
1/63
Andries van Dam © 2023 11/2/22

Big-O and Sorting
Lecture 17

2/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

3/63
Andries van Dam © 2023 11/2/22

Importance of Algorithm Analysis (1/2)
● Performance of algorithm refers to how quickly it executes and

how much memory it requires
o performance matters when amount of data gets large!

o can analyze and observe performance, then revise algorithm to improve

● Algorithm analysis and sorting/searching data structures are
crucial to computing and will be a central topic in CS0200!

4/63
Andries van Dam © 2023 11/2/22

• Factors that affect performance
o computing resources
o language
o implementation
o size of data, denoted n

▪ number of elements to be sorted in alphanumeric order
▪ number of elements in ArrayList to iterate through

• much faster to search through list of CS15 students than list of Brown
students

Importance of Algorithm Analysis (2/2)

• This lecture: a brief introduction to Algorithm Analysis!
• Goal: maximize efficiency and conserve resources

5/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

6/63
Andries van Dam © 2023 11/2/22

● How fast will recursive Fibonacci(N) run relative to N?
○ Fib(N) = Fib(N-1) + Fib(N-2);
 Fib(N-1) = Fib(N-2) + Fib(N-3), etc.
○ using recurrence relations, proportional to 2N

● How fast will Towers of Hanoi run relative to the number of disks?
○ also proportional to 2N for N disks

● How fast will N! run relative to N ?
○ N! will take exponentially longer as N increases, even faster than 2N
○ not a problem with small N but we care about large inputs

● One algorithm could take 2 seconds while another could take 1 hour
to accomplish the same task

Performance of Algorithms

http://cs.brown.edu/courses/cs015/demos/Hanoi.jar

7/63
Andries van Dam © 2023 11/2/22

Runtime (1/2)
● In analyzing an algorithm, runtime is the total number of times

"the principal activity" of all steps in that algorithm is performed
o varies with input and almost always grows with input size N
o measured as a function of N (N, Nlog(N), N^2, 2^N, etc.)

● In most of computer science, we focus on worst case runtime
o easier to analyze and important for unforeseen inputs

● Average case is what will typically happen; best case requires
least amount of work and is the best situation you could have
o average case is important; best case is interesting, but not insightful

8/63
Andries van Dam © 2023 11/2/22

● How to determine runtime?
o inspect pseudocode (or actual code if it is small enough) and

determine number of elementary operations in all statements
executed by algorithm as a function of input size

o allows us to evaluate approximate speed of an algorithm
independent of hardware or software environment

o memory use may be even more important than runtime for
embedded devices

Runtime (2/2)

9/63
Andries van Dam © 2023 11/2/22

Elementary Operations
● Algorithmic “time” is measured in numbers of elementary operations

o math (+, -, *, /, max, min, log, sin, cos, abs, ...)
o comparisons (==, >, <=, ...)
o function (method) calls and value returns (body of the method is separate)
o variable assignment
o variable increment or decrement
o array allocation (declaring an array) and array access (retrieving an array from memory)
o creating a new object (careful, object's constructor may have elementary ops too!)

● For purpose of algorithm analysis, assume each of these operations takes
same time: “1 operation”
o only interested in “asymptotic performance” for large data sets, i.e., as N grows large

▪ small differences in performance don’t matter when your data sets are billions or even trillions of
items – e.g., indexing all the words on the WWW!

10/63
Andries van Dam © 2023 11/2/22

Example: Constant Runtime

● 4 operations – 1 addition, 2 array element
retrievals, 1 return statement

● How many operations are performed if the input
list had 1000 elements? 100,000?

● Runtime is constant

public int addition(int[] a) {

 return a[0] + a[1]; //4 operations

}

11/63
Andries van Dam © 2023 11/2/22

Example: Linear Runtime
● Worst case varies

proportional to the size
of the input list: 6N + 3

● How many operations if
the array had 1,000
elements?

