/courses/cs015/docs/JavaFXGuide.pdf
https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/
https://docs.oracle.com/javase/8/javafx/api/index.html?javafx/scene/shape/Shape.html

55/57Andries van Dam © 2023 10/11/23

Accessors and Mutators of all Shapes

• Rotation:
o public final void setRotate(double rotateAngle);

o public final double getRotate();

• Visibility:
o public final void setVisible(boolean visible);

o public final boolean getVisible();

• Color:
o public final void setStroke(Paint value);

o public final Paint getStroke();

o public final void setFill(Paint value);

o public final Paint getFill();

• Border:
o public final void setStrokeWidth(double val);

o public final double getStrokeWidth();

Generally, use a Color, which inherits from Paint.

Use predefined color constants Color.WHITE,
Color.BLUE, Color.AQUA, etc., or define your own

new color by using the following syntax:
Paint color = Color.color(0.5, 0.5, 0.5);

OR:

Paint color = Color.rgb(100, 150, 200);

final = can’t override method

Rotation is about the center of the Shape’s

“bounding box”; i.e., the smallest rectangle

that contains the entire shape. To have a
Shape rotate about an arbitrary center of

rotation, add a Rotate instance with a

new center of rotation to the Shape’s
transform list (see Javadocs)

The stroke is the border that outlines the Shape,

while the fill is the color of the interior of the Shape

• Setters and Getters!

https://docs.oracle.com/javase/8/javafx/api/javafx/scene/transform/Rotate.html

56/57Andries van Dam © 2023 10/11/23

Announcements (1/2)

• Code from today's lecture is available on GitHub – mess
around for practice!

• Fruit Ninja deadlines (all due 11:59 PM ET):

o On-time handin: today 10/11

o Late handin: Thursday 10/13

• Java FX Lab

o Pre-lab video and pre-lab quiz

• Fill out the GitHub Username Form

• Fruit Ninja Code Debriefs coming up!

o Keep an eye on your emails to see if you were chosen as tribute!

o Not an exam! Just a chance to talk though YOUR implementation ☺

https://github.com/brown-cs15-2022/clock
https://github.com/brown-cs15-2023/clock.git
https://github.com/brown-cs15-2022/clock
https://youtu.be/bM2u5OUF1YQ
https://forms.gle/L36mqbpaCRwSYXB37
https://forms.gle/CnHCYUAiJXKnGR6h6

57/57Andries van Dam © 2023 10/11/23

Announcements (2/2)
• Collaboration Policy Phase 2 starting at Cartoon

o can debug each other’s terminal-produced errors

o fill out mandatory collaboration phase 2 quiz

https://docs.google.com/document/d/11oqlPAXNYx9heme3zrhdYnYzgsFFnWa7NknjSStCick/edit
https://docs.google.com/forms/d/1IqAwIED7lAwiiP0Xv9MjWaaevZCgQ-cVjII_9i_Ijks/edit

Option 1

Option 2

Socially Responsible Computing

Blockchain & Cryptocurrency I
CS15 Fall 2023

The Status Quo: Centralized Databases

The Utopian Promise: An interoperable, decentralized
database that maintains the privacy of users

Introduction to Blockchain Tech

Duplicated across
a vast network of

computers

Raw data is public
and open-access

Append-only,
changes are
permanent

Regularly updated

Picture a massive excel spreadsheet that records transactions
but make it…

… which results in a ginormous,
decentralized ledger that allows us to

verify the validity of future transactions

Each transaction
and identities are

encrypted

Image source: Excel Easy

Jim wants to send
money to Mary

The transaction is
represented as a block

The block gets distributed
across the network

The network verifies
the transaction is valid

The block is added to the chain,
creating a permanent record

Jim’s record of ownership of
the money moves to Mary

Original Image Source: Paul Dughi

How Money Transfers Over Blockchain Work

Economic philosophy of Silicon Valley

Source: Stanford Business (2017)

Why decentralization?

Source: Inc (2018)

• Attractive to libertarian viewpoint
• Free from government oversight;

governed by users

Cryptocurrency: a digital currency in which transactions are verified and
records are maintained by a decentralized system
• Born out of the 2008 financial crisis

Feb 2022 Super Bowl Commercial Nov 2022 Wall Street Journal

Collapse of FTX

Collapse of FTX

Source: StructureFlow

Collapse of FTX

Source: WSJ

$152 Billion
decrease in world’s 15 largest
cryptocurrencies between
11/8/22 – 11/11/22

	Slide 1: Lecture 10
	Slide 2: Outline
	Slide 3: EventHandlers (1/3)
	Slide 4: EventHandlers (2/3)
	Slide 5: EventHandlers (3/3)
	Slide 6: Registering an EventHandler (1/2)
	Slide 7: Registering an EventHandler (2/2)
	Slide 8: Outline
	Slide 9: Lambda Expressions (1/3)
	Slide 10: Lambda Expressions (2/3)
	Slide 11: Lambda Expressions (3/3)
	Slide 12: The Whole App: ColorChanger
	Slide 13: Note: Logical vs. Graphical Containment/Scene Graph
	Slide 14: Outline
	Slide 15: Animation – Change Over Time
	Slide 16: Introducing Timelines (1/3)
	Slide 17: Introducing Timelines (2/3)
	Slide 18: Introducing Timelines (3/3)
	Slide 19
	Slide 20: Using JavaFX Timelines (2/2)
	Slide 21: Our First JavaFX animation: Clock
	Slide 22: Process: Clock
	Slide 23: Clock: App class (1/3)
	Slide 24: Clock: App class (2/3)
	Slide 25: Clock: App class (3/3)
	Slide 26: Process: Clock
	Slide 27: Clock: PaneOrganizer Class (1/3)
	Slide 28: Clock: PaneOrganizer Class (2/3)
	Slide 29: Clock: PaneOrganizer Class (3/3)
	Slide 30: Process: Clock
	Slide 31: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 32: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 33: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 34: Clock: PaneOrganizer class- setupTimeline() (2/4)
	Slide 35: Clock: PaneOrganizer class- setupTimeline() (3/4)
	Slide 36: Clock: PaneOrganizer class- setupTimeline() (4/4)
	Slide 37: Process: Clock
	Slide 38: Clock: EventHandler: lambda expression (1/3)
	Slide 39: Clock: EventHandler: lambda expression (2/3)
	Slide 40: Clock: EventHandler: lambda expression (3/3)
	Slide 41: The Whole App: Clock
	Slide 42: Outline
	Slide 43: Layout Panes
	Slide 44: HBox
	Slide 45: BorderPane (1/2)
	Slide 46: BorderPane (2/2)
	Slide 47: Absolute Positioning
	Slide 48: Pane
	Slide 49: Creating Custom Graphics
	Slide 50: Outline
	Slide 51: javafx.scene.shape Package
	Slide 52: Shape Constructors
	Slide 53: Shapes: Setting Location
	Slide 54: Shapes: Setting Size
	Slide 55: Accessors and Mutators of all Shapes
	Slide 56: Announcements (1/2)
	Slide 57: Announcements (2/2)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: The Status Quo: Centralized Databases
	Slide 63: The Utopian Promise: An interoperable, decentralized database that maintains the privacy of users
	Slide 64: Introduction to Blockchain Tech
	Slide 65: How Money Transfers Over Blockchain Work
	Slide 66: Economic philosophy of Silicon Valley
	Slide 67: Why decentralization?
	Slide 68: Collapse of FTX
	Slide 69: Collapse of FTX
	Slide 70: Collapse of FTX

