
1 / 63
Andries van Dam © 2023 10/27/23

Lecture 15
Design Patterns and Principles: Part 2

From xkcd Webcomics

https://xkcd.com/974/

2 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

3 / 63
Andries van Dam © 2023 10/27/23

Back to Our Snake Program
• Specifications

o player moves snake via key input around
board of squares with goal of eating pellets to
increase score

o snake can pivot left or right but not 180º
o gain score by eating pellets – different colors

yield different scores

• Represent snake as ArrayList of BoardSquares
and delegate to a wrapper Snake class

• Represent board as 2D array of BoardSquares
and delegate to a wrapper Board class

• Today, we’ll cover details about snake movement
and food

Significant revisions to Snake code by former HTAs
Adam, Brandon, and Naafi

twinning!

4 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

5 / 63
Andries van Dam © 2023 10/27/23

Snake Movement (1/3)

• Snake keeps moving in the same direction until a key is pressed,
which triggers change in direction

• Direction in which the snake moves is a property or piece of state
• What have we learnt so far that we can use to represent a property

or piece of state for a class?
o instance variables!

• Need to indicate whether direction the snake is moving is up, down,
left, or right

• What type should our instance variable be?

6 / 63
Andries van Dam © 2023 10/27/23

Snake Movement (2/3)
• Can use Strings to store current

direction of snake movement

• Pro: easy to read and understand

• Con: value of strings can be
anything!
o e.g., the north direction can be

represented as “up”, “upward”,
“UP”, “upside” and many more

o can be confusing. It’s easy to
mistype a string causing
runtime bugs

public class Snake {

 private String currDirection;

 public Snake() {
 this.currDirection = “up”;
 }

}

7 / 63
Andries van Dam © 2023 10/27/23

Snake Movement (3/3)
• Alternatively, use integers to store current

direction of snake movement

• Pro: it is less likely to mistype an integer
compared to a string

• Con: the numbers used are arbitrary
o e.g., 1 can mean anything. If 1 is up, is

down -1 or 2?
o somebody reading your code wouldn’t

immediately understand what these
numbers mean

• Neither of the choices so far are good enough

• Can think of directions as constants e.g., the
cardinal points of a compass

o need an easier way to store current
direction from a set of constants

public class Snake {

 private int currDirection;

 public Snake() {
 this.currDirection = 1;
 }

}

8 / 63
Andries van Dam © 2023 10/27/23

Introducing Enums
• Enums are a special data type used to represent a group of related

constants
o e.g., the cardinal directions: north, south, east, west
o can create a Direction enum for this (next slide)

• The value of an enum can be any of the constants pre-defined for it
o the value of the Direction enum would be any of 4 directions

• In our program, use enums to represent the cardinal directions of snake
movement

9 / 63
Andries van Dam © 2023 10/27/23

Declaring and Defining an Enum
• Declare it as enum rather than class or

interface
• Declare the set of constants, in this case the 4

directions, separating them with commas
• Because they are constants, enum fields

should be in all UPPER_CASE letters
• To access the enum constants, use the dot

syntax:
Direction up = Direction.UP;

• Enums, just like classes, have their own .java
file.

o this file would be Direction.java
o in IntelliJ, an enum file will be shown by the

letter icon E

public Direction {
 UP, DOWN, LEFT, RIGHT;
}

enum

10 / 63
Andries van Dam © 2023 10/27/23

Using Enums: Snake Movement (1/3)
• Can use a Direction enum in Snake

to store direction of movement
o notice currDirection’s type is

the enum Direction. Not String
or int

o currDirection is initialized to
right

• Like any type in Java, enums can be
used as parameters to methods

o changeDirection sets current
direction to whatever is passed in

• Notice how intuitive the value of
currDirection is compared to when
we used strings and integers!

public class Snake {

 private Direction currDirection;

 public Snake() {
 this.currDirection = Direction.RIGHT;
 }

 public void changeDirection(Direction newDir) {
 this.currDirection = newDir;
 }

}

11 / 63
Andries van Dam © 2023 10/27/23

TopHat Question
Given the enum below, which of the following is a correct way to
initialize the paused variable?

public enum Status {
 PAUSED, RUNNING, STOPPED;
}

A. Status paused = new Status(PAUSED);
B. Status paused = Status(PAUSED);
C. Status paused = Status.PAUSED();
D. Status paused = Status.PAUSED;

12 / 63
Andries van Dam © 2023 10/27/23

Using Enums: Snake Movement (2/3)
• Remember the handleKeyPress method

from lab4 & Cartoon?
o JavaFX provided it with arguments that

corresponded to Left, Right, or Space keys
o these KeyCodes were ENUMs!

• Again, use a switch and call
changeDirection in each case, passing in
the corresponding direction

• But wait! There’s one specification with
snake movement we’ve ignored
o snake can pivot right or left, but not 180º
o thus check new direction passed from key

input is not the opposite of current direction

private void handleKeyPress(KeyCode code) {
 switch (code) {
 case UP:
this.snake.changeDirection (Direction.UP);
 break;
 case DOWN:

this.snake.changeDirection
(Direction.DOWN);
 break;
 case LEFT:

this.snake.changeDirection
(Direction.LEFT);
 break;
 case RIGHT:

this.snake.changeDirection
(Direction.RIGHT);
 break;
 default:

break;
}

13 / 63
Andries van Dam © 2023 10/27/23

Using Enums: Snake Movement (3/3)
• Can use a series of if-else

statements to check that newDir is
not the direction opposite
currDirection

• Results in complicated code; need
a simpler solution
o given a direction, can we find its

opposite?
o how can we have this functionality

be part of the enum so that snake
can use it?

public class Snake {

 // other methods elided

 public void changeDirection(Direction newDir) {
 if (newDir == Direction.UP &&
 this.currDirection != Direction.DOWN) {
 this.currDirection = newDir;
 } else if (newDir == Direction.DOWN &&
 this.currDirection != Direction.UP) {
 this.currDirection = newDir;
 } else if (newDir == Direction.LEFT &&
 this.currDirection != Direction.RIGHT) {
 this.currDirection = newDir;
 } else if (newDir == Direction.RIGHT &&
 this.currDirection != Direction.LEFT) {
 this.currDirection = newDir;
 }

 }

}

14 / 63
Andries van Dam © 2023 10/27/23

Introducing Enum Methods (1/3)
• Enums in java act like classes in that we

can define methods and other instance
variables within its body
o not a class, no constructor because values

already enumerated in the declaration
• Can add a method, opposite, in our
enum, that returns the opposite direction of
the current direction

• But need to know what current direction
(initialized in Snake’s constructor) is
o can pass it to opposite as a parameter.

Anything wrong with this?
o repetitive since Snake would call:

currDirection.opposite(currDirection);

public enum Direction {
 UP, DOWN, LEFT, RIGHT;

 public Direction opposite() {
 switch () {
 case UP:
 return DOWN;
 case DOWN:
 return UP;
 case LEFT:
 return RIGHT;
 case RIGHT:
 return LEFT;
 }
 }
}

Direction current
current

15 / 63
Andries van Dam © 2023 10/27/23

Enum Methods (2/3)
• Can instead pass this to

switch statement
o i.e., the value of Direction we

call opposite on:
current.opposite();

o related to other uses of this

• If current is
Direction.LEFT, what
would current.opposite()
return?
o Direction.RIGHT

public enum Direction {
 UP, DOWN, LEFT, RIGHT;

 public Direction opposite() {
 switch () {
 case UP:
 return DOWN;
 case DOWN:
 return UP;
 case LEFT:
 return RIGHT;
 case RIGHT:
 return LEFT;
 }
 }
}

this

this is the current value of
direction. When opposite() is

called, we check said current direction
and return its opposite

16 / 63
Andries van Dam © 2023 10/27/23

Enum Methods (3/3)
• Back in Snake, can now check that

direction passed in from key input
is not the opposite of current
direction

• Use the != comparator to compare
two enum values

• Notice how much simpler our code
looks compared to the tower of
if-else statements?

• Adding methods to enums makes
them more robust and a useful data
type to have in a program

public class Snake {

 private Direction currDirection;

 //initialize currDirection to RIGHT
 public Snake() {
 this.currDirection = Direction.RIGHT;

 }

 public void changeDirection(Direction newDir) {
 if (newDir != this.currDirection.opposite()) {
 this.currDirection = newDir;
 }
 }

}

17 / 63
Andries van Dam © 2023 10/27/23

TopHat Question
Given the enum below, which of the following could be a method
in Operator?
public enum Operator {
 ADD, SUBTRACT, MULTIPLY, DIVIDE;
}

public int calc(int a, int b) {
 switch(a, b) {
 case ADD:
 return a + b;
 case SUBTRACT:
 return a – b;
 case MULTIPLY:
 return a * b;
 case DIVIDE:
 return a / b;
 }
 }

public int calc(int a, int b) {
 switch(this) {
 case 1:
 return a + b;
 case 2:
 return a – b;
 case 3:
 return a * b;
 case 4:
 return a / b;
 }
 }

public int calc(int a, int b) {
 switch(this) {
 case ADD:
 return a + b;
 case SUBTRACT:
 return a – b;
 case MULTIPLY:
 return a * b;
 case DIVIDE:
 return a / b;
 }
 }

A. B. C.

18 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

19 / 63
Andries van Dam © 2023 10/27/23

Representing the Food (1/3)
• Goal is to grow the Snake as much as

possible without moving it off screen
or into itself

• Snake grows by eating pellets which
are located on random positions on
the board

• In our version of the game, want to
model different types of the pellets
o each with a different color and

yielding different scores
• How can we generate these distinct

types of pellets?

20 / 63
Andries van Dam © 2023 10/27/23

Representing the Pellets (2/3)
• Can use interface and create different Pellet classes that

implement it?
• However, in the version of Snake we’re making, there’s very little

difference between Pellet types
o only difference is color and score which are properties of the class! No

difference in functionality (methods)

• Important to keep in mind project specifications when designing
because they affect our design choices
o only if there were different actions associated with each pellet, might

we want to use an interface

21 / 63
Andries van Dam © 2023 10/27/23

Representing the Pellets (3/3)
• Can use inheritance and factor out common implementation to super

class e.g., graphically remove pellets from board once eaten?
• But in our program, there is only method (eat()) in Pellet. No need

for super classes and sub classes
o like using a sledgehammer to crack a nut!

• Even if we extended functionalities of Pellet so that the class had
more capabilities, may need to override methods which can be
dangerous (see addendum at end of deck!)

• Any other option?
o recall how we generated different types of Scarfs in the Math and

Making Decisions lecture
o want to do something similar with Pellets

https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.3.23.pptx.pdf
https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.3.23.pptx.pdf

22 / 63
Andries van Dam © 2023 10/27/23

Factory Pattern (1/2)
• Can use Factory Pattern to create one Pellet class and

specify parameters to its constructor that will configure its
type, i.e., score and color
o allows us to instantiate different types of Pellets without caring

about creation logic
o a really useful pattern when creation logic is more complicated,

e.g., if each type of Pellet had a different shape. Or even with
Tetris pieces (coming up soon!)

23 / 63
Andries van Dam © 2023 10/27/23

Factory Pattern (2/2)
• Key features: a switch

statement
o in this case uses a random

number generator
o used on Fruit Ninja to

generate fruits/bombs

public void spawnFood() {
 // gets random empty tile on board where food will be added
 BoardSquare tile = this.getRandomEmptyTile();
 Food food;
 int rand = (int) (Math.random() * 3)
 switch (rand) {
 case 0:
 food = new Pellet(this.gamePane, Color.RED, 10,

 tile.getRow(), tile.getCol());
 break;
 case 1:
 food = new Pellet(this.gamePane, Color.BLUE, 30,
tile.getRow(), tile.getCol());
 break;
 default:
 food = new Pellet(this.gamePane, Color.GREEN, 50,

tile.getRow(), tile.getCol());
 break;
 }
 tile.addFood(food);
}

public Pellet(Pane gamePane, Color color, int score,
int row, int col)

Pellet Constructor!

24 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

25 / 63
Andries van Dam © 2023 10/27/23

Testing Our Program (1/2)

Testing involves checking that the
actual behavior of a program

matches it’s expected behavior
(you’ve done this by playing your

games!)

Original “Waterfall Model” of Software Development

Typically test at multiple
stages of development!

26 / 63
Andries van Dam © 2023 10/27/23

Testing Our Program (2/2)
• You already test your programs all the time – by playing them!

• As we scale in complexity, we can incrementally test logic of our program
beyond playing the game

• Unit Testing is useful for verifying that specific parts of our program work
(ex. a method)
o A rocket scientist would want to check her calculations and simulate takeoff before

launching!

• How could we test our snake program without even running it?
o e.g., check individual methods, such as isEmpty() method

▪ returns false when either pellet or snake is on tile
▪ returns true if no pellet or snake is on tile

o How to test our methods (along with printlns, stacktrace, and
debugger!)?

o Isolate, isolate, isolate the problem!

27 / 63
Andries van Dam © 2023 10/27/23

Introducing JUnit Testing
• A framework for writing and running tests

• JUnit allows individual methods and edge cases to be tested in a controlled
environment, a test suite
o what if you need to test the end condition of a game that takes 100 hours to complete?
o what if a bug only happens one every 1000 tries? Can’t manually simulate!

• Unit Testing in CS15 has the following pattern:
o set up testing class
o instantiate essential objects required to test method(s)
o use assertion methods to validate a boolean expression

• Assertion methods are JUnit methods we use to test
o assertTrue(boolean condition) will pass if the boolean expression inside is

true
o assertFalse(boolean condition) will pass if the boolean expression inside is

false

• You will get set up with JUnit in next weeks lab!!

28 / 63
Andries van Dam © 2023 10/27/23

JUnit Testing: Naïve Example
• Trivial example: test the following

code that adds two integers:

• What steps do we take to test?

• 1) Set up testing class

• 2) Instantiate essential objects
required to test method(s)

• 3) Use assertion functions to
validate a boolean expression

public class Calculator {

 // constructor elided
 public int add(int x, int y){

return x+y;
 }
}

public class CalculatorTestingSuite {

 @Test
 public void testAddNumbers(){

Calculator calc = new Calculator();
assertTrue(calc.add(2,2) == 4);

 }
}

@Test tells compiler this is a unit test

29 / 63
Andries van Dam © 2023 10/27/23

How does IntelliJ help?
• Our test(s) from the last slide look like this in IntelliJ:

Can run individual tests, or the
whole class (the “testing suite”)

with green play buttons

Pressing the top play button, gets
us the following output in IntelliJ:

30 / 63
Andries van Dam © 2023 10/27/23

JUnit Testing: Snake Example
public class SnakeTestingSuite {

 @Test
 public void testTileUpdates(){

 Pane gamePane = new Pane();
 Board board = new Board(gamePane);
 Pellet pellet = new Pellet(gamePane,
Color.RED, Constants.SCORE, 1, 1);
 BoardSquare tile = board.tileAt(1,1);

 tile.addPellet(pellet);
 assertFalse(board.tileAt(1,1).isEmpty());

 tile.addSnake(); //eats pellet, but adds snake
 assertFalse(board.tileAt(1,1).isEmpty());

 tile.reset(); // removes snake
 assertTrue(board.tileAt(1,1).isEmpty());
 }
}

How can we apply this framework
to test our Snake code?

• Set up testing class

• Instantiate essential objects required
to test method(s)

• Use assertion functions to validate
boolean expression(s)

You will get practice writing tests like this
in next weeks lab

• Testing will be required for a
mini-project alongside Tetris (after
you learn more in lab!) but not
Doodle Jump

• You will learn a lot more about testing
in CS200!! ☺

31 / 63
Andries van Dam © 2023 10/27/23

Recap Snake Design Process

• Assignment specifications can be daunting

• Start at very high level: how to separate components of the program
o which classes can I use to model different objects in my

program?
o what functionalities can I delegate to those classes?
o how would those classes interact with each other?
o how can you test these components?
o is my design scalable?
o repeat and revise!

32 / 63
Andries van Dam © 2023 10/27/23

Intermission

• Have seen how to design mock CS15 project from scratch
o need to go through similar design discussions for the projects in

the remainder of the semester
o code for the different designs of Snake can be found on GitHub

• For remainder of lecture, will cover additional discussions around
design that will be useful in the future

https://github.com/brown-cs15-2023/snake

33 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

34 / 63
Andries van Dam © 2023 10/27/23

Interfaces vs. Inheritance
• When deciding between interfaces and inheritance, need to consider

trade-offs between the two
o interfaces + composition/containment offer more flexibility compared to

inheritance
▪ ex. wrapper classes, like a “smart square”

o can implement several interfaces but only extend one super-class
o while inheritance allows sub-classes to inherit functionality from parent,

there’s risk of unintended consequences when overriding methods

• Note that while interface (coupled with composition) is often favored
over inheritance, there are use cases which can really take advantage
of inheritance, e.g., cars and animals

35 / 63
Andries van Dam © 2023 10/27/23

Case 1: Problems with Inheritance
• Let’s return to our Race example from the Inheritance lecture

• CS15Mobile, Van, and Convertible have many identical capabilities
and share a lot of the same components
o start/stop engines

• We created a Car superclass
o Car contains instances of Engine, Brake, etc.
o CS15Mobile, Van, and Convertible extend from Car

Van CS15Mobile Convertible

 Car

36 / 63
Andries van Dam © 2023 10/27/23

Extending Our Design
• Assume now that we add an ElectricCar class to the program

o but ElectricCar doesn’t use the standard Engine inherited from Car

o can ElectricCar just override Car’s methods that make use of Engine?
Anything wrong with that?
▪ can do this but could be dangerous (see appendix)

▪ when you subclass Car, its this.engine, is hidden from you

• a parent’s private variables stay private

▪ you inherit methods that use this.engine, but implementation is hidden

• you do not know which methods use this.engine, let alone how they do that

▪ and you still have the now useless this.engine via pseudo-inheritance

37 / 63
Andries van Dam © 2023 10/27/23

Case 2: Inheritance vs. Interfaces + Composition
• But how, if at all, are interfaces with composition any better?

o let’s consider the case below where we want to animate a clock

public class AnimateClock {
 private Clock myClock;

 public AnimateClock(Clock c) {
 this.myClock = c;
 this.setUpTimeline();
 }

 private void setUpTimeline() {
 KeyFrame kf = new KeyFrame(Duration.seconds(1),

 (ActionEvent e) -> this.clock.tick());
 // code to add kf to timeline and start timeline
 }
}

38 / 63
Andries van Dam © 2023 10/27/23

Inheritance vs. Interfaces + Composition
• Will both of these solutions work if we pass in a GrandfatherClock object to
AnimateClock(…) in the previous slide? GrandfatherClock only adds a Ding

public class Clock {
 public Clock () {//code elided}
 public void tick() { /* code to update time,

including delegation to HourHand’s and
MinuteHand’s move() methods */}
}
public class GrandfatherClock extends Clock {
 public GrandfatherClock () {//code elided}

 @Override
 public void tick() {
 super.tick();
 if (this.isEvenHour()) {
 this.playDing();
 }
 }
}

public interface Clock {
 public void tick();
}

public class GrandfatherClock implements Clock {
 private HourHand hourHand;
 private MinuteHand minuteHand;

 public GrandFatherClock() {
 // instantiate HourHand and MinuteHand
 }

 @Override
 public void tick() {
 this.minuteHand.move();
 this.hourHand.move();
 if (this.isEvenHour()) {
 this.playDing();
 }
 }
}

39 / 63
Andries van Dam © 2023 10/27/23

Different Implementations, Same Result
• Both of these implementations result in a GrandfatherClock

animating correctly
o in solution 1, Clock is a superclass
o in solution 2, Clock is an interface
o both can be used polymorphically

• But pros and cons to each solution

40 / 63
Andries van Dam © 2023 10/27/23

Inheritance Design: Pros and Cons
Pros:
• Better code reuse

o methods are automatically
inherited in subclasses, so
no need to re-implement
functionality tick(). In this
case, tick() delegates
most of the responsibility to
a MinuteHand and
HourHand and their
move() methods, but
tick() could be arbitrarily
complex

Cons:
• Less flexible

o forced to accept superclass
properties and methods, may have
to (partially) override concrete
methods, but overriding may have
unintended consequences

o because you don’t know how
hidden functionality in superclass
will affect your code

o and superclass can change
implementation and accidentally
effect you (see appendix!)

41 / 63
Andries van Dam © 2023 10/27/23

Interfaces + Composition
• Solution 2 uses a combination of an

interface and composition to
delegate functionality to a
MinuteHand and HourHand

• GrandfatherClock signs the
contract (thus has to implement
tick() functionality) but delegates
most of the responsibility to
MinuteHand and HourHand

public interface Clock {
 void tick();
}

public class GrandfatherClock implements
Clock {
 private HourHand hourHand;
 private MinuteHand minuteHand;

 public GrandFatherClock() {
 // instantiate HourHand and MinuteHand
 }

 @Override
 public void tick() {
 this.minuteHand.move();
 this.hourHand.move();
 if(this.isEvenHour()) {
 this.playDing();
 }
 }
}