● We’ll run the for loop
proportionally more
times as the input list
grows

● Runtime increase is
proportional to N, linear

//find max of a set of positive integers

public int maxElement(int[] a) {

 //assignment, 1 op

 int max = 0;

 //2 ops per iteration + 1 initial op to init i

 for (int i=0; i<a.length; i++){

 //2 ops per iteration

 if (a[i] > max) {

 //2 ops per iteration, sometimes

 max = a[i];

 }

 }

 //return, 1 op

 return max;

}

12/63
Andries van Dam © 2023 11/2/22

Example: Quadratic Runtime

● Requires about 8N2 operations (it is okay to approximate!)
● Number of operations executed grows quadratically!
● If one element added to list, element must be added with every other element in list
● Notice that linear runtime algorithm on previous slide had only one for loop, while

this quadratic one has two nested for loops, a typical N2 pattern

public void printPossibleSums(int[] a) {

 for (int i = 0; i < a.length; i++) { //2 ops per iteration

 //ignore op to init i

 for (int j = 0; j < a.length; j++) { //2 ops per iteration

 System.out.println(a[i] + a[j]); // 4 ops per iteration

 }

 }

}

13/63
Andries van Dam © 2023 11/2/22

Big-O Notation
● Used to abstract from implementation by ignoring constants!

● O(N) implies runtime is linearly proportional to number of elements/inputs in
the algorithm (constant operations per element)
○ (N elements) * (constant operations/element) = cN operations => O(N)

● O(N2) implies each element is operated on N times
o (N elements) * (N operations/element) = N2 operations; cN2 => O(N2)

● O(1) implies that runtime does not depend on number of inputs
○ runtime is the same regardless of how large/small input size is

● Only consider “asymptotic behavior” i.e., when N >> 1
o N is tiny when compared to N2 for N >> 1

14/63
Andries van Dam © 2023 11/2/22

Big-O Constants
● Important: Only the largest N expression without constants matters

● We are not concerned about runtime with small numbers of data
– we care about running operations on large amounts of inputs
o 3N2 and 500N2 are both O(N2) because the larger the input, the less the “500” and

the “3” will affect the total runtime

o N/2 is O(N)

o 4N2 + 2N is O(N2)

● Useful sum for analysis:

15/63
Andries van Dam © 2023 11/2/22

Social Security Database Example (1/3)
● Hundreds of millions of people in

the US have a number associated
to them

● If 100,000 people are named John
Doe, each has an individual SSN

● If the government wants to look up
information they have on John
Doe, they use his SSN

16/63
Andries van Dam © 2023 11/2/22

Social Security Database Example (2/3)

● Say it takes 10-4 seconds to perform a
constant set of operations on one SSN
o running an algorithm on 5 SSNs will take

5x10-4 seconds, and running an algorithm
on 50 will only take 5x10-3 seconds

o both are incredibly fast, difference in
runtime might not be noticeable by an
interactive user

o this changes with large amounts of data,
i.e., the actual SS Database

17/63
Andries van Dam © 2023 11/2/22

Social Security Database Example (3/3)

● Say we want to scale this algorithm to
every SSN (300+ million)
o to perform algorithm with O(N) on 300

million people will take 8.3 hours

o O(N2) takes 285,000 years

● With large amounts of data,
differences between O(N) and O(N2)
are HUGE!

18/63
Andries van Dam © 2023 11/2/22

Graphical Perspective (1/2) – Linear Plot

● f(N) on a small scale →

19/63
Andries van Dam © 2023 11/2/22

Graphical Perspective (2/2) – Log Plot
● f(N) on a larger scale →
● For 10 million items (N = 107)…

o and O(log10N) runtime, perform roughly
7 operations

o and O(N) runtime, perform roughly 10
million operations

o and O(N2) runtime, perform roughly
100 trillion operations

● really try to stay sub-quadratic!!

20/63
Andries van Dam © 2023 11/2/22

TopHat Question (1/3)
 What is the big-O runtime of this algorithm?

public int sumArray(int[] array){
 int sum = 0;
 for (int i = 0; i < array.length; i++){
 sum = sum + array[i];
 }
 return sum;
}

 A) O(N) B) O(N2) C) O(1) D) O(2N)

21/63
Andries van Dam © 2023 11/2/22

TopHat Question (2/3)
 What is the big-O runtime of this algorithm?
 Consider the getLetter() (or equivalent) method from TicTacToe:

public String getLetter(){
 return this.letter;
}

 A) O(N) B) O(N2) C) O(1) D) O(2N)

