Lecture 18

Data Structures I:
LinkedLists

Andries van Dam © 2023 11/07/23 0/60

Outline

e Linked Lists

!. ';’ ‘ N ‘\“ ' "* e 4
ht : : L\ _mf
« Stacks and Queues (next lecture)

 Trees (next lecture)

« HashSets and HashMaps (next lecture)

1/60

Linked Lists

Tribute 1 Tribute 2 Tribute 3 Tribute 4

Andries van Dam © 2023 11/07/23 2/60

What is a LinkedList? (1/2)
O

« Collection of nodes stored anywhere in memory linked in a “daisy
chain” to form sequence of elements
o as with Arrays and ArraylLists, it can represent an unordered set or an
ordered (sorted) sequence of data elements
« AlinkedList holds a reference (pointer) to its first node (head) and
its last node (fail) — internal nodes maintain list via their references to
their next nodes

head

tail

3/60

Andries van Dam © 2023 11/07/23

What is a LinkedList? (2/2)

@

Each node holds an element and a reference to next node in list

tail

. Most methods will involve:

o “pointer-chasing” through the LinkedList (for search and finding correct place to insert

or delete)

o breaking and resetting the LinkedList to perform insertion or deletion of nodes

But there won'’t be data movement! Hence efficient for dynamic collections

Andries van Dam © 2023 11/07/23 4/60

Note that this is an

Ex: HTA LinkedList clss dingrom bosauso

has specific values!

LinkedList <HTA> //note generic

Node<HTA>head ~ Node<HTA> tail | null

/ \
e N\ (\ \ [~>)

Node<HTA> Node<HTA> Node<HTA> Node<HTA> Node<HTA>
1 g 1)
Y/
Node<HTA> next /]| Node<HTA> next /| Node<HTA> next / Node<HTA> next // Node<HTA> next
HTA data element HTA data element HTA data element HTA data element HTA data element
Allie Anastasio Cannon Lexi Sarah

Andries van Dam © 2023 11/07/23 5/60

When to Use Different Data Structures for
Collections (1/2)

 ArraylLists get their name because they implement
Java’s List interface (defined soon) and are
Implemented using Arrays

 LinkedLists also implement the List interface and
are an alternative to ArraylLists that avoid data
movement for insertion and deletion

o uses pointer manipulation rather than moving elements in an
array

Andries van Dam © 2023 11/07/23

6/60

When to Use Different Data Structures for
Collections (2/2)

« How to decide between data structures?

o choose based on the way data is accessed and stored in your
algorithm

o access and store operations of different data structures can
have very different impacts on an algorithm’s overall
efficiency—recall Big-O analysis

o even without N very large, there can be significant performance
differences

o roughly, Arrays if mostly static collection, ArrayLists if need
more update dynamics while retaining easy accessibility, and
LinkedList if more updates than accesses

Andries van Dam © 2023 11/07/23 7/60

Data Structure Comparison

Array

Indexed (explicit
access to it"
item)

If user moves
elements during
insertion or
deletion, their
indices will
change
correspondingly

Can’t change
size dynamically

ArraylList

* Indexed (explicit access to
it" item)

® Indices of successor items

automatically updated
following an inserted or
deleted item

® Can grow/shrink
dynamically

® Java uses an Array as

underlying data structure
(and does data shuffling

Andries van Dam © 2023 11/07/23

LinkedList

® Not indexed — to access the

n" element, must start at the
beginning and go to the next
node n times — no random
access!

® Can grow/shrink dynamically

® Uses nodes and pointers
instead of Arrays

® Can insert or remove nodes

anywhere in the list without
data movement throughythe

ract nf the lict

Linked List Implementations (1/2)

* Find java.util implementation at:
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

* To learn list processing, we’ll make our own implementation of this
data structure, MyLinkedList (MLL):
o difference between MLL and Java’s implementation is that Java

uses something like our MLL to build a more advanced data
structure that implements Java’s List interface

o Wwhile there is overlap, there are also differences in the methods
provided, and their names/return types

o in CS200, you will use LinkedLists in your own programs

n Dam © 2023 11/07/23 9/60

http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Linked List Implementations (2/2)

MyLinkedList (MLL) is a general building block for more

specialized data structures we’'ll build: Stacks, Queues,
Sorted Linked Lists...