42 / 63
Andries van Dam © 2023 10/27/23

Interfaces + Composition Design Pros
•Very flexible

o we completely control GrandfatherClock, and if we want to write a
CuckooClock or DigitalClock class, it’s easier to implement that
functionality

o no overriding → no unintended consequences

•Easy to use classes written by others
o if someone else wrote MinuteHand and HourHand, you can still

delegate to it without knowing their code details
o could also easily swap them out with different component classes that

you wrote

43 / 63
Andries van Dam © 2023 10/27/23

Interfaces + Composition Design Cons

• Cons
o both inheritance and interface use composition (i.e., delegate to

other objects)
▪ with inheritance you automatically get concrete methods

from the superclass
▪ when you use composition, you must invoke the methods

you want on the objects to which you have delegated – thus
more control but more responsibility

44 / 63
Andries van Dam © 2023 10/27/23

Case 3: Multiple Interfaces
• Have seen how interfaces provide us with more flexibility because no

unintended consequences
• Interfaces offer us even more flexibility because can implement

several interfaces
o why is this useful?

• Imagine we’re making a game with the following classes
FlyingSuperhero
o fly()
o saveLives()

StrongSuperhero
o liftCars()
o saveLives()

SlimeMonster
o scareCitizens()
o oozeSlime()

Robber
o scareCitizens()
o robBank()

45 / 63
Andries van Dam © 2023 10/27/23

Interfaces vs. Inheritance
• There are some similarities in implementation

o FlyingSuperhero and StrongSuperhero both have a
saveLives() method

o SlimeMonster and Robber both have a scareCitizen()
method

o can abstract this up into superclasses!

46 / 63
Andries van Dam © 2023 10/27/23

Initial Design

Hero
saveLives()

FlyingSuperhero
fly()

StrongSuperhero
liftCars()

Villain
scareCitizens()

SlimeMonster
oozeSlime()

Robber
robBank()

47 / 63
Andries van Dam © 2023 10/27/23

Extending Our Design
• We want to add a monster who flies

o FlyingMonster
▪ fly()
▪ scareCitizens()

• Where do we fit this into our inheritance diagrams?
o it can fly, but it does not save lives → can’t use methods defined in

Hero superclass to scareCitizens()
o could extend Villain superclass so that it can use

scareCitizens(), but would need to reimplement code for fly()

48 / 63
Andries van Dam © 2023 10/27/23

Revised Design

Hero
saveLives()

FlyingSuperhero
fly()

StrongSuperhero
liftCars()

Villain
scareCitizens()

SlimeMonster
oozeSlime()

Robber
robBank()

FlyingMonster
fly()

49 / 63
Andries van Dam © 2023 10/27/23

Can we do better?
• Separate classes by their capabilities

o FlyingSuperhero: flier + lifesaver

o StrongSuperhero: carlifter + lifesaver

o SlimeMonster: slimer + scarer

o FlyingMonster: flier + scarer

o BankRobber: robber + scarer

• Inheritance: model classes based on what they are

• Interface: model classes based on what they do
o in this case, prefer interface over force-fitting inheritance

50 / 63
Andries van Dam © 2023 10/27/23

Better Design: Mix and Match Using Interfaces

Flier

Lifesaver

CarLifter

Slimer

Scarer

Flier

Scarer

Robber

Scarer

Lifesaver

FlyingSuperHero

StrongSuperHero

SlimeMonster

FlyingMonster

BankRobber

51 / 63
Andries van Dam © 2023 10/27/23

Interfaces and Our Design
• As you can see, there are a lot more classes in this design

o however, we have extreme flexibility
▪ could make a flying, strong, scary, bank robbing monster

without changing or force-fitting our new class into the current
design

▪ although you still have to implement the methods of the
interface in your new class

52 / 63
Andries van Dam © 2023 10/27/23

The Challenges of Design (1/2)
• Design a solution to a problem such that it solves the problem efficiently, but

also makes it easy to extend the solution if additional functionality is required
o only define the capabilities that you know you will need to solve the

problem at hand
• Your job in creating an interface/superclass is precisely to figure out the right

abstractions
o decision making under uncertainty – you do the best you can. And

frankly, opinions may differ on what is “the best solution”
o experience (practice) really matters

• Extensibility is important, but only to a degree
o you cannot design a program that solves every problem a user thinks of

53 / 63
Andries van Dam © 2023 10/27/23

The Challenges of Design (2/2)
• CS32 (Software Engineering) goes deeper into design decisions and

tradeoffs, as well as software engineering tools
o you can take it after you’ve completed CS0150 and CS0200!

54 / 63
Andries van Dam © 2023 10/27/23

Overview
● Enums

● Factory Pattern

● Testing

● Interfaces v. Inheritance

● Method Overloading

55 / 63
Andries van Dam © 2023 10/27/23

Method Overloading (1/3)
• Can define multiple methods of same name within a class, as long as

method signatures are different

• Method signature refers to name, number, types of parameters and
their order

• Signature does NOT include return type

• Two methods with identical signatures but different return types (and
different bodies) will yield a compiler error – why?
o compiler (and you, the reader) can’t distinguish between two

methods with the same signature and different return types when
an instance calls those methods – method name and argument
types passed in are the same! So, signature is just name and
parameter list

56 / 63
Andries van Dam © 2023 10/27/23

Which of the following is true of a class that contains an
overloaded method? The class has…

A. Two methods that are absolutely identical
B. Two methods that are the same, except in their return type
C. Two methods that have the same name, but different

parameters
D. Two methods that are the same, except one contains an error

TopHat Question

57 / 63
Andries van Dam © 2023 10/27/23

Method Overloading (2/3)
• Example: java.lang.Math

• static method max takes in two
numbers and returns the greater
of the two

• There are actually three max
methods– one for ints, one for
floats, one for doubles

• When you call an overloaded
method, the compiler infers
which method you mean based
on types and number of
arguments provided

/* this is an approximation of what Math’s
 three max methods look like */

public class Math {
 // other code elided

 public static int max(int a, int b) {
 // return max of two ints
 }

 public static float max(float a, float b) {
 // return max of two floats
 }

 public static double max(double a, double b){
 // return max of two doubles
 }

}

58 / 63
Andries van Dam © 2023 10/27/23

• Be careful not to confuse overloading and overriding!

o Overriding an inherited method in a subclass: signatures and
return types must be the same

o Overloading methods within the same class: names are the same
but the rest of the signatures (i.e., the parameters) must be different so
the compiler can differentiate; the return types may also differ (see
max)

• Using same signatures and return types in different classes is
OK because the compiler can differentiate by class/type of
instance on which the method is called

Method Overloading (3/3)

59 / 63
Andries van Dam © 2023 10/27/23

Method Overloading: Constructors
• Even constructors can be

overloaded!
• Already seen this with

JavaFX shapes
• Can instantiate a rectangle

with any of the constructors!

Rectangle rect = new Rectangle ();
rect = new Rectangle (120, 360);
rect = new Rectangle (0, 0, 120, 120);
rect = new Rectangle (0, 0,
Color.BLUE);

60 / 63
Andries van Dam © 2023 10/27/23

Method Overloading: Example
• Can call an overloaded method on other overloaded methods

public class Halloween {

 public Halloween(HalloweenShop shop) {
 Hat hat = shop.getHat();
 this.wearCostume(hat);
 }

 public void wearCostume(Hat hat) {
 Gown gown = hat.getMatchingGown();
 this.wearCostume(hat, gown);
 }

 public void wearCostume(Hat hat, Gown gown) {
 //code to wearCostume elided
 }
 //other methods elided
}

61 / 63
Andries van Dam © 2023 10/27/23

Announcements
• Snake Code on GitHub – can discuss design decisions with other students, or

TAs at hours
• DoodleJump Information

o Early handin: Monday 10/30
o On-time handin: Wednesday 11/01
o Late handin: Friday 11/03
o Check out Partner Projects Logistics Guide
o Chance for a Code Debrief after you hand in the project! Will send more

info soon!

• Debugging code-along—Check Ed!
o Most important of the year!! Will save you hours on Tetris/Final Project

• HTA office hours on Friday 10/27 @3pm in CIT 210

https://github.com/brown-cs15-2023/snake
https://docs.google.com/document/d/1paII6DUfQDK9XpJrA_HC_BpxIJfQge8vYxAEUSi8gjs/edit?usp=sharing

Socially Responsible Computing
Social Media & Misinformation

Photo credit: Unsplash

CS15 Fall 2023

How do you receive your news?

Source: Pew Research Center

Misinformation / Disinformation

Image credit: WIT Schumann Library
Definitions coined by Prof. Claire Wardle, co-director of Brown’s Information Futures Lab

Misinformation / Disinformation

•July 2021: Biden: Facebook is
‘killing people’ because of vaccine
hesitancy

How much is FB to blame?