22/63
Andries van Dam © 2023 11/2/22

TopHat Question (3/3)
 What is the big-O runtime of this algorithm?

public int sumSquareArray(int[][] a){
 int sum = 0;
 for (int i = 0; i < a.length; i++){
 for (int j = 0; j < a[0].length; j++){
 sum = sum + a[j][i];
 }
 }
 return sum;
}

 A) O(N) B) O(N2) C) O(1) D) O(2N)

23/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

24/63
Andries van Dam © 2023 11/2/22

Sorting
• We use runtime analysis to help choose the best

algorithm to solve a problem

• Two common problems: sorting and searching
through a list of objects

• We will analyze different sorting algorithms to find
out which is fastest

25/63
Andries van Dam © 2023 11/2/22

Sorting – Social Security Numbers

● Consider an example where run-time influences
your approach

● How would you sort every SSN in the Social
Security Database in increasing order?

● Multiple known algorithms for sorting a list
o these algorithms vary in their Big-O runtime

26/63
Andries van Dam © 2023 11/2/22

Bubble Sort (1/2)
● Iterate through sequence,

comparing each element to its
right neighbor

● Exchange/swap adjacent
elements if necessary; largest
element “bubbles” to the right

● End up with sorted sub-array on
the right. Each time we go through
the list, need to switch at least
one item fewer than before

27/63
Andries van Dam © 2023 11/2/22

Bubble Sort (2/2)
● Iterate through sequence, comparing

each element to its right neighbor

● Exchange adjacent elements if
necessary; largest element “bubbles” to
the right

● End up with sorted sub-array on the left.
Each time we go through the list, need
to switch at least one item fewer than
before

● More efficient version: keep track of last
largest element inserted so we don’t
have to go all the way over the right

int i = array.length;

boolean sorted = false;

while ((i > 1) && (!sorted)) {

 sorted = true;

 for(int j = 1; j < i; j++) {

 if (a[j-1] > a[j]) {

 int temp = a[j-1];

 a[j-1] = a[j];

 a[j] = temp;

 sorted = false;

 }

 }

 i--;

}

28/63
Andries van Dam © 2023 11/2/22

29/63
Andries van Dam © 2023 11/2/22

Bubble Sort - Runtime
int i = array.length;

boolean sorted = false;

while ((i > 1) && (!sorted)) {

 sorted = true;

 for(int j = 1; j < i; j++) {

 if (a[j-1] > a[j]) {

 int temp = a[j-1];

 a[j-1] = a[j];

 a[j] = temp;

 sorted = false;

 }

 }

 i--;

}

Remember!
Small operations and constants don’t majorly
affect runtime, so we can ignore them when
calculating big-O!

30/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

31/63
Andries van Dam © 2023 11/2/22

Insertion Sort (1/2)
● Like inserting a new card into a partially sorted hand

by bubbling to the left in a sorted subarray

o close to bubble sort but less brute force because we
don’t start always from the rightmost entry

● Add one element a[i] at a time

● Find proper position, j + 1, to the left by swapping
with neighbors on the left (a[i-1], a[i-2], …,
a[j+1]) to the right, until a[j] < a[i]

● Move a[i] into vacated a[j+1]

● After iteration i < a.length, original a[0] ... a[i]
are in sorted order, but not necessarily in final
position, depending on what comes after a[i]

32/63
Andries van Dam © 2023 11/2/22

Insertion Sort (2/2)
for (int i = 1; i < a.length; i++) {

 int toInsert = a[i];

 int j = i-1;

 while ((j >= 0) && (a[j] > toInsert)){

 a[j+1] = a[j];

 j--;

 }

 a[j+1] = toInsert;

 }

33/63
Andries van Dam © 2023 11/2/22

34/63
Andries van Dam © 2023 11/2/22

Insertion Sort - Runtime
● while loop inside our

for loop
o while loop calls N-1

operations
o for loop calls the

while loop N times

● O(N2) because we have
to call on a while loop
with ~N operations N
different times

● Reminder: constants do
NOT matter with Big-O!

for (int i = 1; i < a.length; i++) {

 int toInsert = a[i];

 int j = i-1;

 while ((j >= 0) && (a[j] > toInsert)){

 a[j+1] = a[j];

 j--;

 }

 a[j+1] = toInsert;

 }

35/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

36/63
Andries van Dam © 2023 11/2/22

Selection Sort (1/2)
● Find smallest element and put it in a[0]

● Find 2nd smallest element and put it in a[1], etc.