WEe'll start by defining a Singly Linked List for both
unsorted and sorted items, then we’ll define a Doubly

Linked List — users of these data structures don’t see any
of these internals!

o willimplement MLL as a Singly Linked List in next few slides

Andries van Dam © 2023 11/07/23 1 0/60

Singly Linked List (1/3)

(@)
O

public class MyLinkedList<CS15TA>

MLL doesn’t implement full List private Node<CSISTA> head;
H private Node< > Tall;
interface private int size;
Linked !ist is_mainta_ined by head public MylLinkedList() {
and tail pointers; internal EE;:-Q:% - Qﬂﬂf
structure changes dynamically this.size = @;
o : }
Constructor initializes instance . .
variables public Node<CS15TA> addFirst(CSI5TA el) {

head and tail are initially set to null
sizesetto 0O

addFirst() appends Node to front
of list and updates head to

}
public Node<CS15TA> addLast(CS15fA el) {

reference it }
addLast () appends Node to end Of Generic — we literally code “<Type>"as a
. . . placeholder for the type chosen by the user of this
IISt and updates ta 11 tO reference |t data structure (ex.: MyLinkedList<CS15TA>, Java
substitutes CS15TA with whatever Type)

Andries van Dam © 2023 11/07/23

11/60

Singly Linked List (2/3)

) r*emoveFir*st() public Node<CS15TA> removeFirst() {
removes first Node }

and returns element
* removelast()

public Node<CS15TA> removelLast() {

removes last Node ’
and returns element public Node<CS15TA> remove(CS15TA el) {
« Remove() removes }
first occurrence of
Node containing
element e:_l' anq . Note: we have aligned methods of LinkedList and
retu rns |t (|m pl |C|t Arraylist where possible, with methods differing as the data
structures differ (i.e., ArrayList has no removelLast() since
searc h) you can get last element with index = length-1)
12/60

Andries van Dam © 2023 11/07/23

Singly Linked List (3/3)

public Node<CS15TA> search(CS15TA el) {

« search() finds and
returns Node containing el

« size() returns size of list

« 1isEmpty() checks if listis
empty (returns boolean)

« getHead/getTail()
return reference to
head/tail Node of list

}
public

}
public

}
public

}
public

}

int size() {

boolean isEmpty() {

Node<CS15TA> getHead() {

Node<CS15TA> getTail() {

Andries van Dam © 2023 11/07/23

13/60

Singly Linked List Summary

public class MyLinkedList<CS15TA> {
private Node<CS15TA> head;

public

private Node<CS15TA> tail; }

private int size;

public

public MylLinkedList() {

}

public Node<CS15TA>

}

public Node<CS15TA>

}

public Node<CS15TA>

}

public Node<CS15TA>

}

}
public

}
public

addFirst(CS15TA el) {

addLast(CS15TA el) { }

public

removeFirst() { }

public
}

removelLast() { }

Andries van Dam © 2023 11/07/23

Node<CS15TA> remove(CS15TA el) {

Node<CS15TA> search(CS15TA el) {

int size() {

boolean isEmpty() {

Node<CS15TA> getHead() {

Node<CS15TA> getTail() {

14/60

Node<Type>

public class Node<Type> {

private Node<Type> next;
e Node Class private Type elenent; | Node<Type next—is-

Type element

Also uses generics; user Of MLL public Node(Type element) {

- _ this.next = null;
specifies type and Java substitutes this.element = element;
specified type in Node class’ methods }

Constructor initializes instance variables PUPlic Node<Type> getNext() {

return this.next;

element and next }
Its methods are made up of accessors public void setNext(Node<Type> next) {
and mutators for these variables: , this.next = next;
o getNext() and setNext() ,
public Type getElement() {
o getElement() and setElement() return this.element;
. }
Type is a placeholder for whatever
object Node will hold public void setElement(Type element) {

this.element = element;

}

Andries van Dam © 2023 11/07/23 1 5/60

Ex: A pile of Books

©)

©)

©)