•July 2023: Louisiana judge rules
that gov. agencies cannot
communicate w/ social media
platforms about deletion of posts

Source: NYTimes

Anti-vax Facebook groups

Why is this content popular?
•Social network algorithms tend to reward

extreme content!

Filter bubbles. Photo Credit: Spread Privacy

Map of the 2020 electoral college. For the most part:
coasts are blue, middle is red. Credit: Wikipedia

•Shock → more engagement → more revenue

•Contrary evidence can harden a belief:
“post-truth” world of alternative facts

•Confirmation bias
•Filter bubble: when an internet user

encounters only info/opinions that reinforce
their own beliefs

•AKA “echo chamber”

Result: tribalism, divisiveness, polarization in
the US, decline of civic responsibility

Social Media Can Reward Sharing Fake News

- In a study of 2,476 Facebook users,
30%+ of the false news shared was
due to the 15% most habitual news
sharers

Proceedings of the National Academy of Sciences

- Social media has a rewards system
(likes, etc.) that encourages users
to keep posting attention-grabbing
content — like a video game

X (formerly Twitter) Discussion

• Jan 2021: Trump permanently banned
from Twitter & other platforms

• Nov 2022: Elon Musk ends Trump’s ban
after posting a poll asking if Trump
should be allowed back

Source: NBC news

Source:
The Information (2023)

Moderating the Spread of Terrible News

Sources: Washington Post, ABC

We can benefit from algorithmic
detection and throttling + human
content moderation…

but ultimately, harmful content isn’t only a
technical problem; it stems from the

social problem of factions that want to
spread mis- and dis-information.

sites.brown.edu/informationfutures/

Information Futures Lab @Brown

72 / 63
Andries van Dam © 2023 10/27/23

Appendix on Method Overriding!

73 / 63
Andries van Dam © 2023 10/27/23

Unintended Consequences of Overriding (1/3)

• Assume Car uses its
method revEngine()
(which uses Engine’s
rev()) inside its
definition of drive

public class Car {
 private Engine engine;
 private Brakes brakes;
 public Car() {
 this.brakes = new Brakes();
 this.engine = new Engine();
 }

 public void revEngine() {
 this.brakes.engage();
 this.engine.rev();
 }

 public void drive() {
 this.revEngine();
 this.brakes.disengage();
 //remaining code elided
 }
}

public class Brakes {
//constructor, other code elided

 public void engage() {
 //code elided
 }

 public void disengage() {
 //code elided
 }
}

public class Engine {
//constructor, other code elided

 public void rev() {
 //code elided
 }
}

74 / 63
Andries van Dam © 2023 10/27/23

• Now we override revEngine in
ElectricCar
o notice revEngine no longer calls

brakes.engage()

• Recall that drive() calls revEngine; if
you call drive() on ElectricCar, it will
call Car’s inherited drive() that uses
ElectricCar’s revEngine
implementation

public class ElectricCar extends Car {
 private Battery battery;

 public ElectricCar() {
 super();
 this.battery = new Battery();
 }

 @Override
 public void revEngine() {
 this.battery.usePower();
 }
}

public class Car {
 //code elided
 public void drive() {
 this.revEngine();
 this.brakes.disengage();
 //remaining code elided
 }
}

Unintended Consequences of Overriding (2/3)

75 / 63
Andries van Dam © 2023 10/27/23

Unintended Consequences of Overriding (3/3)
• This could pose a problem

o drive() relies on revEngine to
engage the brakes, so that drive()
can disengage them, but you don’t
know that – hidden code

o so when ElectricCar overrides
revEngine(), it messes up drive()

o ElectricCar also has 2 engines now
▪ its own Battery and the

pseudo-inherited engine from Car
▪ also messes up its functionality

• It might be fine if you write all your own code
and know exactly how everything works
o but usually not the case!

public class ElectricCar extends Car {
 private Battery battery;
 public ElectricCar () {
 this.battery = new Battery();
 }
 @Override
 public void revEngine() {
 this.battery.usePower();
 }
}

public class Car {
 //code elided
 public void revEngine() {
 this.brakes.engage();
 this.engine.rev();
 }
 public void drive() {
 this.revEngine();
 this.brakes.disengage();
 //remaining code elided
 }
}