● Less data movement (no bubbling movement)N is
the number of objects in sequence

37/63
Andries van Dam © 2023 11/2/22

Selection Sort (2/2)
 What we want to happen:
 int n = a.length;
 for (int i = 0; i < n; i++) {

 find minimum element a[min]

in subsequence a[i...n-1]

 swap a[min] and a[i]

 }

int n = a.length;
for (int i = 0; i < n-1; i++) {

 int min = i;

 for (int j = i + 1; j < n; j++) {

 if (a[j] < a[min]) {

 min = j;

 }

 }

 temp = a[min];

 a[min] = a[i];

 a[i] = temp;

}

38/63
Andries van Dam © 2023 11/2/22

39/63
Andries van Dam © 2023 11/2/22

Selection Sort - Runtime
for (int i = 0; i < n-1; i++) {

 int min = i;

 for (int j = i + 1; j < n; j++) {

 if (a[j] < a[min]) {

 min = j;

 }

 }

 temp = a[min];

 a[min] = a[i];

 a[i] = temp;

}

• Most executed
instructions are in if
statement in inner for
loop

• Each instruction is
executed (N-1) + (N-2) +
... + 2 + 1 times

• Time Complexity: O(N2)
○ nested loops!

40/63
Andries van Dam © 2023 11/2/22

Comparison of Basic Sorting Algorithms
● Differences in Best- and

Worst-case performance
are based on current order
of input before sorting

● Selection Sort wins on data
movement

● For small data, even the
worst sort – Bubble (based
on comparisons and
movements) – is fine!

Selection Insertion Bubble

Comparisons
of data

Best n2/2 n n

Average n2/2 n2/4 n2/4

Worst n2/2 n2/2 n2/2

Movements
of data

Best 0 0 0

Average n n2/4 n2/2

Worst n n2/2 n2/2

41/63
Andries van Dam © 2023 11/2/22

Outline

• Importance of Algorithm Analysis

• Runtime
• Bubble Sort
• Insertion Sort
• Selection Sort
• Merge Sort

42/63
Andries van Dam © 2023 11/2/22

Merge Sort

43/63
Andries van Dam © 2023 11/2/22

Recap: Recursion (1/2)
● Recursion is a way of solving problems by breaking them down into

smaller sub-problems, and using results of sub-problems to find the
answer

● Example: You want to determine what row number you’re sitting in, but
you can only get information by asking the people in front of you

o they also don’t know what row they’re in, must ask people in front of them
o people in first row know that they’re row 1, since there is no row in front (base case)
o they tell people behind them, who know that they’re 1 behind row 1, so they are row

2, etc.
o this “unwinds” the recursion

44/63
Andries van Dam © 2023 11/2/22

Recap: Recursion (2/2)
public int findRowNumber(Row myRow) {

 if (myRow.getRowAhead() == null) { // base case!
 return 1;
 } else {
 // recursive case – ask the row in front
 int rowAheadNum = this.findRowNumber(myRow.getRowAhead());

 // my row number is one more than the row ahead’s number
 return rowAheadNum + 1;
 }
}

45/63
Andries van Dam © 2023 11/2/22

● Let's say you don't know how to sort n elements, but you have a
friend who can sort any number less than n. How can you use the
results to do your work? (like auditorium row number problem)
○ one answer is to sort n-1, then just slot the last element into the sorted

order (insertion sort)
○ another answer is to pick the smallest single entry, then give

remaining elements to your friend to sort and add your element to the
beginning of her results (selection sort)

○ what if your friend can only sort things of size n/2 or smaller? She can
sort the two pieces... can we quickly make a sorted list from what's
left? (merge sort!)