Before implementing LinkedList’s
internals, let’'s see how to use one
to model a simple pile of Books

“user” here is another programmer using
the MyLinkedList we’re making

Elements in our pile will be of type
Book

each has title, author(s), date and ISBN
(International Standard Book Number)

want list that can store any Book

Andries van Dam © 2023 11/07/23

Book

String author
String title
int isbn

getAuthor()
getTitle()
getISBN()

16/60

BOOk Class public class Book {

private String author;
private String title;

* Book’s constructor stores private int isbn;
author, date and ISBN , ,
. public Book(String author,
number of Book as instance String title, int isbn) {
I this.author = author;
Varlables this.title = title;
this.isbn = isbn;
}
* For each property, get public int getISBN(){
method returns that , rerunn thas.asbn;

property’s value
o ex. getISBN() returns isbn
}

Andries van Dam © 2023 11/07/23 1 7/60

Ex: MyLinkedList<Book>

MyLinkedList<Book> books

int size =4

/\Iode<Book> head
Node<Book> tall

\

Node<Book>

el

N

Node<Book>

Note: all this machinery hidden from user!

Note: The LinkedList is the instance with
head and tail references in it + the set of
linked Nodes distributed in memory

{ null

]<

\ .

/)J» Node<Book> |

Node<Book>

-

Node<Book> next =~
Book element

Node<Book> next -~

Book element

Node<Book> next -~

Book element

Node<Book> next

Book element

Book

this.author = “Roald Dahl”
this.title = “The BFG”
this.isbn = 0142410381

Book

this.author = “Jon Krakauer”
this.title = “Into The Wild”
this.isbn = 0385486804

Book

this.author = “Suzanne Collins”
this.title = “Catching Fire”
this.isbn = 9780545425117

Andries van Dam © 2023 11/07/23

Book

this.author = “J. R. R. Tolkien”
this.title = “The Hobbit”
this.isbn = 0345339681

18/60

Implementation: addFirst — empty list

* |If list is empty, head and tail

are null
o let’'s only show list pointers

* Create new
Node<ElementType>

« Update new node’s next
variable to where head points
to, which is null in this case

o constructor already had null —
we’re accounting for general
case

« Update head and tail
variables to new node

Andries van Dam © 2023 11/07/23

MyLinkedList<Type> null

=

Node<yo I R2R
Node<Tup T vekd A
au;
'
Node<Type> /

Node<Type> next

Type element
\\

/ new Node

For simplicity we elide
initialization of eLement
and showing what it
points to

Cmnucu

19/60

addFirst — non empty | Node<re> |y Node
h e a d Node<Type> ne1 /

Type element

* Construct new Node

» Update its next variable to Node<Type>
current head (in this case, 4
some previously added head | Node<type> next
Node that headed list) Type element ¢
* Update MLL's head variable to +
the new Node

Node<Type>
t a 1 1 / Node<Type> next —-» null

Type element
Andries van Dam © 2023 11/07/23 20/60

Constructor and addFirst Method (1/2)

« Constructor — as shown before public MyLinkedList<Type>() {

c ege s . . this.head = null;
o Initialize instance variables this.tail = null;
. this.size = 0;
* addFirst method }
o increment size by 1
o create new Node ((S15: public.Nodg<Type> addFirst(Type el) {
constructor stores el in element this,sizet+;
_ ’ Node<Type> newNode
null in next) = new Node<Type>(el);
o update newNode’s next to first newNode.setNext(this.head);
Node (pointed to by head) this.head = newNode;
o update MLL's head to point to if (size == 1) {
newNode this.tail = newNode;
o Iifsizeis 1, tail must also point }

to newNode (edge case)

return newNode;
o return newNode ’

Andries van Dam © 2023 11/07/23 2 1 /60

Constructor and addFirst Runtime (2/2)

public MyLinkedList() {

this.head = null; // 1 op
this.tail = null; // 1 op
this.size = 0; // 1 op

}

— constructor is O(1)

public Node<Type> addFirst(Type el) {

this.size++; // 1 op

Node<Type> newNode = new Node<Type>(el); // 1 op

newNode.setNext(this.head); // 1 op

this.head = newNode; // 1 op

if (size == 1) { // 1 op
this.tail = newNode; // 1 op

}

return newNode; // 1 op

— addFirst(Type el) is O(1)

