
Andries van Dam © 2023 10/12/23 1/92

Lecture 11
Graphics Part III – Building up to Cartoon

Andries van Dam © 2023 10/12/23 2/92

● For JavaFX to respond to external stimuli (aka triggers, aka Events), must
specify an event handler with JavaFX so it knows how to respond

● in CS15 typically the event handler is a private helper in the lambda expression

● Also must register the event handler, typically via a setOn… method
o for Timeline animation, specifying the event handler and registration are both done as part

of the KeyFrame specification

● There are many types of possible triggers we may want JavaFX to respond to
o e.g., when a key is pressed on the keyboard, when the mouse is clicked, when a button

is clicked, when the mouse hovers over something, when a timeline ends its key frame,
etc.

● On each trigger, JavaFX bundles together all the data about the event into an
instance of some subclass of Event – could be KeyEvent, MouseEvent,
ActionEvent, or others (find them in the JavaDocs)

● JavaFX will send the Event to the handler as a parameter and execute the
code body

Review: Event Handling

Andries van Dam © 2023 10/12/23 3/92

Review: Types of javafx.event.Events

Trigger

Type of Event

Method to

register handler

Example

when a button is pressed

ActionEvent

setOnAction

button.setOnAction(
(ActionEvent e) ->
<handler call>);

when a Timeline’s KeyFrame
ends a cycle

ActionEvent

Is registered when creating a
KeyFrame, in which the
handler is specified in
the lambda expression

KeyFrame kf = new
KeyFrame(Duration.millis(25),
(ActionEvent e) ->
this.updateTimeline());

and many many

more! Find them

by reading the

Javadocs…

handler call

Andries van Dam © 2023 10/12/23 4/92

● Let’s say we want our program to respond when you click a circle by
printing to the terminal the X and Y locations of the mouse click

● To register a mouse click, we use setOnMouseClicked, which requires
an event handler specialized to a <MouseEvent>, written as the type
of the first parameter in a lambda expression

● When the mouse is clicked, JavaFX will generate a MouseEvent, a
bundle of data about that click, and provides get’ers to access it

o that bundle of data includes the (X, Y) location of the click, which we can retrieve
using the getX and getY method

myCircle.setOnMouseClicked((MouseEvent e) ->
System.out.println(e.getX() + “, ” + e.getY());

Mouse Event Handling Example

Andries van Dam © 2023 10/12/23 5/92

MouseEvents

Trigger

Type of Event

Method to

register handler

Example

when a mouse is clicked

(pressed down, then

released)

MouseEvent

setOnMouseClicked

node.setOnMouseClicked(
(MouseEvent e) ->
<handler call>);

when a mouse is pressed

(not released)

MouseEvent

setOnMousePressed

node.setOnMousePressed(
(MouseEvent e) ->
<handler call>);

when a mouse is released

MouseEvent

setOnMouseReleased

node.setOnMouseReleased(
(MouseEvent e) ->
<handler call>);

Andries van Dam © 2023 10/12/23 6/92

KeyEvents

Trigger

Type of Event

Method to

register handler

Example

when a key is typed

(pressed down, then

released)

KeyEvent

setOnKeyTyped

node.setOnKeyTyped(
(KeyEvent e) ->
<method call>);

when a key is pressed

(not released)

KeyEvent

setOnKeyPressed

node.setOnKeyPressed(
(KeyEvent e) ->
<method call>);

when a key is released

KeyEvent

setOnKeyReleased

node.setOnKeyReleased(
(KeyEvent e) ->
<method call>);

Andries van Dam © 2023 10/12/23 7/92

Outline

• Example: MovingShape

• BorderPane

• Constants

• Composite Shapes

o example: MovingAlien

• Cartoon

Andries van Dam © 2023 10/12/23 8/92

Example: MovingShapeApp

• Program Specification: App that
displays a shape and buttons that shift
position of the shape left and right by a
fixed increment

• Purpose: Practice working with absolute
positioning of Panes, various Shapes,
and more event handling!

Andries van Dam © 2023 10/12/23 9/92

Process: MovingShapeApp
1. Write an App class that extends

javafx.application.Application and implements
start (standard pattern)

2. Write a PaneOrganizer class that instantiates root node
and makes a public getRoot() method. In
PaneOrganizer, create an Ellipse and add it as child
of root Pane; ShapeMover will add buttons

3. Write a ShapeMover class which will be responsible for
shape movement and other logic. It is instantiated in the
PaneOrganizer’s constructor

4. Write setupShape() and setupButtons() helper
methods to be called within ShapeMover’s constructor.
These will factor out code for modifying our sub-Panes

5. Register Buttons with event handlers that handle
Buttons’ ActionEvents (clicks) by moving Shape
correspondingly, within the ShapeMover class

Stage

Ellipse

Scene

Buttons
Pane

Andries van Dam © 2023 10/12/23 10/92

MovingShapeApp: App Class (1/3)

1a. Instantiate a PaneOrganizer
and store it in the local variable
organizer

NOTE: Exactly the same process as previous examples

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(), 200, 200);
stage.setScene(scene);
stage.setTitle("Color Changer");
stage.show();

}

}

Andries van Dam © 2023 10/12/23 11/92

MovingShapeApp: App Class (2/3)

1a. Instantiate a PaneOrganizer
and store it in the local variable
organizer

1b. Instantiate a Scene, passing
in organizer.getRoot() and
desired width and height of
Scene (in this case 200x200)

NOTE: Exactly the same process as previous examples

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(), 200, 200);
stage.setScene(scene);
stage.setTitle("Color Changer");
stage.show();

}

}

Andries van Dam © 2023 10/12/23 12/92

MovingShapeApp: App Class (3/3)

1a. Instantiate a PaneOrganizer and

store it in the local variable organizer

1b. Instantiate a Scene, passing in

organizer.getRoot() and desired

width and height of Scene (in this case

200x200)

1c. Set scene, set Stage’s title and

show it!

NOTE: Exactly the same process as previous examples

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(), 200, 200);
stage.setScene(scene);
stage.setTitle(“MovingShape");
stage.show();

}

}

Andries van Dam © 2023 10/12/23 13/92

Process: MovingShapeApp
1. Write an App class that extends

javafx.application.Application and implements
start (standard pattern)

2. Write a PaneOrganizer class that instantiates root
node and makes a public getRoot() method. In
PaneOrganizer, create all necessary Panes and
initialize the ShapeMover class

3. Write a ShapeMover class which will be responsible for
shapes creation, movement, and other logic. It is
instantiated in the PaneOrganizer’s constructor

4. Write setupShape() and setupButtons() helper
methods to be called within ShapeMover’s constructor.
These will factor out code for modifying our sub-Panes

5. Register Buttons with event handlers that handle
Buttons’ ActionEvents (clicks) by moving Shape
correspondingly, within the ShapeMover class

Stage

Ellipse

Scene

Buttons
Pane

Andries van Dam © 2023 10/12/23 14/92

MovingShapeApp: PaneOrganizer Class (1/3)