Recursion (Top Down) Merge Sort (1/7)

46/63
Andries van Dam © 2023 11/2/22

● Partition sequence into two
sub-sequences of N/2 elements

● Recursively partition and sort
each sub-array

● Merge the sorted sub-arrays

Recursion (Top Down) Merge Sort (2/7)

47/63
Andries van Dam © 2023 11/2/22

● Partition sequence into two
sub-sequences of N/2 number of
elements

Recursion (Top Down) Merge Sort (3/7)

● Recursively partition and sort
each sub-array

● Merge the sorted sub-arrays

48/63
Andries van Dam © 2023 11/2/22

ArrayList list is the sequence to
sort, a sequence of ints

public class Sorts {

 public ArrayList<Integer> mergeSort(ArrayList<Integer> list) {

if (list.size() == 1) {

 return list;

}

int middle = list.size() / 2;

ArrayList<Integer> left =

this.mergeSort(list.subList(0, middle));

ArrayList<Integer> right =

this.mergeSort(list.subList(middle, list.size()));

 return this.merge(left, right);

 }

 //code for merge() coming next!

}

Else, recur on both halves of the
list and merge the sorted lists

Base case: return the list when you
get to its last element

Recursion (Top Down) Merge Sort (4/7)

49/63
Andries van Dam © 2023 11/2/22

Recursion (Top Down) Merge Sort (5/7)
public class Sorts {

 public ArrayList<Integer> mergeSort(ArrayList<Integer> list) {

if (list.size() == 1) {

 return list;

}

int middle = list.size() / 2;

ArrayList<Integer> left =

this.mergeSort(list.subList(0, middle));

ArrayList<Integer> right =

this.mergeSort(list.subList(middle, list.size()));

 return this.merge(left, right);

 }

 //code for merge() coming next!

}

50/63
Andries van Dam © 2023 11/2/22

public ArrayList merge(ArrayList<Integer> A, ArrayList<Integer> B) {
 ArrayList<Integer> result = new ArrayList<Integer>();
 int aIndex = 0;
 int bIndex = 0;
 while (aIndex < A.size() && bIndex < B.size()) {
 if (A.get(aIndex) <= B.get(bIndex)) {
 result.add(A.get(aIndex));
 aIndex++;
 } else {
 result.add(B.get(bIndex));
 bIndex++;
 }
 }

● Add elements from the two
sequences in increasing order

Recursive (Top Down) Merge Sort (6/7)

 if (aIndex < A.size()) {
 result.addAll(A.subList(aIndex, A.size()));
 }
 if (bIndex < B.size()) {
 result.addAll(B.subList(bIndex, B.size()));
 }
 return result;
}

● If there are elements left that
you haven’t added, add the
remaining elements to your
result

51/63
Andries van Dam © 2023 11/2/22

● Recursion to get down to base case is just halving
each subarray: O(log2N)

● Unwinding the recursion: Each level of the tree
performs N operations to merge and sort the
subproblems below it

● Each time you merge, you must handle all the
elements in the sub-arrays you’re merging, hence
O(N)

● There are log2N number of merge passes, thus,
O(log2N) + O(N)(log2N) = O(N)(log2N)
o way better than O(N2)
o drop base (2) and say O(NlogN), ignore constants

● Learn much more about how to find the runtime of
these types of algorithms in CS200!

Recursive (Top Down) Merge Sort (7/7)

Courtesy of Lina Sim, Mounika Dandu

52/63
Andries van Dam © 2023 11/2/22

● Merge sort can also be implemented
iteratively… non-recursive!

● Loop through array of size N, sorting 2
items each. Loop through the array
again, combining the 2 sorted items into
sorted item of size 4. Repeat, until there
is a single item of size N!

● Number of iterations is log2N, rounded
up to nearest integer. 1000 elements in
the list, only 10 iterations!

● Iterative merge sort avoids the nested
method invocations caused by recursion!

Iterative (Bottom Up) Merge Sort

53/63
Andries van Dam © 2023 11/2/22

54/63
Andries van Dam © 2023 11/2/22

Comparing Sorting Algorithms

Insertion Sort – O(N2)Bubble Sort – O(N2) Merge Sort - (Nlog2N)

Click here to download interactive sorter

55/63
Andries van Dam © 2023 11/2/22

TopHat Question
Which sorting algorithm that we have looked at is the
fastest (in terms of worst-case runtime)?