Andries van Dam © 2023 11/07/23 22/60

addLast Method (1/2) |

* MLL's tail already points

to the last Node in the list

* Create a new Node<Type>

* Update tail’s node’s next
pointer to the new node

* Then, update tail to the

new Node

Node<Type>
<— head

Node<Type> next
Type element |

v
Node<Type> tail
Node<Type> next null
Type element |
Node<Type> —taill

<—new Node

Node<Type> next ——p null
Type element

Andries van Dam © 2023 11/07/23

23/60

addLast Method (2/2)

 Edge Case

(@)

if list is empty, update head and
tail variables to newNode

« General Case

(@)

update next of current last Node
(to which tail is pointing -
“update tail’s next”) to new
last Node

update tail to that new last
Node

new Node’s next variable
already points to null

Andries van Dam © 2023 11/07/23

public Node<Type> addLast(Type el) {

Node<Type> newNode
= new Node<Type>(el);
if (this.size == 0) {
this.head = newNode;

this.tail newNode;

}

else {
this.tail.setNext(newNode);
this.tail = newNode;

}

this.size++; tall

/
Node<Type>

return newﬂfﬂfi///// \\‘

Node<Type>]

Node<Type> next —]

Type element x
null

////)"

Node<Type> next
Type element null

new node 24/60

addLast Runtime

public Node<Type> addLast(Type el) {

Node<Type> newNode = new Node<Type>(el) // 1 op

if (this.size == 0) { // 1 op
this.head = newNode; // 1 op
this.tail = newNode; // 1 op

}

else {
this.tail.setNext(newNode); // 1 op
this.tail = newNode; // 1 op

}

this.size++; // 1 op

return newNode; // 1 op

— addLast(Type el) is O(1)

Andries van Dam © 2023 11/07/23 25/60

size and isEmpty Methods and Runtime

public int size() {

}

return this.size;

// 1 op

public boolean isEmpty() {

}

return this.size ==

5 /] 2

Andries van Dam © 2023 11/07/23

— size() is O(1)

ops

— 1sEmpty() is O(1)

26/60

removeFirst Method (1/2)

« Remove reference to ’ \
original first Node by Node<Type>
setting head variable to garbage- |« heqd
. . Nodedaleetackxt
second Node, I.e., first Type element |
Node’s successor Node,) v
via first’s next Node<Type>
< head
. Node<Type> next
 Node to remove is Type oloment |

garbage-collected after ¢
termination of method

27/60

Andries van Dam © 2023 11/07/23

removeFirst Method (2/2)

Edge .Case fOF empty IISt public Type removeFirst() {
o println is optional, just one way to if (this.size == @) {

handle error checking; caller should System.out.println(“List is empty”);
check for null in any case return null;
. }
Store data element from first Node
to removed Type removed = this.head.getElement();

Then unchain first Node by resetting ~ this.head = this.head.getNext();

this.size--;

head to point to first Node’s if (this.size == 0) {
Successor this.tail = null;
If list is now empty, update tail to } _
null (what did head get setto?) —, "™ removed;

Node to remove is
garbage-collected at method’s end

Andries van Dam © 2023 11/07/23 28/60

removeFirst Runtime

public Type removeFirst() ({

if (this.size == 0) { // 1 op
System.out.println(“List is empty”); // 1 op
return null; // 1 op

}

Type removed = this.head.getElement(); // 1 op

this.head = this.head.getNext(); // 1 op

this.size--; // 1 op

if (this.size == 0) { // 1 op
this.tail = null; // 1 op

}

return removed; // 1 op

— removeFirst() is O(1)

29/60

Andries van Dam © 2023 11/07/23

Review: Accessing
Nodes Via Pointers

this.head.getNext();

This does not get next field of head, which
doesn’t have such a field, being just a
pointer

Instead, read this as “get next field of the
node head points to”

What does this.tail.getNext()
produce?