2a. Instantiate the root Pane and store
it in the instance variable root

public class PaneOrganizer {
private Pane root;

public PaneOrganizer() {
this.root = new Pane(); Left”);
Button b2 = new Button(“Move Right”);
_root.getChildren().addAll(_ellipse, b1, b2);

setupButtons();

}

public Pane getRoot() {
return _root;

}
}

Andries van Dam © 2023 10/12/23 15/92

MovingShapeApp: PaneOrganizer Class (2/3)

2a. Instantiate the root Pane and
store it in the instance variable root

2b. Create a public getRoot()
method that returns root

public class PaneOrganizer {
private Pane root;

public PaneOrganizer() {
this.root = new Pane(); Left”);
Button b2 = new Button(“Move Right”);
_root.getChildren().addAll(_ellipse, b1, b2);
setupShape();setupButtons();

}

public Pane getRoot() {
return this.root;

}
}

Andries van Dam © 2023 10/12/23 16/92

MovingShapeApp: PaneOrganizer Class (3/3)

2a. Instantiate the root Pane and
store it in the instance variable root

2b. Create a public getRoot()
method that returns root

2c. Create a new instance of
ShapeMover(), defined next. Pass
root as argument (The
constructor of ShapeMover() takes
in a Pane, Slide 18)

public class PaneOrganizer {
private Pane root;

public PaneOrganizer() {
this.root = new Pane(); L
HBox buttonPane = new HBox();
_root.setBottom(buttonPane);

new ShapeMover(this.root);
}

public Pane getRoot() {
return this.root;

}
}

Andries van Dam © 2023 10/12/23 17/92

Process: MovingShapeApp
1. Write an App class that extends

javafx.application.Application and implements
start (standard pattern)

2. Write a PaneOrganizer class that instantiates root node
and makes a public getRoot() method. In
PaneOrganizer, create an Ellipse and add it as child
of root Pane

3. Write a ShapeMover class which will be responsible
for shape movement and other logic. It is
instantiated in the PaneOrganizer’s constructor

4. Write setupShape() and setupButtons() helper
methods to be called within ShapeMover’s constructor.
These will factor out code for modifying our sub-Panes

5. Register Buttons with event handlers that handle
Buttons’ ActionEvents (clicks) by moving Shape
correspondingly, within the ShapeMover class

Stage

Ellipse

Scene

Buttons
Pane

Andries van Dam © 2023 10/12/23 18/92

MovingShapeApp: ShapeMover Class (1/4)

• PaneOrganizer may get too
complex: Delegate the program
logic into ShapeMover; it will:

o set up the shape graphically and logically

o set up the buttons graphically and logically

o set up the Event Handler and link it to the
buttons

3a. Make the constructor of
ShapeMover take in the root
Pane, created in PaneOrganizer,
see slide 14)

public class ShapeMover {
private Ellipse _ellipse;

public ShapeMover() {

_ellipse = ellipse;

this.setupShape();
this.setupButtons();

}
}

Pane root

Andries van Dam © 2023 10/12/23 19/92

MovingShapeApp: ShapeMover Class (2/4)

3a. Make the constructor of
ShapeMover take in the root Pane

3b. Create an instance variable
ellipse and initialize an Ellipse

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane root) {
this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(_ellipse);

this.setupShape();
this.setupButtons();

}
}

Andries van Dam © 2023 10/12/23 20/92

MovingShapeApp: ShapeMover Class (3/4)

3a. Make the constructor of
ShapeMover take in the root Pane

3b. Create an instance variable
ellipse and initialize an Ellipse

3c. Add the ellipse as a child of
the root Pane

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane root) {
this.ellipse = new Ellipse(50, 50);
root.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons();

}
}

Andries van Dam © 2023 10/12/23 21/92

MovingShapeApp: ShapeMover Class (4/4)

3a. Make the constructor of
ShapeMover take in the root Pane

3b. Create an instance variable
ellipse and initialize an Ellipse

3c. Add the ellipse as a child of the
root Pane

3d. Call setupShape() and
setupButtons(), defined next

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane root) {
this.ellipse = new Ellipse(50, 50);
root.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(root);

}
}

Andries van Dam © 2023 10/12/23 22/92

Process: MovingShapeApp
1. Write an App class that extends

javafx.application.Application and implements
start (standard pattern)

2. Write a PaneOrganizer class that instantiates root node
and makes a public getRoot() method. In
PaneOrganizer, create an Ellipse and add it as first
child of root Pane; ShapeMover will add buttons

3. Write a ShapeMover class which will be responsible for
shape movement and other logic. It is instantiated in the
PaneOrganizer’s constructor

4. Write setupShape() and setupButtons() helper
methods to be called within ShapeMover’s
constructor. These will factor out code for
modifying our sub-Panes

5. Register Buttons with event handlers that handle
Buttons’ ActionEvents (clicks) by moving Shape
correspondingly, within the ShapeMover class

Stage

Ellipse

Scene

Buttons
Pane

Andries van Dam © 2023 10/12/23 23/92

Aside: helper methods

• As our applications start getting more complex, we will need to write a lot more code to

get the UI looking the way we would like

• Such code would convolute the ShapeMover constructor—it is good practice to factor

out code into helper methods that are called within the constructor—another use of the

delegation pattern (which we first used to factor ShapeMover out of PaneOrganizer)

osetupShape() fills and positions Ellipse

osetupButtons() adds and positions Buttons, and registers them with their

appropriate event handlers

• Helper methods of the form setupX() are fancy initializing assignments. Should be

used to initialize variables, but not for arbitrary/non-initializing code

• Generally, helper methods should be private – more on this in a moment

Andries van Dam © 2023 10/12/23 24/92

MovingShapeApp: setupShape() helper method

• For this application, “helper method”

setupShape()will only set fill color and position

Ellipse in Pane using absolute positioning

• Helper method is private—why is this good

practice?

o only ShapeMover class should be allowed to

initialize the color and location of the Ellipse

o private methods, like private instance

variables, are only pseudo-inherited and are

therefore not accessible to any external classes

or even subclasses—though inherited

superclass methods may make use of them w/o

the subclasses knowing about them!

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane root) {
this.ellipse = new Ellipse(50, 50);
root.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(root);

}
private void setupShape() {

this.ellipse.setFill(Color.RED);
this.ellipse.setCenterX(50);
this.ellipse.setCenterY(50);

}
}

Andries van Dam © 2023 10/12/23 25/92

Outline

• Example: MovingShape

• BorderPane

• Constants

• Composite Shapes
o example: MovingAlien

• Cartoon

Andries van Dam © 2023 10/12/23 26/92

Aside: BorderPane Class (1/3)
• We were able to absolutely position ellipse in the root Pane because our root is simply a

Pane and not one of the more specialized subclasses

• We could also use absolute positioning to position the Buttons in the Pane in our

setUpButtons() method… But look how annoying trial-and-error is!

left.relocate(50,165);
right.relocate(120,165);

left.relocate(100,180);
right.relocate(150,180);

left.relocate(50,150);
right.relocate(120,150);

left.relocate(50,165);
right.relocate(120,165);

Is there a better way? ...hint: leverage Scene Graph hierarchy and delegation!

Andries van Dam © 2023 10/12/23 27/92

Aside: BorderPane Class (2/3)
• Rather than absolutely positioning Buttons

directly in root Pane, use a specialized layout
Pane: add a new HBox as a child of the root Pane
o add Buttons to HBox, to align horizontally

• Continuing to improve our design, use a
BorderPane as root to use its layout manager

• Now need to add Ellipse to the root
o could simply add Ellipse to CENTER of root
BorderPane

o but this won’t work—if BorderPane dictates placement
of Ellipse we won’t be able to update its position with
Buttons

o instead: create a Pane to contain Ellipse and add the
Pane as child of root! Can adjust Ellipse within its
shapePane independently!

Scene graph hierarchy

Pane root

HBox

buttonPane

Button

b1

Button

b2

Pane

shapePane

Ellipse

ellipse

BorderPane root

Andries van Dam © 2023 10/12/23 28/92

Aside: BorderPane Class (3/3)

• This makes use of the built-in layout capabilities available to us in JavaFX!

• BorderPane makes symmetry between the panel holding a shape (in

Cartoon, this panel will hold composite shapes that you’ll make) and the

panel holding our buttons

• Note: this is only one of many design choices for this application!

o keep in mind all of the different layout options when designing your programs!

o using absolute positioning for entire program is most likely not best solution—

where possible, leverage power of layout managers (BorderPane, HBox,

VBox,…)

Andries van Dam © 2023 10/12/23 29/92

MovingShapeApp: update to BorderPane (1/2)

4a. Change root to a
BorderPane

4b. Now that we have a
ShapePane, modify the
ShapeMover constructor to
contain the ShapePane

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();

// setup shape pane
Pane shapePane = new Pane(););
_root.setCenter(shapePane);
this.setupShape();

new ShapeMover(this.root);
}

public Pane getRoot() {
return this.root;

}
}

Andries van Dam © 2023 10/12/23 30/92

MovingShapeApp: update to BorderPane (2/2)

4a. Change root to a
BorderPane

4b. Create a Pane to contain
Ellipse. Add shapePane to
center of BorderPane by
calling setCenter(shapePane)
on root

4b. Now that we have a
ShapePane, modify the
ShapeMover constructor to
contain the ShapePane

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();

// setup shape pane
Pane shapePane = new Pane();
this.root.setCenter(shapePane);
this.setupShape();

new ShapeMover(this.root);
}

public Pane getRoot() {
return this.root;

}
}

Andries van Dam © 2023 10/12/23 31/92

MovingShapeApp: creation of ButtonPane (1/2)

4c. Instantiate a new HBox,
then add it as child of
BorderPane, in bottom
position

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();

// setup shape pane
Pane shapePane = new Pane();
this.root.setCenter(shapePane);

HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
this.setupShape();
new ShapeMover(this.root);

}

public Pane getRoot() {
return this.root;

}
}
Button b1 = new Button(“Move Left”);

Button b2

Andries van Dam © 2023 10/12/23 32/92

MovingShapeApp: creation of ButtonPane (2/2)

4c. Instantiate a new HBox, then
add it as child of BorderPane, in
bottom position

4d. Modify the argument of
ShapeMover to take in the
shapePane and the buttonPane
instead of the root Pane

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();

// setup shape pane
Pane shapePane = new Pane();
this.root.setCenter(shapePane);

HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
this.setupShape();
new ShapeMover();

}

public Pane getRoot() {
return this.root;

}
}
Button b1 = new Button(“Move Left”);

Button b2

shapePane, buttonPane

Andries van Dam © 2023 10/12/23 33/92

MovingShapeApp: Ellipse in the shapePane

4e. In the ShapeMover class, add the
ellipse as a child of the shapePane
instead of root

o note: none of the code in our
setupShape() method needs to be
updated since it accesses ellipse
directly… with this redesign, ellipse
now is just graphically contained within a
different Pane (the shapePane) and now in
the center of the root because we called
setCenter(shapePane)

o ShapeMover can still access the ellipse
because it remains its instance variable!

▪ this could be useful if we want to change any
properties of the Ellipse later on, e.g.,
updating its x and y position, or changing its
color

▪ illustration of graphical vs. logical containment

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {

this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(buttonPane);

}

/* setupShape elided! This method sets the color and
* initial position of the ellipse
*/
private void setupButtons(HBox buttonPane) {

Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);

}

}

Andries van Dam © 2023 10/12/23 34/92

MovingShapeApp: setupButtons() method (1/4)

4f. In the ShapeMover class, create
a method called setupButtons()
which takes in the buttonPane and
instantiate two Buttons

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {

this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(buttonPane);

}

// setupShape elided!

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);

}

}

Andries van Dam © 2023 10/12/23 35/92

MovingShapeApp: setupButtons() method (2/4)

4f. In the ShapeMover class, create a
method called setupButtons()
which takes in the buttonPane and
instantiate two Buttons

4g. Add the Buttons as children of
the new HBox

o order matters when adding children to
Panes. For this HBox, b1 will be to the left
of b2 because it is added first in the list
of arguments in addAll(…)

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {

ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(buttonPane);

}

// setupShape elided!

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);

}

}

Andries van Dam © 2023 10/12/23 36/92

MovingShapeApp: setupButtons() method (3/4)

4h. Set horizontal spacing between
Buttons as you like

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {

this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(buttonPane);

}

// setupShape elided!

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);

buttonPane.setSpacing(30);
}

}

Andries van Dam © 2023 10/12/23 37/92

MovingShapeApp: setupButtons() method (4/4)

4h. Set horizontal spacing between
Buttons as you like

4i. We will come back to the
ShapeMover class in the next step
in order to register Buttons with
their event handlers, but first we
should define the event handler

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {

this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);

this.setupShape();
this.setupButtons(buttonPane);

}

// setupShape elided!

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);

buttonPane.setSpacing(30);
}

}

Andries van Dam © 2023 10/12/23 38/92

Process: MovingShapeApp
1. Write an App class that extends

javafx.application.Application and implements
start (standard pattern)

2. Write a PaneOrganizer class that instantiates root node
and makes a public getRoot() method. In
PaneOrganizer, create an Ellipse and add it as child
of root Pane

3. Write a ShapeMover class which will be responsible for
shape movement and other logic. It is instantiated in
PaneOrganizer’s constructor

4. Write setupShape() and setupButtons() helper
methods to be called within ShapeMover’s constructor.
These will factor out code for modifying our sub-Panes

5. Register Buttons with event handlers that handle
Buttons’ ActionEvents (clicks) by moving Shape
correspondingly, within the ShapeMover class

Stage

Ellipse

Scene

Buttons
Pane

Andries van Dam © 2023 10/12/23 39/92

Aside: Creating event handlers

• Our goal is to register each button with an event handler
o the “move left” Button moves the Ellipse left by a set amount
o the “move right” Button moves the Ellipse right the same amount

• We could define two separate methods, one for the “move left”
Button and one for the “move right” Button…
owhy might this not be the optimal design?

o remember, we want to be efficient with our code usage!

• Instead, we can define one method to handle ellipse movement
ospecifics determined by parameters passed into the method!

oadmittedly, this is not an obvious design—these kinds of simplifications
typically have to be learned…

Andries van Dam © 2023 10/12/23 40/92

MovingShapeApp: moveEllipse (1/3)

5a. Declare a local variable

newXLoc that is initialized to the
current X location of the

ellipse

public class ShapeMover {
private Ellipse ellipse;
public ShapeMover(Pane shapePane, Hbox buttonPane) {

// other code elided
}

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
// other code elided

}

// other methods elided

private void moveEllipse(double xChange) {
double newXLoc = this.ellipse.getCenterX();

}
}

Andries van Dam © 2023 10/12/23 41/92

MovingShapeApp: moveEllipse (2/3)

5a. Declare a local variable newXLoc
that is initialized to the current X

location of the ellipse

5b. Add xChange parameter to

newXLoc variable to update

newXLoc by some given
increment

public class ShapeMover {
private Ellipse ellipse;
public ShapeMover(Pane shapePane, Hbox buttonPane) {

// other code elided
}

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
// other code elided

}

// other methods elided

private void moveEllipse(double xChange) {
double newXLoc = this.ellipse.getCenterX();
newXLoc += xChange;

}
}

Andries van Dam © 2023 10/12/23 42/92

MovingShapeApp: moveEllipse (3/3)

5a. Declare a local variable newXLoc
that is initialized to the current X
location of the ellipse

5b. Add xChange parameter to
newXLoc variable to update
newXLoc by some given
increment

What passes in that value?
Button’s event handler

5c. Move the ellipse’s x-
location to newXLoc

public class ShapeMover {
private Ellipse ellipse;
public ShapeMover(Pane shapePane, Hbox buttonPane) {

// other code elided
}

private void setupButtons(HBox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
// other code elided

}

// other methods elided

private void moveEllipse(double xChange) {
double newXLoc = this.ellipse.getCenterX();
newXLoc += xChange;
this.ellipse.setCenterX(newXLoc);

}
}

Andries van Dam © 2023 10/12/23 43/92

MovingShapeApp: back to setupButtons()

Register Buttons with
their event handlers by
calling setOnAction()
and passing in a lambda
expression that calls
moveEllipse, which we
just created!

public class ShapeMover {
private Ellipse ellipse;

public ShapeMover(Pane shapePane, HBox buttonPane) {
// code elided
this.setupButtons(buttonPane);

}
// setupShape elided
private void setupButtons(Hbox buttonPane) {

Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);

buttonPane.setSpacing(30);
b1.setOnAction((ActionEvent e) -> this.moveEllipse(-10));
b2.setOnAction((ActionEvent e) -> this.moveEllipse(10));

}

// moveEllipse elided
}

This is where we set xChange

Andries van Dam © 2023 10/12/23 44/92

Logical C/A Diagram

• Note this is quite different from the
Scene Graph, which only handles
graphical containment

• PaneOrganizer contains three
Panes (root, shapePane,
buttonPane) and the ShapeMover
o Notice PaneOrganizer delegates the

handling of graphical shapes to ShapeMover

• ShapeMover contains an Ellipse
and Buttons

App

BorderPane

(root)

Hbox

(buttonPane)

ShapeMover

Pane

(shapePane)

PaneOrganizer

Ellipse Button

Andries van Dam © 2023 10/12/23 45/92

import javafx.scene.paint.Color;
import javafx.event.ActionEvent;
import javafx.scene.control.Button;
import javafx.scene.shape.Ellipse;
import javafx.scene.layout.Pane;
import javafx.scene.layout.HBox;

public class ShapeMover {
private Ellipse ellipse;
public ShapeMover(Pane shapePane, Hbox buttonPane) {

this.ellipse = new Ellipse(50, 50);
shapePane.getChildren().add(this.ellipse);
this.setupShape();
this.setupButtons(buttonPane);

}
private void setupShape() {

this.ellipse.setFill(Color.RED);
this.ellipse.setCenterX(100);
this.ellipse.setCenterY(50);

}
private void setupButtons(Hbox buttonPane) {

Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(30);
b1.setOnAction((ActionEvent e) -> this.moveEllipse(-10));
b2.setOnAction((ActionEvent e) -> this.moveEllipse(10));

}
private void moveEllipse(double xChange) {

double newXLoc = this.ellipse.getCenterX();
newXLoc += xChange;
this.ellipse.setCenterX(newXLoc);

}
}

The Whole App
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class App extends Application {
@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(), 200, 130);
stage.setScene(scene);
stage.setTitle("MovingShape");
stage.show();

}

public static void main(String[] args) {
launch(args);

}
}

import javafx.scene.layout.Pane;
import javafx.scene.layout.BorderPane;

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();
Pane shapePane = new Pane();
this.root.setCenter(shapePane);
HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
new ShapeMover(shapePane, buttonPane);

}
public Pane getRoot() {

return this.root;
}

}

Andries van Dam © 2023 10/12/23 46/92

Outline

• Example: MovingShape

• BorderPane

• Constants

• Composite Shapes
o example: MovingAlien

• Cartoon

Andries van Dam © 2023 10/12/23 47/92

Reminder:Constants Class

• In our MovingShapeApp, we’ve
been using absolute numbers in
various places
o not very extensible! what if we

wanted to quickly change the size
of our Scene or Shape to improve
compile time?

• Our Constants class will keep
track of a few important numbers

• For our MovingShapeApp, make
constants for width and height of
the Ellipse and of the Pane it
sits in, as well as the start
location and distance moved

public class Constants {
// units all in pixels
public static final double X_RAD = 50;
public static final double Y_RAD = 50;
public static final double APP_WIDTH = 200;
public static final double APP_HEIGHT = 130;
public static final double BUTTON_SPACING = 30;
/* X_OFFSET is the graphical offset from the edge
of the screen to where we want the X value of the
Ellipse */
public static final double X_OFFSET = 100;
public static final double Y_OFFSET = 50;
public static final double DISTANCE_X = 10;

}

Andries van Dam © 2023 10/12/23 48/92

TopHat Question

When should you define a value in a Constants class?

A. When you use the value in more than one place.

B. Whenever the value will not change throughout the course of the

program.

C. When the value is nontrivial (i.e., not 0 or 1)

D. All of the above.

Andries van Dam © 2023 10/12/23 49/92

public class ShapeMover {
private Ellipse ellipse;
public ShapeMover(Pane shapePane, Hbox buttonPane) {

this.ellipse = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
shapePane.getChildren().add(this.ellipse);
this.setupShape();
this.setupButtons(buttonPane);

}

private void setupShape() {
this.ellipse.setFill(Color.RED);
this.ellipse.setCenterX(Constants.X_OFFSET);
this.ellipse.setCenterY(Constants.Y_OFFSET);

}

private void setupButtons(Hbox buttonPane) {
Button b1 = new Button(“move left”);
Button b2 = new Button(“move right”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.moveEllipse(

-1 * Constants.DISTANCE_X));
b2.setOnAction((ActionEvent e) -> this.moveEllipse(

Constants.DISTANCE_X));
}
private void moveEllipse(double xChange) {

double newXLoc = this.ellipse.getCenterX();
newXLoc += xChange;
this.ellipse.setCenterX(newXLoc);

}
}

The Real Whole App

public class App extends Application {
@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(),

Constants.APP_WIDTH, Constants.APP_HEIGHT);
stage.setScene(scene);
stage.setTitle("MovingShape");
stage.show();

}

public static void main(String[] args) {
launch(args);

}
}

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();
Pane shapePane = new Pane();
this.root.setCenter(shapePane);
HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
new ShapeMover(shapePane, buttonPane);

}
public Pane getRoot() {

return this.root;
}

}

no more literal numbers =

much better design!

Constants
class elided

200,80,10

Andries van Dam © 2023 10/12/23 50/92

Outline

• Example: MovingShape

• BorderPane

• Constants

• Composite Shapes
o example: MovingAlien

• Cartoon

Andries van Dam © 2023 10/12/23 51/92

Creating Composite Shapes

• What if we want to display
something more elaborate
than a single, simple
geometric primitive?

• We can make a
composite shape by
combining two or more
shapes!

Andries van Dam © 2023 10/12/23 52/92

Specifications: MovingAlien

• Transform MovingShape into
MovingAlien

• An alien should be displayed
on the central Pane, and
should be moved back and
forth by Buttons

Andries van Dam © 2023 10/12/23 53/92

MovingAlien: Design

• Create a class, Alien, to model a
composite shape

• Define composite shape’s capabilities
in Alien class

• Give Alien a setLocation() method
that positions each component (face,
left eye, right eye, all Ellipses)
o another example of delegation pattern

Alien

Ellipse

Andries van Dam © 2023 10/12/23 54/92

Process: Turning MovingShape into MovingAlien

1. Create Alien class to model
composite shape, and add each
component of Alien to
alienPane’s list of children

2. Be sure to explicitly define any
methods that we need to call on
Alien from within AlienMover
(which used to be ShapeMover)!

3. Modify AlienMover to contain an
Alien instead of an Ellipse

Andries van Dam © 2023 10/12/23 55/92

Alien Class

• The Alien class is our composite shape

• It contains three Ellipses—one for the face

and one for each eye

• Constructor instantiates these Ellipses, sets

their initial sizes/colors, and adds them as
children of the alienPane—which was

passed in as a parameter

• Although Alien class deals with each

component of the composite shape

individually, every component should reside

on the same pane as all other components

o thus, must pass Pane as a parameter to allow

Alien class to define methods for manipulating

composite shape(s) in Pane

public class Alien {
private Ellipse face;
private Ellipse leftEye;
private Ellipse rightEye;

public Alien() {//Alien lives in passed Pane
this.face = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
this.face.setFill(Color.CHARTREUSE);

/*EYE_X and EYE_Y are constants referring to the width and
height of the eyes, the eyes' location/center is changed later
in the program.*/

this.leftEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.leftEye.setFill(Color.BLACK);
this.rightEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.rightEye.setFill(Color.BLACK);

alienPane.getChildren().addAll(this.face, this.leftEye,
this.rightEye);

this.setXLoc(Constants.START_X_OFFSET);
}

public void setXLoc(double x) {
_face.setCenterX(x- Constants.EY public double getXLoc() {
return _face.getCenterX();

}
}

Pane alienPanePane alienPane

Note: Order matters when you add children to a Pane!

The arguments are added in that order graphically and

if there is overlap, the shape later in the parameter list

will lie wholly or partially on top of the earlier one. For

this example, face is added first, then leftEye and

rightEye on top. The inverse order would be wrong!

Andries van Dam © 2023 10/12/23 56/92

Process: Turning MovingShape into MovingAlien

1. Create Alien class to model composite
shape, and add each component of
Alien to alienPane’s list of children

2. Be sure to explicitly define any
methods that we need to call on
Alien from within AlienMover (which
used to be ShapeMover)!

3. Modify AlienMover to contain an
Alien instead of an Ellipse

Andries van Dam © 2023 10/12/23 57/92

Alien Class

• In MovingShapeApp, the following call is made from within our moveEllipse
method:

this.ellipse.setCenterX(newXLoc);

• Because we called JavaFX’s getCenterX() and setCenterX(…) on our shape
from within the ShapeMover class, we must now define our own methods to set the
Alien’s location in the Alien class!

• Keep it simple: what are the capabilities (methods) we want the Alien to have?

o move left

o move right

• As earlier, moveLeft and moveRightwill share some code, so we can use a
private helper method

Andries van Dam © 2023 10/12/23 58/92

MovingAlien: Alien Class (1/3)

2a. Define Alien’s private
helper method setXLoc(…) by
setting center X of face, left and
right eyes

onote: relative positions between
the Ellipses remains the same

public class Alien {
private Ellipse face;
private Ellipse leftEye;
private Ellipse rightEye;

public Alien(Pane root) {
this.face = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
this.face.setFill(Color.CHARTREUSE);
this.leftEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.rightEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
root.getChildren().addAll(this.face, this.leftEye,

this.rightEye);

}

private void setXLoc(double x) {
this.face.setCenterX(x);
this.leftEye.setCenterX(x - Constants.EYE_OFFSET);
this.rightEye.setCenterX(x + Constants.EYE_OFFSET);

}
}

Andries van Dam © 2023 10/12/23 59/92

MovingAlien: Alien Class (2/3)

2a. Define Alien’s private helper
method setXLoc(…) by setting
center X of face, left and right
eyes

onote: relative positions between the
Ellipses remains the same

2b. Define moveRight() and
moveLeft(), using setXLoc
helper to move all shapes
relative to face Ellipse center

public class Alien {
private Ellipse face;
private Ellipse leftEye;
private Ellipse rightEye;

public Alien(Pane root) {
this.face = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
this.face.setFill(Color.CHARTREUSE);
this.leftEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.rightEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
root.getChildren().addAll(this.face, this.leftEye,

this.rightEye);

}

public void moveRight() {
this.setXLoc(this.face.getCenterX() + Constants.DISTANCE_X);

}

public void moveLeft() {
this.setXLoc(this.face.getCenterX() - Constants.DISTANCE_X);

}

private void setXLoc(double x) {
this.face.setCenterX(x);
this.leftEye.setCenterX(x - Constants.EYE_OFFSET);
this.rightEye.setCenterX(x + Constants.EYE_OFFSET);

}
}

Andries van Dam © 2023 10/12/23 60/92

MovingAlien: Alien Class (3/3)

2a. Define Alien’s private helper
method setXLoc(…) by setting
center X of face, left and right
eyes

onote: relative positions between the
Ellipses remains the same

2b. Define moveRight() and
moveLeft(), using setXLoc
helper to move all shapes relative
to face Ellipse center

2c. Set starting X location of
Alien in constructor!

public class Alien {
private Ellipse face;
private Ellipse leftEye;
private Ellipse rightEye;

public Alien(Pane root) {
this.face = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
this.face.setFill(Color.CHARTREUSE);
this.leftEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.rightEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
root.getChildren().addAll(this.face, this.leftEye,

this.rightEye);
this.setXLoc(Constants.START_X_OFFSET);

}

public void moveRight() {
this.setXLoc(this.face.getCenterX() + Constants.DISTANCE_X);

}

public void moveLeft() {
this.setXLoc(this.face.getCenterX() - Constants.DISTANCE_X);

}

private void setXLoc(double x) {
this.face.setCenterX(x);
this.leftEye.setCenterX(x - Constants.EYE_OFFSET);
this.rightEye.setCenterX(x + Constants.EYE_OFFSET);

}
}

Andries van Dam © 2023 10/12/23 61/92

public House () {
this.foundation = new Rectangle(Constants.X, Constants.Y);
this.window = new Rectangle(Constants.WIND_X, Constants.WIND_Y);
this.door = new Rectangle(Constants.DOOR_X, Constants.DOOR_Y);
//code to fill foundation, window, door elided
new Pane().getChildren().addAll(this.foundation, this.window,

this.door);
new Pane().setX(Constants.INITIAL_X_OFFSET);

}

TopHat Question
Which House constructor makes the correct composite shape,
given the rest of the program is set up correctly?

public House (Pane housePane) {
this.foundation = new Rectangle(Constants.X, Constants.Y);
this.window = new Rectangle(Constants.WIND_X, Constants.WIND_Y);
this.door = new Rectangle(Constants.DOOR_X, Constants.DOOR_Y);
//code to fill foundation, window, door elided
housePane.getChildren().addAll(this.foundation, this.window,

this.door);
this.setXLoc(Constants.INITIAL_X_OFFSET);

}

A. B.

public House (Pane housePane) {
this.foundation = new Rectangle();
this.window = new Rectangle();
this.door = new Rectangle();
//code to fill foundation, window, door elided
housePane.getChildren().addAll(this.foundation, this.window,

this.door);
this.setXLoc(Constants.INITIAL_X_OFFSET);

}

C.
public House (Pane housePane) {

this.foundation = new Rectangle(Constants.X, Constants.Y);
this.window = new Rectangle(Constants.WIND_X, Constants.WIND_Y);
this.door = new Rectangle(Constants.DOOR_X, Constants.DOOR_Y);
//code to fill foundation, window, door elided
this.setXLoc(Constants.INITIAL_X_OFFSET);

}

D.

Andries van Dam © 2023 10/12/23 62/92

Process: Turning MovingShape into
MovingAlien

1. Create Alien class to model
composite shape, and add each
component of Alien to alienPane’s
list of children

2. Be sure to explicitly define any
methods that we need to call on Alien
from within AlienMover (which used to
be ShapeMover), such as location
setter/getter methods!

3. Modify AlienMover to contain an
Alien instead of an Ellipse

Andries van Dam © 2023 10/12/23 63/92

MovingAlien: PaneOrganizer Class

• Change the shapePane to be an
alienPane (we could have called
it anything!)

public class PaneOrganizer {
private BorderPane root;

public PaneOrganizer() {
this.root = new BorderPane();
Pane alienPane = new Pane();
this.root.setCenter(alienPane);
HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
new AlienMover(, buttonPane);

}
public Pane getRoot() {

return this.root;
}

}

alienPane

Andries van Dam © 2023 10/12/23 64/92

MovingAlien: AlienMover Class (1/3)

• Only have to make a few
changes to AlienMover!

• Instead of containing an
Ellipse called ellipse,
contain an Alien called
alien

• Change shapePane to be
an alienPane (we could
have called it anything!)

public class AlienMover {
private Alien alien;
public AlienMover(Pane , Hbox buttonPane) {

this.alien = new Alien();
this.setupShape();
this.setupButtons(buttonPane);

}
private void setupShape() {

this.ellipse.setFill(Color.RED);
this.ellipse.setCenterX(Constants.X_OFFSET);
this.ellipse.setCenterY(Constants.Y_OFFSET);

}
private void setupButtons(Hbox buttonPane) {

Button b1 = new Button(“Move Left!”);
Button b2 = new Button(“Move Right!”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.moveEllipse(

-1 * Constants.DISTANCE_X));
b2.setOnAction((ActionEvent e) -> this.moveEllipse(

Constants.DISTANCE_X));
}
// moveEllipse elided

}

alienPane
alienPane

Andries van Dam © 2023 10/12/23 65/92

MovingAlien: AlienMover Class (2/3)

• setupShape() method is
no longer needed, as we
now setup the Alien within
the Alien class
o remember that we set a

default location for the Alien
in its constructor:

this.setXLoc(Constants.START_X_OFFSET);

public class AlienMover {
private Alien alien;
public AlienMover(Pane alienPane, Hbox buttonPane) {

this.alien = new Alien(alienPane);
this.setupShape();
this.setupButtons(buttonPane);

}
private void setupShape() {

this.ellipse.setFill(Color.RED);
this.ellipse.setCenterX(Constants.X_OFFSET);
this.ellipse.setCenterY(Constants.Y_OFFSET);

}
private void setupButtons(Hbox buttonPane) {

Button b1 = new Button(“Move Left!”);
Button b2 = new Button(“Move Right!”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.moveEllipse(

-1 * Constants.DISTANCE_X));
b2.setOnAction((ActionEvent e) -> this.moveEllipse(

Constants.DISTANCE_X));
}
// moveEllipse elided

}

Andries van Dam © 2023 10/12/23 66/92

MovingAlien: AlienMover Class (3/3)

• Last modification we have to
make is the implementation of our
event handler to move the
composite shape once the button
is clicked

• We implemented moveRight and
moveLeft in Alien, so the event
handler can call them

•we can remove the JavaFX shape
movement details from AlienMover
since we’ve delegated those to the
Alien class

public class AlienMover {
private Alien alien;
public AlienMover(Pane alienPane, Hbox buttonPane) {

this.alien = new Alien(alienPane);
this.setupButtons(buttonPane);

}

private void setupButtons(Hbox buttonPane) {
Button b1 = new Button(“Move Left!”);
Button b2 = new Button(“Move Right!”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.alien.moveLeft());
b2.setOnAction((ActionEvent e) -> this.alien.moveRight());

}

private void moveEllipse(double xChange) {

double newXLoc = this.ellipse.getCenterX();
newXLoc += xChange
this.ellipse.setCenterX(newXLoc);

}
}

Andries van Dam © 2023 10/12/23 67/92

● Now that we’ve delegated some
of the logic to Alien class,
AlienMover and PaneOrganizer
are quite short!

● Originally, we had
PaneOrganizer delegate logic to
AlienMover, but it now seems
we over-delegated

● Let’s go back to just having
PaneOrganizer for this final app

Delegation of Our MovingAlien (1/2)
public class AlienMover {

private Alien alien;
public AlienMover(Pane alienPane, Hbox buttonPane) {

this.alien = new Alien(alienPane);
this.setupButtons(buttonPane);

}
private void setupButtons(Hbox buttonPane) {

Button b1 = new Button(“Move Left!”);
Button b2 = new Button(“Move Right!”);
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.alien.moveLeft());
b2.setOnAction((ActionEvent e) -> this.alien.moveRight());

}
}

public class PaneOrganizer {
private BorderPane root;
public PaneOrganizer() {

this.root = new BorderPane();
Pane alienPane = new Pane();
this.root.setCenter(alienPane);
HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
new AlienMover(alienPane, buttonPane);

}
public Pane getRoot() {

return this.root;
}

}

Andries van Dam © 2023 10/12/23 68/92

• Notice how we created another class for our

Alien composite shape instead of simply adding

each individual shape to PaneOrganizer

• Otherwise, there isn’t much “program logic” code

in this app, so PaneOrganizer can handle the

logic itself

• As your programs get more complex (e.g., two

shapes interacting with one another, shapes

changing color, etc.), you may want to consider

delegating to more classes. Making a separate

class for problem-specific logic allows you to

avoid complicating PaneOrganizer

• In Cartoon, you must create a program logic

class separate from PaneOrganizer and

separate from the composite shape class

Delegation of Our MovingAlien (2/2)

public class PaneOrganizer {
private BorderPane root;

private Alien alien;
public PaneOrganizer() {

this.root = new BorderPane();
Pane alienPane = new Pane();
this.root.setCenter(alienPane);

HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
this.alien = new Alien(alienPane);
this.setUpButtons(buttonPane);

}

private void setUpButtons(HBox buttonPane) {
Button b1 = new Button("Move Left!");
Button b2 = new Button("Move Right!");
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) ->

this.alien.moveLeft());
b2.setOnAction((ActionEvent e) ->

this.alien.moveRight());
}

public Pane getRoot() {
return this.root;

}
}

Andries van Dam © 2023 10/12/23 69/92

public class App extends Application {
@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(),

Constants.APP_WIDTH, Constants.APP_HEIGHT);
stage.setScene(scene);
stage.setTitle("MovingAlien!");
stage.show();

}
}

public class Alien {
private Ellipse face;
private Ellipse leftEye;
private Ellipse rightEye;

public Alien(Pane root) {
this.face = new Ellipse(Constants.X_RAD, Constants.Y_RAD);
this.face.setFill(Color.CHARTREUSE);
this.leftEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.rightEye = new Ellipse(Constants.EYE_X, Constants.EYE_Y);
this.setXLoc(Constants.START_X_OFFSET);
root.getChildren().addAll(this.face, this.leftEye,

this.rightEye);
}

public void moveRight() {
this.setXLoc(this.face.getCenterX() + Constants.DISTANCE_X);

}

public void moveLeft() {
this.setXLoc(this.face.getCenterX() - Constants.DISTANCE_X);

}

private void setXLoc(double x) {
this.face.setCenterX(x);
this.leftEye.setCenterX(x - Constants.EYE_OFFSET);
this.rightEye.setCenterX(x + Constants.EYE_OFFSET);

}
}

public class PaneOrganizer {
private BorderPane root;
private Alien alien;
public PaneOrganizer() {

this.root = new BorderPane();
Pane alienPane = new Pane();
this.root.setCenter(alienPane);
HBox buttonPane = new HBox();
this.root.setBottom(buttonPane);
this.alien = new Alien(alienPane);
this.setUpButtons(buttonPane, alien);

}
private void setUpButtons(HBox buttonPane, Alien alien) {

Button b1 = new Button("Move Left!");
Button b2 = new Button("Move Right!");
buttonPane.getChildren().addAll(b1, b2);
buttonPane.setSpacing(Constants.BUTTON_SPACING);
b1.setOnAction((ActionEvent e) -> this.alien.moveLeft());
b2.setOnAction((ActionEvent e) -> this.alien.moveRight());

}

public Pane getRoot() {
return this.root;

}
}

The Whole App

Andries van Dam © 2023 10/12/23 70/92

TopHat Question

What is the best practice for setting up graphical scenes
(according to CS15)?

A. Absolutely position everything using trial and error and use as few
panes as possible.

B. Have any shape be contained in its own pane, and only make
classes for composite shapes of more than 5 shapes.

C. Use a top-level class, make classes for more complicated shapes,
and store composite shapes, or just generally related objects, within
panes.

Andries van Dam © 2023 10/12/23 71/92

Outline

• Example: MovingShape
• BorderPane

• Constants

• Composite Shapes

o example: MovingAlien

• Cartoon

Andries van Dam © 2023 10/12/23 72/92

Your Project: Cartoon! (1/2)

• You’ll be building a JavaFX
application that displays your own
custom “cartoon”, much like the
examples in this lecture

• But your cartoon will be animated!

Andries van Dam © 2023 10/12/23 73/92

Your Project: Cartoon! (2/2)

• How can we animate our cartoon (e.g., make the cartoon move
across the screen)?

• As in film and video animation, can create apparent motion with
many small changes in position

• If we move fast enough and in small enough increments, we get
smooth motion!

• Same goes for smoothly changing size, orientation, shape, etc.

Andries van Dam © 2023 10/12/23 74/92

Animation in Cartoon

• Use a Timeline to create incremental change

• It’ll be up to you to figure out the details… but for each repetition
of one or more KeyFrames, your cartoon should move (or
change in other ways) a small amount!

o reminder: if we move fast enough and in small enough increments, we
get smooth motion!

Andries van Dam © 2023 10/12/23 75/92

● A composite shape made of at least 5 shapes that is animated
based on a Timeline
o for full credit, must use at least 2 distinct types of shapes

● The use of panes (BorderPane, VBox, HBox, etc.) to lay out your
GUI nicely

● A Label that changes
o for full credit, must change based on the Timeline

● Some element that visually changes based on keyboard input

● A Quit Button

Cartoon Requirements for MF
Make sure the elements of your cartoon reach Minimum Functionality (described in more detail

in the handout). Each year there are a handful of students that have incredible cartoons that

miss some requirement of MF.

Andries van Dam © 2023 10/12/23 76/92

● With open-ended project, so much room for “Bells & Whistles” for
extra credit!

o experiment with other fancy JavaFX animation features (fades, path
animations, etc.)

o include other JavaFX elements like Sliders, Spinners, and
ColorPickers

o use mouse interaction and keyboard interaction

o add ~ polymorphism ~ (in a meaningful way)

o anything else you can come up!

● The staff will vote on the top 6 cartoons to enjoy a special lunch
with Andy at Kabob & Curry

Cartoon Competition!

Andries van Dam © 2023 10/12/23 77/92

● Fruit Ninja late deadline tonight!
o as always, at least submit something for partial credit by midnight

o Fruit Ninja Code Debriefs will happen in the following weeks

▪ In total, they are worth 8% of your final grade

● Cartoon released!
o early handin: Thursday 10/19

o on-time handin: Saturday 10/21

o late handin: Monday 10/23

o you must complete the Collab Policy Phase 2 quiz, or your project will not be
graded

● Cartoon check-ins in Conceptual Hours!
o be sure to complete the mini-assignment ahead of time, which includes doing the

first part of the code!

Announcements

https://docs.google.com/forms/d/e/1FAIpQLSdc8wDYEQeLdZ5GQa8noqDXPS9NfbZg0RC3gEhLGRl0CHrdRA/viewform

Andries van Dam © 2023 10/12/23 78/92

Socially Responsible Computing

Blockchain & Cryptocurrency II

CS15 Fall 2023

Andries van Dam © 2023 10/12/23 79/92

From last time, when we discussed FTX…

Andries van Dam © 2023 10/12/23 80/92Sources: Forbes, Reuters (2023)

SEC charges
Genesis with
selling
unregistered
securities

Crypto Regulation (2023)

Jan Feb Mar

CFTC sues Binance
for allowing US
customers to trade
unregistered
securities

SEC orders
Kraken to
discontinue US-
based staking
business

Andries van Dam © 2023 10/12/23 81/92Source: CNBC (2023)

Crypto Regulation (2023)

Andries van Dam © 2023 10/12/23 82/92

Scale Issues

Trust in blockchain is
reinforced by verifying

information across
computers

Can lead to
blockchains being
overwhelmed by

the volume of
work

BTC was unable to
handle more than
7 transactions per

second

Andries van Dam © 2023 10/12/23 83/92

Environmental Implications

0.4 - 0.9%
of global electricity
consumption came
from crypto-assets
(from 2018 – 2022)

In line with the
consumption of the
state of Washington

Image sources: Creator - Milos Subasic | Credit - Getty Images

(before the merge)
one ETH transaction
equaled the power
consumption of the

average US household
over 9 days

Source: White House, Harvard Business Review

Andries van Dam © 2023 10/12/23 84/92

Sources: CNBC, Bloomberg (2022)

Andries van Dam © 2023 10/12/23 85/92

Proof of Work vs. Proof of Stake

Proof of Work:

Uses computational power
to validate transactions

Reduced ETH’s energy
consumption by 99%

Proof of Stake:

Depends on the amount
of crypto staked

Image source: Queppelin

Andries van Dam © 2023 10/12/23 86/92

Limitations and Key Takeaways

Danger of attacks
and bugs

POS is reportedly
less secure and

robust

The way
algorithms are
designed have

big social impact!

Crypto is still the
“wild, wild west”
without sufficient

regulation

Image source: Icon Finder, Adioma (2022)

	Slide 1: Lecture 11 Graphics Part III – Building up to Cartoon
	Slide 2: Review: Event Handling
	Slide 3: Review: Types of javafx.event.Events
	Slide 4: Mouse Event Handling Example
	Slide 5: MouseEvents
	Slide 6: KeyEvents
	Slide 7: Outline
	Slide 8: Example: MovingShapeApp
	Slide 9: Process: MovingShapeApp
	Slide 10: MovingShapeApp: App Class (1/3)
	Slide 11: MovingShapeApp: App Class (2/3)
	Slide 12: MovingShapeApp: App Class (3/3)
	Slide 13: Process: MovingShapeApp
	Slide 14: MovingShapeApp: PaneOrganizer Class (1/3)
	Slide 15: MovingShapeApp: PaneOrganizer Class (2/3)
	Slide 16: MovingShapeApp: PaneOrganizer Class (3/3)
	Slide 17: Process: MovingShapeApp
	Slide 18: MovingShapeApp: ShapeMover Class (1/4)
	Slide 19: MovingShapeApp: ShapeMover Class (2/4)
	Slide 20: MovingShapeApp: ShapeMover Class (3/4)
	Slide 21: MovingShapeApp: ShapeMover Class (4/4)
	Slide 22: Process: MovingShapeApp
	Slide 23: Aside: helper methods
	Slide 24: MovingShapeApp: setupShape() helper method
	Slide 25: Outline
	Slide 26: Aside: BorderPane Class (1/3)
	Slide 27: Aside: BorderPane Class (2/3)
	Slide 28: Aside: BorderPane Class (3/3)
	Slide 29: MovingShapeApp: update to BorderPane (1/2)
	Slide 30: MovingShapeApp: update to BorderPane (2/2)
	Slide 31: MovingShapeApp: creation of ButtonPane (1/2)
	Slide 32: MovingShapeApp: creation of ButtonPane (2/2)
	Slide 33: MovingShapeApp: Ellipse in the shapePane
	Slide 34: MovingShapeApp: setupButtons() method (1/4)
	Slide 35: MovingShapeApp: setupButtons() method (2/4)
	Slide 36: MovingShapeApp: setupButtons() method (3/4)
	Slide 37: MovingShapeApp: setupButtons() method (4/4)
	Slide 38: Process: MovingShapeApp
	Slide 39: Aside: Creating event handlers
	Slide 40: MovingShapeApp: moveEllipse (1/3)
	Slide 41: MovingShapeApp: moveEllipse (2/3)
	Slide 42: MovingShapeApp: moveEllipse (3/3)
	Slide 43: MovingShapeApp: back to setupButtons()
	Slide 44: Logical C/A Diagram
	Slide 45: The Whole App
	Slide 46: Outline
	Slide 47: Reminder:Constants Class
	Slide 48: TopHat Question
	Slide 49: The Real Whole App
	Slide 50: Outline
	Slide 51: Creating Composite Shapes
	Slide 52: Specifications: MovingAlien
	Slide 53: MovingAlien: Design
	Slide 54: Process: Turning MovingShape into MovingAlien
	Slide 55: Alien Class
	Slide 56: Process: Turning MovingShape into MovingAlien
	Slide 57: Alien Class
	Slide 58: MovingAlien: Alien Class (1/3)
	Slide 59: MovingAlien: Alien Class (2/3)
	Slide 60: MovingAlien: Alien Class (3/3)
	Slide 61: TopHat Question
	Slide 62: Process: Turning MovingShape into MovingAlien
	Slide 63: MovingAlien: PaneOrganizer Class
	Slide 64: MovingAlien: AlienMover Class (1/3)
	Slide 65: MovingAlien: AlienMover Class (2/3)
	Slide 66: MovingAlien: AlienMover Class (3/3)
	Slide 67: Delegation of Our MovingAlien (1/2)
	Slide 68
	Slide 69: The Whole App
	Slide 70: TopHat Question
	Slide 71: Outline
	Slide 72: Your Project: Cartoon! (1/2)
	Slide 73: Your Project: Cartoon! (2/2)
	Slide 74: Animation in Cartoon
	Slide 75: Cartoon Requirements for MF
	Slide 76: Cartoon Competition!
	Slide 77: Announcements
	Slide 78
	Slide 79: From last time, when we discussed FTX…
	Slide 80: Crypto Regulation (2023)
	Slide 81: Crypto Regulation (2023)
	Slide 82: Scale Issues
	Slide 83: Environmental Implications
	Slide 84
	Slide 85: Proof of Work vs. Proof of Stake
	Slide 86: Limitations and Key Takeaways