A. Bubble Sort

B. Insertion Sort

C. Merge Sort

D. Selection Sort

56/63
Andries van Dam © 2023 11/2/22

That’s It!
● Runtime is a very important part of algorithm analysis!

o worst case runtime is what we generally focus on

o know the difference between constant, linear, and quadratic run-time

o calculate/define runtime in terms of Big-O Notation

● Sorting!
o runtime analysis is very significant for sorting algorithms

o types of simple sorting algorithms - bubble, insertion, selection, merge sort

o fancier sorts perform even better, but tough to analyze, e.g., QuickSort

o different algorithms have different performances and time complexities

57/63
Andries van Dam © 2023 11/2/22

What’s next?
● You have now seen how different approaches to solving

problems can dramatically affect speed of algorithms
o this lecture utilized arrays and loops to solve most problems

● Subsequent lectures will introduce more data structures
beyond arrays and arraylists that can be used to handle
collections of data

● We can use our newfound knowledge of algorithm analysis to
strategically choose different data structures to further speed
up algorithms!

58/63
Andries van Dam © 2023 11/2/22

● DoodleJump late deadline tomorrow 11/3 @ 11:59pm

● DoodleJump Code Debriefs Coming Up
○ Keep an eye on your email to see if you were selected
○ If you are selected and miss this debrief you will

receive a minus four deduction on your final grade!!!!

● Tetris out Saturday!!!
○ you do NOT want to procrastinate on this assignment!
○ the earlier you start, the shorter the lines at debugging hours ☺
○ Please reference the collaboration policy when working on Solo Tetris!!

Announcements

Socially Responsible Computing

Dark & Addictive Design
CS15 Fall 2022

Definition

Dark patterns are features
of interactive design crafted
to trick users into doing
things they might not wish
to do, but which benefit the
business in question.
Term coined by Harry Brignull
(UX Specialist) in 2010Image source: Evan Puschak, 2018

More intuitive to tap
on the blue box

Using terms like
“personalized”
instead of “targeting”
or “tracking”

Source: Meta

Nudging
users to
give up
privacy

Manipulating User Psychology

More intuitive to tap
the big, dark box

Manipulating user
psychology

Source: Florsheim Shoe Company

Addictive patterns in action: TikTok

Source: Ankit Sherke Design

Restricts user choice by limiting
the ways in which you can
interact with the app, so you can
only scroll

Infinite scrolling/Auto-loop
feature encourages you to
passively engage with the app &
makes it hard to stop

Variable rewards/slot machine
tactic: not knowing what you will
get when you swipe

Hick’s Law:
The more choices a
user has, the less
likely they are to

make one

Infinite scrolling to stimulate
“stickiness”

Source: @callmetochi on TikTok

Impact of addictive patterns on the
brain Push-notifications and “likes” increase dopamine,
the same chemical released with drug/alcohol usage

Source: Apple Tool Blox blog

Source: NIH (2012, 2023)

Internet addiction in children leads to:
- inhibited capabilities in brain regions
responsible for reward processing and
inhibitory control
- impairments in the network that
allows for communication between
different areas of your brain

Meta Lawsuit

Source: WSJ (October 2023)

- States accuse Meta of damaging mental health with
“dopamine-manipulating” features, including likes and infinite scrolling
- As evidence, plaintiffs cite internal Meta documents made public
by whistleblower Frances Haugen
- Legal experts say Meta is likely to invoke Section 230

Regulation

Source: FTC.gov (2022)

Source: Center for Humane Technology (2022)

FTC Regulation

Source: FTC.gov (2022)

Source: FTC.gov (2023)

Issue with
defining dark
patterns

“All design has a level of
persuasion to it. The
difference is, if you’re
designing to trick people,
you’re an asshole.”

Victor Yocco, author of Design for the Mind:
Seven Psychological Principles of Persuasive
Design (2016)

70/63
Andries van Dam © 2023 11/2/22

What is Dash?
- MERN stack web application (MongoDB, Express, React,

Node.js), hypertext/hypermedia system

- produce, annotate, and consume digital documents

What would you be doing?
- This semester:

- using Dash and providing feedback

- becoming familiar with the system, codebase, and

technologies used

- Winter break:

- complete the starter project to join as full member

- Next semester:

- work on Dash as an independent study, building your

very own feature!

Join Dash!

Interest form:

