
1/58
Andries van Dam © 2023 10/31/22

Lecture 16

2/58
Andries van Dam © 2023 10/31/22

 Anastasio, Cannon, Lexi & Sarah Like Cookies (1/2)

• They would each like to have one of these cookies:

• How many ways can they distribute the cookies
amongst themselves?
o Anastasio has 4 choices
o Cannon has 3 choices
o Lexi only 2 choices
o Sarah must take what remains

(poor Sarah!)

3/58
Andries van Dam © 2023 10/31/22

• Thus, there are 24 different ways
the characters can choose
cookies (4! = 4 x 3 x 2 x 1 = 24)

• What if we wanted to solve this
problem for all the (H)TAs?

Anastasio, Cannon, Lexi & Sarah Like Cookies (2/2)

4/58
Andries van Dam © 2023 10/31/22

Factorial Function
• Model this problem mathematically:

factorial (n!) calculates the total number of unique
permutations, or the number of different ways to
arrange/order n items

• Small examples:
1! = 1

 2! = 2*1 = 2
3! = 3*2*1 = 6

 4! = 4*3*2*1 = 24
5! = 5*4*3*2*1 = 120

• Iterative definition: n! = n * (n-1) * (n-2) * … * 1

• Recursive definition: n! = n * (n-1)! for n >= 1 and 0! = 1

5/58
Andries van Dam © 2023 10/31/22

Recursion (1/2)
• Models problems that are self-similar

o breaks down a whole task into smaller, similar subtasks
o each subtask can be solved by applying the same technique

• Whole task solved by combining solutions to sub-tasks

o special form of divide and conquer at every level

6/58
Andries van Dam © 2023 10/31/22

Recursion (2/2)
• Task is defined in terms of itself

o in Java, recursion is modeled by method that calls itself, but each
time with simpler case of the problem, hence the recursion will
“bottom out” with a base case eventually

o base case is a case simple enough to be solved directly, without
recursion; without base case, the method would recurse indefinitely,
causing a StackOverflowError

o what is the base case of the factorial problem?
o Java will bookkeep each execution of the same method just as it does

for nested methods that differ, so there is no confusion
o usually, you combine the results from the separate executions

7/58
Andries van Dam © 2023 10/31/22

Factorial Function Recursively (1/2)

• Recursive factorial
algorithm
o the factorial function is not

defined for negative numbers
▪ the first conditional checks for

this precondition
▪ it is good practice to document

and test preconditions
(see code example)

o number of times method is called
is the depth of recursion (1 for
0!)
▪ what is depth of (4!)?

public class RecursiveMath{
 //instance variables, other code elided
 public int factorial (int num) {
 if (num < 0){
 System.out.println(“Input must be >= 0”);
 return -1; // return -1 for invalid input
 }

 int result = 0;
 if (num == 0){ // base case: 0! = 1
 result = 1;
 }
 else{ //general case
 result = num * this.factorial(num - 1);
 }
 return result;
 }
}

8/58
Andries van Dam © 2023 10/31/22

Factorial Function Recursively (2/2)

factorial(4)

4 factorial(3)

3 factorial(2)

factorial(1)2

1

*

*

*

4! = factorial(4)
= 4 * 3!
= 4 * 3 * 2!
= 4 * 3 * 2 * 1!
= 4 * 3 * 2 * 1 * 0!

= 24

factorial(0)1 *

9/58
Andries van Dam © 2023 10/31/22

TopHat Question
Given the following non-practical code:

public class RecursiveMath {

 public int recursiveAddition(int n) {
 if (n <= 1) {
 return 1;
 } else {
 return this.recursiveAddition(n-1);
 }
 }

}

What is the output of
this.recursiveAddition(4)?

A. 1
B. 9
C. 10
D. StackOverflowError

10/58
Andries van Dam © 2023 10/31/22

TopHat Question
Given the following code:

public class RecursiveMath {

 public int funkyFactorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * this.funkyFactorial(n-2);
 }
 }

}

What is the output of
this.funkyFactorial(5)?

A. 1
B. 5
C. 15
D. StackOverflowError

11/58
Andries van Dam © 2023 10/31/22

If you want to know more about recursion...

12/58
Andries van Dam © 2023 10/31/22

Turtles in Recursion – from Wikipedia
The following anecdote is told of William James. After a lecture on cosmology
and the structure of the solar system, James was accosted by a little old lady.
"Your theory that the sun is the center of the solar system, and the earth is a
ball which rotates around it has a very convincing ring to it, Mr. James, but it's
wrong. I've got a better theory," said the little old lady.
"And what is that madam?" inquired James politely.
"That we live on a crust of earth which is on the back of a giant turtle."
Not wishing to demolish her absurd theory with his scientific arsenal, James
decided to gently dissuade his opponent.
"If your theory is correct, madam," he asked, "what does this turtle stand on?"
"You're a very clever man, Mr. James, and that's a very good question,"
replied the little old lady, "but I have an answer to it. And it's this: The first
turtle stands on the back of a second, far larger, turtle, who stands directly
under him.”
"But what does this second turtle stand on?" persisted James patiently.
To this, the little old lady crowed triumphantly,
"It's no use, Mr. James — it's turtles all the way down. ”

 — J. R. Ross, Constraints on Variables in Syntax 1967

William James (01/11/1842 – 08/ 26/1910)
Earliest psychologist

13/58
Andries van Dam © 2023 10/31/22

Mandelbrot Fractals as Recursive Functions

14/58
Andries van Dam © 2023 10/31/22

Simpler Recursive Functions
● Some simpler, non-fractal, but still self-similar

shapes composed of smaller, simpler copies of
some pattern are simple spirals, trees, and
snowflakes

● We can draw these using Turtle graphics – let’s
start with spiral
o iteratively: Start at a particular point, facing in a

chosen direction (here up). Draw successively
shorter lines, each line at a given angle to the
previous one

o recursively: Start at a particular point, in a given
direction. Draw a line of passed-in length, turn the
passed-in angle, decrement length and call spiral
recursively

15/58
Andries van Dam © 2023 10/31/22

Designing Spiral Class (1/2)
• Spiral class defines single draw method

o turtle functions as pen to draw spiral, so class needs reference to turtle
instance

• Constructor’s parameters to control its properties:
o position at which spiral starts is turtle’s position
o length of spiral’s starting side
o angle between successive line segments
o amount to change length of spiral’s side at each step
o Note: this info is passed to each execution of recursive method, so next

method call depends on previous one

16/58
Andries van Dam © 2023 10/31/22

Designing Spiral Class (2/2)
public class Spiral {

 private Turtle turtle;

 private double angle;

 private int lengthDecrement;

 // passing in parameters to set the properties of the spiral

 public Spiral(Turtle myTurtle, double myAngle, int myLengthDecrement) {

 this.turtle = myTurtle;

 this.angle = myAngle;

 this.lengthDecrement = 1; // default, handles bad parameters

 if (myLengthDecrement > 0){

 this.lengthDecrement = myLengthDecrement;

 }

 // draw method defined soon...

 }

}

17/58
Andries van Dam © 2023 10/31/22

Drawing Spiral
• First Step: Move turtle

forward to draw line and
turn some degrees.
What’s next?

• Draw smaller line and
turn! Then another, and
another…

18/58
Andries van Dam © 2023 10/31/22

Sending Recursive Messages (1/2)
• draw method uses turtle

to trace spiral

• How does draw method
divide up work?
o draw first side of spiral
o then draw smaller spiral

(this is where we implement
recursion)

public void draw(int sideLen){

 // general case: move sideLen, turn
 // angle and draw smaller spiral
 this.turtle.forward(sideLen);
 this.turtle.left(this.angle);
 this.draw(sideLen – this.lengthDecrement);
}

19/58
Andries van Dam © 2023 10/31/22

Sending Recursive Messages (2/2)

• What is the base case?
o when spiral is too small to see,

conditional statement stops
method so no more recursive
calls are made

o since side length must
approach zero to reach the
base case of the recursion, the
draw method gets a smaller
side length each time

public void draw(int sideLen){
 // base case: spiral too small to see
 if (sideLen <= 3) {
 return; //stops method
 }

 // general case: move sideLen, turn
 // angle and draw smaller spiral
 this.turtle.forward(sideLen);
 this.turtle.left(this.angle);
 this.draw(sideLen – this.lengthDecrement);

}

20/58
Andries van Dam © 2023 10/31/22

Recursive Methods

• We are used to seeing a method
call other methods, but now we
see a method calling itself

• Method must handle successively
smaller versions of original task

21/58
Andries van Dam © 2023 10/31/22

Method’s Variable(s)
• As with separate methods, each execution of the method has

its own copy of parameters and local variables, and shares
access to instance variables

• Parameters let method execution (i.e., successive recursive
calls) “communicate” with, or pass info between, each other

• Java’s record of current place in code and current values of
parameters and local variables is called the activation record
o with recursion, multiple activations of a method may exist at once
o at base case, as many activation records exist as depth of recursion
o each activation of a method is stored on the activation stack (you’ll

learn about stacks soon)

22/58
Andries van Dam © 2023 10/31/22

Spiral Activation

draw(int sideLen)

draw Activation

int sideLen = 25

draw Activation

int sideLen = 14

draw Activation

int sideLen = 3

activation of
draw method

activation of
draw method

activation of
draw method

recursion unwinds
after reaching
base case

Initial value of sideLen: 25
Length decrement: 11

23/58
Andries van Dam © 2023 10/31/22

TopHat Question
Given the following code for the Collatz conjecture:

public class RecursiveMath{
 private int count;
 //constructor elided. count gets 0, it records
 //number of calls on collatzCounter
 public int collatzCounter(int n) {
 this.count += 1;
 if (n == 1) { //base case
 return 1;
 } else {
 if (n % 2 == 0) { //if n is even
 return collatzCounter(n / 2);
 } else {
 return collatzCounter(3 * n + 1);
 }
 }
 }
}

What is the value of count after
calling collatzCounter(5)?
 A. 4
 B. 5
 C. 6
 D. StackOverflowError

“The Collatz conjecture is a conjecture in mathematics named after Lothar Collatz. It concerns a sequence defined as follows: start with any positive
integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half the previous term. Otherwise,
the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.” (From Wikipedia)

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Conjecture
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Lothar_Collatz
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Collatz_conjecture

24/58
Andries van Dam © 2023 10/31/22

Towers of Hanoi (1/4)
• Game invented by French

mathematician Edouard Lucas in 1883
• Goal: move tower of n disks, each of

a different size (in order, with smallest
at top), from left-most peg to
right-most peg

• Rule 1: no disk can be placed on top
of a smaller disk to win

• Rule 2: only one disk can be moved
at a time

Note: Towers of Hanoi links!
Play it here: https://www.mathsisfun.com/games/towerofhanoi.html
Watch a solution here: https://www.youtube.com/watch?v=l4w1b9mmeFE

https://www.mathsisfun.com/games/towerofhanoi.html
https://www.youtube.com/watch?v=l4w1b9mmeFE

25/58
Andries van Dam © 2023 10/31/22

One Disk Solution

Move to target peg

Base Case

26/58
Andries van Dam © 2023 10/31/22

Two Disk Solution

Use 1-disk solution Use 1-disk solution Use 1-disk solution

(base case)

27/58
Andries van Dam © 2023 10/31/22

Three Disk Solution

Use 2-disk solution Use 1-disk solution Use 2-disk solution

(base case)

28/58
Andries van Dam © 2023 10/31/22

Pseudocode for Towers of Hanoi (1/2)

• Try solving for 5 non-recursively… too hard!
o let's try solving it recursively

• One disk:
o move disk to final pole

• Two disks:
o use one disk solution to move top disk to intermediate pole
o use one disk solution to move bottom disk to final pole
o use one disk solution to move top disk to final pole

• Three disks:
o use two disk solution to move top disks to intermediate pole
o use one disk solution to move bottom disk to final pole
o use two disk solution to move top disks to final pole

29/58
Andries van Dam © 2023 10/31/22

Pseudocode for Towers of Hanoi (2/2)
• In general (for n disks)

o use n-1 disk solution to move top disks to intermediate pole
o use one disk solution to move bottom disk to final pole
o use n-1 disk solution to move top disks to final pole

• Note: a method can have multiple recursive calls as seen in
the code in the next slide

30/58
Andries van Dam © 2023 10/31/22

Lower-level pseudocode
//n is number of disks, src is starting pole,
//dst is finishing pole
public void hanoi(int n, Pole src, Pole dst, Pole other){
 if (n==1) {
 this.move(src, dst);
 }
 else {
 this.hanoi(n-1, src, other, dst);
 this.move(src, dst);
 this.hanoi(n-1, other, dst, src);
 }
}

public void move(Pole src, Pole dst){
 //take the top disk on the pole src and make
 //it the top disk on the pole dst
}

• That’s it! otherPole and move
are fairly simple methods, so
this is not much code.

• But try hand simulating this
when n is greater than 4. It is
tedious (but not hard!)

• Iterative solution far more
complex, and much harder to
understand

31/58
Andries van Dam © 2023 10/31/22

Fibonacci Sequence (1/2)
• 1, 1, 2, 3, 5, 8, 13, 21…

• Each number is calculated by
adding the two previous
numbers
o Fn = Fn-1 + Fn-2

See a fun application of Fibonacci sequence here

https://www.npr.org/2018/08/10/637470699/let-this-percussionist-blow-your-mind-with-the-fibonacci-sequence

32/58
Andries van Dam © 2023 10/31/22

Fibonacci Sequence (2/2)

// returns nth value of Fibonacci sequence
public int fib(int n){
 if (n < 0) {
 System.out.println(“input must be >= 0”);
 return -1;
 }
 // base cases: n is 0 or 1
 if (n == 0 || n == 1) {
 return 1;
 }
 // general case: add previous two values
 // using two recursive calls
 return fib(n-1) + fib(n-2);
}

• What is the base case?
o there are two: n=0 and n=1

• Otherwise, add two
previous values of
sequence together
o this is also two recursive calls!

33/58
Andries van Dam © 2023 10/31/22

TopHat Question
What number would be returned if you excluded
n == 1 from the base case and called fib(2)?

A. 5
B. 3
C. 2
D. 1

Given the following code:

public int fib(int n){
 //error check
 if (n < 0) {
 return -1;
 }
 //base case
 if (n == 0 || n == 1) {
 return 1;
 }
 return fib(n-1) + fib(n-2);
}

34/58
Andries van Dam © 2023 10/31/22

Loops vs. Recursion (1/2)

• Spiral uses simple form of recursion
o each sub-task only calls on one other sub-task
o this form can be used for the same computational tasks

as iteration
o loops (iteration) and simple recursion are computationally

equivalent in the sense of producing the same result, if
suitably coded (not necessarily the same performance,
though -- looping is more efficient)

35/58
Andries van Dam © 2023 10/31/22

Loops vs. Recursion (2/2)
• Iteration is often more efficient in

Java because recursion takes
more method calls (each
activation record takes up some of
the computer’s memory)

• Recursion is more concise and
more elegant for tasks that are
“naturally” self-similar (Towers of
Hanoi is very difficult to solve
iteratively!)
o we will begin doing recursion on data

structures soon (stay tuned!)
o this type of recursion is emphasized in

courses like CS200

public void drawIteratively(int sideLen){

 while(sideLen > 3){// while loop
this.turtle.forward(sideLen);
this.turtle.left(this.angle);
sideLen -= this.lengthDecrement;

 }
}

36/58
Andries van Dam © 2023 10/31/22

Recursive Binary Tree (1/2)

• The tree is composed of a trunk that splits into two smaller branches that
sprout in opposite directions at the same angle

• Each branch then splits as the trunk did until sub-branch is deemed too
small to be seen. Then it is drawn as a leaf

• The user can specify the length of a tree’s main trunk, the angle at which
branches sprout, and the amount by which to decrement each branch

37/58
Andries van Dam © 2023 10/31/22

Recursive Binary Tree (2/2)
• Compare each left branch to its

corresponding right branch
o right branch is simply rotated copy

• Branches are themselves smaller trees!
o branches are themselves smaller trees!

▪ branches are themselves smaller trees!
• …

• Our tree is self-similar and can be
programmed recursively!
o base case is leaf

38/58
Andries van Dam © 2023 10/31/22

Designing the Tree Class
• Tree has properties that user

can set:
o start position (myTurtle’s built

in position)
o angle between branches

(myBranchAngle)
o amount to change branch

length (myTrunkDecrement)

• Tree class will define a single
draw method

o like Spiral, also uses a
Turtle to draw

public class Tree{
private Turtle turtle;
private double branchAngle;
private int trunkDecrement;
 public Tree(Turtle myTurtle, double myBranchAngle,
 int myTrunkDecrement){

 this.turtle = myTurtle;

 if(myTrunkDecrement > 0){
 this.trunkDecrement = myTrunkDecrement;
 } else {

this.trunkDecrement = 1;
 }

 if(myBranchAngle > 0){
 this.branchAngle = myBranchAngle;
 } else {

this.branchAngle = 45;
 }
 }
 // draw method coming up…
}

Error
checking
inputs

39/58
Andries van Dam © 2023 10/31/22

Tree’s draw Method
• Base case: if branch size too small,

add a leaf
• General case:

o move turtle forward
o orient turtle left
o recursively draw left branch
o orient turtle right
o recursively draw right branch
o reset turtle to starting

orientation
o back up to prepare for next

branch

private void draw(int trunkLen){
 if (trunkLen <= 0) {

this.addLeaf();
 } else {

this.turtle.forward(trunkLen);
this.turtle.left(this.branchAngle);
this.draw(trunkLen – this.trunkDecrement);
this.turtle.right(2 * this.branchAngle);
this.draw(trunkLen – this.trunkDecrement);
this.turtle.left(this.branchAngle);
this.turtle.back(trunkLen);

 }
}

40/58
Andries van Dam © 2023 10/31/22

Overall Program View
/* Class that creates a Tree and utilizes its recursive methods in order to draw it. */
public class BuildTree {
 private Tree myTree;

 public BuildTree() {
 Turtle turtle = new Turtle()
 double branchAngle = 30;
 int trunkDecrement = 1;
 int trunkLen = 6; //Remember that draw() in Tree class took in a trunkLen
 this.myTree = new Tree(turtle, branchAngle, trunkDecrement);
 this.createTree(trunkLen);
 }
 //Method that is going to call draw recursively to draw our tree!
 public void createTree(int currTrunkLen){
 this.myTree.draw(currTrunkLen);
 }
}

41/58
Andries van Dam © 2023 10/31/22

Recursive Snowflake

• Invented by Swedish mathematician, Helge von Koch, in 1904; also known as Koch Island
• Snowflake is created by taking an equilateral triangle and partitioning each side into three

equal parts. Each side’s middle part is then replaced by another equilateral triangle (with no
base) whose sides are one third as long as the original.

o this process is repeated for each remaining line segment
o the user can specify the length of the initial equilateral triangle’s side
o “mathematical monster”: infinite length with a bounded area

42/58
Andries van Dam © 2023 10/31/22

Snowflake’s draw Method

• Can draw equilateral triangle iteratively
• drawSnowFlake draws the snowflake

by drawing smaller, rotated triangles on
each side of the triangle (compare to
iterative drawTriangle)

• for loop iterates 3 times
• Each time, calls the drawSide helper

method (defined in the next slide) and
reorients turtle to be ready for the
next side

public void drawTriangle(int sideLen) {
 for (int i = 0; i < 3; i++) {
 this.turtle.forward(sideLen);
 this.turtle.right(120.0);
 }
}

public void drawSnowFlake(int sideLen){
 for(int i = 0; i < 3; i++){
 this.drawSide(sideLen);
 this.turtle.right(120.0);
 }
}

43/58
Andries van Dam © 2023 10/31/22

Snowflake’s drawSide method
• drawSide draws single

side of a recursive
snowflake by drawing four
recursive sides

• Base case: simply draw a
straight side

• MIN_SIDE is a constant we
set indicating the smallest
desired side length

• General case: draw
complete recursive side

private void drawSide(int sideLen){
 if (sideLen < MIN_SIDE){
 this.turtle.forward(sideLen);
 }
 else{
 this.drawSide(Math.round(sideLen / 3));

 this.turtle.left(60.0);

 this.drawSide(Math.round(sideLen / 3));

 this.turtle.right(120.0);

 this.drawSide(Math.round(sideLen / 3));

 this.turtle.left(60.0);

 this.drawSide(Math.round(sideLen / 3));

 }

}

44/58
Andries van Dam © 2023 10/31/22

Hand Simulation MIN_SIDE: 20
sideLen: 90

1) Call draw(90),
which calls
drawSide(90),
which calls
drawSide(30),

 which calls
 drawSide(10).

Base case
reached because
10 < MIN_SIDE

2) drawSide(10)
returns to
drawSide(30),
which tells
this.turtle
to turn left 60
degrees and
then calls
drawSide(10)
again.

3) drawSide(10)
returns to
drawSide(30),
which tells
this.turtle
to turn right
120 and

 then calls
 drawSide(10)
 for a third time.

4) drawSide(10) returns to
drawSide(30), which tells
this.turtle to turn left 60
degrees and then calls
drawSide(10) for a fourth
time.

After this call, drawSide(30)
returns to drawSide(90),
which reorients this.turtle
and calls drawSide(30)
again.

45/58
Andries van Dam © 2023 10/31/22

Again: Koch Snowflake Progression
colored triangles added for emphasis only
Watch simulation here: https://www.youtube.com/watch?v=MTYW4Re_RsY

https://www.youtube.com/watch?v=MTYW4Re_RsY

46/58
Andries van Dam © 2023 10/31/22

Indirect Recursion
• Two or more methods act recursively instead of just one

• For example, methodA calls methodB which calls methodA again

• Methods may be implemented in same or different classes

• Can be implemented with more than two methods too
• Example:

• Brownopoly smart auto-sell algorithm

o Brown-inspired Monopoly Game
o Created as a CS15 Final Project!

47/58
Andries van Dam © 2023 10/31/22

Indirect Recursion Brownopoly Example
• Monopoly is a game of money. When in debt,

mortgage properties or sell houses
• Prioritize valuable assets

o expensive properties (high value)
o monopolies (higher value)
o monopolies with houses (highest value)

• Let’s conceptually recurse until we can pay off the
debt
o First mortgage cheapest properties not belonging to a

monopoly
o Then, sell properties that are part of a monopoly with

no houses
o Next, sell houses for cheapest monopoly

▪ BUT after selling all houses its not smart to continue
selling houses, instead we want to mortgage those
properties

Key: are houses.
player owns property

48/58
Andries van Dam © 2023 10/31/22

private void autosell(){
if(this.player.getDebt() < this.player.getAssetsValue){
this.declareBankruptcy();
else{
this.mortgageCheapestNonMonopoly();
}

}

private void mortgageCheapestNonMonopoly(){
//sets toBeMortgaged = cheapest non-monopoly property
if(toBeMortgaged != null){

toBeMortgaged.mortgage();
if(this.player.getDebt() > 0){
 this.mortgageCheapestNonMonopoly();
}

} else {
this.mortageNonHouseCheapest();
}

}

private void mortgageNonHouseCheapest(){
//mortgage cheapest property without a house
if(this.player.getDebt() > 0){
 this.mortgageNonHouseCheapest();
} else {
 this.sellHouses();
}

}

private void sellHouses(){
//sells cheapest property in a monopoly with most houses
if(this.player.getDebt() > 0){

if(property.getMonopoly().hasHouses()){
this.sellHouses()

 }else{
this.mortageNonHouseCheapest();

 }
}

}

Indirect Recursion Brownopoly Code

Indirect Recursion

49/58
Andries van Dam © 2023 10/31/22

Summary
• Recursion models problems that are self-similar, breaking down a

task into smaller, similar sub-tasks.

• Whole task solved by combining solutions to sub-tasks (divide and
conquer)

• Since every task related to recursion is defined in terms of itself,
method will continue calling itself until it reaches its base case,
which is simple enough to be solved directly

50/58
Andries van Dam © 2023 10/31/22

Announcements

• DoodleJump Deadline!!

o on-time hand-in: 11/01

o late hand-in: 11/03

• Lab 7 2D-Arrays this week:

o pre-lab video and pre-lab quiz

• Mentorship Program: Mentors will reach out this week
to schedule next meeting; look out for emails from them

https://www.youtube.com/watch?v=3Ty0akxaJMM
https://docs.google.com/forms/d/e/1FAIpQLSd83zPuu15WxkaULO__intQh_yvHWTWx8ENnde0RFup1YHtwg/viewform?usp=sf_link

Social Media 2

Breaking News: Executive Order on AI Just Passed

• Executive Order includes provisions that
o order requires developers to share safety test

results and with the government.
o demand that AI-generated content be

watermarked
o touches matters of privacy, civil rights,

consumer protections, scientific research and
worker rights.

o Directed at both government agencies and
companies

• Gina Raimondo, the U.S. Secretary of
Commerce and former Governor of Rhode
Island is leading this effort.

• Brown University Professor Suresh
Venkatasubramanian has been involved as an
advisor and was there for the signing of the
order

EU AI Laws

• The EU may agree on a final text for the AI act by Wednesday

• Inconclusive points include the use of AI for surveillance
o Should state be able to use AI powered facial recognition?
o What about emotional recognition?

• Will hold AI companies responsible if their AI is used to create
something illegal

• Will likely hold protections for artists, musicians, and researchers to
given them legal protection from AI plagiarism

Case Study: Elon Musk Twitter Acquisition

• On April 14, 2022, Elon Musk made an
unsolicited offer to acquire Twitter.

o He cited combatting spam, promoting free
speech, and making algorithms open source

• The deal was closed on October 27th, 2022,
for a total price tag of 44 billion dollars

o Spent ~30 billion of his own money taking on
debt to pay the rest

Historical Context
• 1895: William Randolph Hearst buys The Morning

Journal

• Hearst’s publication inflamed public opinion against Spain
leading the U.S. to enter the Spanish American War

• 1976, 1985, 2007: Australian Rupert Murdoch buy the
New York Post, Twentieth Century Fox (Fox News), and
Dow Jones & Company (parent company of WSJ)

• 2013: Jeff Bezos acquires Washington Post

• 2023: Elon Musk acquires Twitter

Many other examples of billionaires buying
media!!

Media currently owned by
Rupert Murdoch

Twitter Timeline
• October 27 2022: Acquisition concludes, Musk becomes CEO

• November 2022: Mass layoffs begin (~80% of employees)
• These layoffs include senior members of Twitter’s content moderation teams and the dissolving of

Twitter’s Trust and Safety Council

• Late November 2022: Twitter begins reinstating formerly banned accounts (high
profile accounts include: Trump, Jordan Peterson, Andrew Tate)

• February 2023: Musk got rid of free access to the Twitter API

• March 2023: Musk makes Twitter’s algorithm open source

• April 2023: Leaked Pentagon documents spread widely on Twitter

Source: Associated Press, NBC News,
Announcement on Twitter website on Covid disinformation

• Section 230 shields big tech companies from
lawsuits regarding content posted on their
platform

• “No provider or user of an interactive computer
service shall be held liable on account of— any
action voluntarily taken in good faith to restrict
access to or availability of material that the
provider or user considers to be obscene, lewd,
lascivious, filthy, excessively violent, harassing, or
otherwise objectionable, whether or not such
material is constitutionally protected;”

More time then Elon
Musk

Section 230 of Communications Decency Act
(1/2)

Section 230 of Communications Decency Act (2/2)

• "No provider or user of an interactive
computer service shall be treated as the
publisher or speaker of any information
provided by another information content
provider.”

• Differing views on the extent to which
Section 230 promotes free speech or
censorship

• Recent Supreme Court ruling sided with big
tech and didn’t expand scope of 230

More time then Elon
Musk

Open-Source Algorithm

Source: Github

Lingering Questions

• Musk through his various companies now wields immense
power over global discourse AND geopolitics.

• To what extent should billionaires be able to control the public
discourse and geopolitical policy?

• How can we maintain the balance between safety and free
speech?

• With the context of Section 230: who should make these
decisions and to what extent should tech companies be held
liable for the spread of disinformation on their technology?