What does this.tail.getElement()
produce?

note we can access a variable by its unique
name, index, contents, or here, via a pointer

\

Node<Type>

“~—— head
Node<Type> next
Type element |
4 v)
Node<Type>
Node<Type> next
Type element | .
- tail
() last node\
Node<Type> ()
Node<Type>
Node<Type> next —1
Type element Node<Type> next —]
Type element

Andries van Dam © 2023 11/07/23

30/60

null

TopHat Question

Given a Linked List of Nodes,
A->B ->C->D
where head points to node A, what is this.head.getNext().getNext()?

A. Nothing, throws a NullPointerException
B. B
C. C
D. D

31/60

Andries van Dam © 2023 11/07/23

removelLast Method

As with removeFirst, remove
Node by removing any references
to it. Need to know predecessor,
but no pointer to it!
“Pointer-chase” in a loop until
predecessor’s next is tail and
reset predecessor’s next
instance variable to null

o very inefficient—stay tuned
Update tail
Last Node is thereby garbage-
collected!

Andries van Dam © 2023 11/07/23

Node<Type>

“~—— head

Node<Type> next
Type element |

e v)
Node<Type>
Node<Type> next y
Type element | ta 1 L

() %node
Node<Type>

Node<Type>

Node<Type> next — garbage-
Type element | Nodeewyﬁé:feiéxt

v

null

Type element

null

v

32/60

r‘emOVELaSt MethOd public Type removelLast() {

Type removed = null;

if (this.size == 0) {
* Edge CaSG(S) System.out.println(“List is empty”);
’ i } else if (this.size == 1) {
© Pan t d,elete from empty list removed = this.head.getElement();
o if there’s only one Node, update this.head = null;
head and tail references to null this.tall = null;
this.size = 0;
} else {
Node curr = this.head;
 General case Node prev = null;
. 113 . 1} h]. o tN t != 11
o iterate (“pointer-chase”) through while (curr.getNext() 1= null) {
list — common pattern using prev = curr;
. . curr = curr.getNext();
pointers to current and previous }
node in Iockstep removed = curr.getElement();
. . prev.setNext(null);
o after loop ends, prev will point to this.tail = prev;
Node just before last Node and } this.size--;
curr will point to last Node return removed;

Andries van Dam © 202?}11/07/23 33/60

removelLast Method

null prev
Node<Type> - h e a d
yp <« curr
Node<Type> next
Type element < prev
Node<Type> prev
= curr
Node<Type> next -
Type element t a 1 l

+ 4//%:;/// curr

* A/“// last node

Node<Type> Node<Type>
Node<Type> next P> —GerbEaGge——— _pull
Type element | Ne@Hegiethext —

+ Type element

public Type removelLast() {
Type removed = null;
if (this.size == 0) {
System.out.println(“List is empty”);
} else if (this.size == 1) {
removed = this.head.getElement();
this.head = null;

this.tail = null;
this.size--;

} else {
Node curr = this.head;

Node prev = null;
while (curr.getNext() != null) {

prev = curr;
curr = curr.getNext();
}
removed = curr.getElement();
prev.setNext(null);

this.tail = prev;
this.size--;

}

return removed;

nu ” Andries van Dam © 2023 11/(}7/23 34/60

removelLast Runtime

public Type removeLast() {

Type removed = null; // 1 op
if(this.size == 0) { // 1 op
System.out.println(“List is empty”); // 1 op
}
else if(this.size == 1) { // 1 op
removed = this.head.getElement(); // 1 op
this.head = null; // 1 op
this.tail = null; // 1 op
this.size--; // 1 op
}
else{
Node curr = this.head; // 1 op
Node prev = null; // 1 op
while (curr.getNext() != null) { [/ n ops
prev = curr; // 1 op
curr = curr.getNext(); // 1 op
}
removed = curr.getElement(); // 1 op
prev.setNext(null); // 1 op
this.tail = prev; // 1 op
this.size--; // 1 op
}
return removed; // 1 op

} Andries van Dam © 2023 11/07/23

—

removelLast()

1sOfm)

35/60

TopHat Question

Given that animals is a Singly Linked List of n animals, what is node pointing to?

curr this.head;

prev = null;

while (curr.getNext().getNext() != null) {
prev = curr;
curr = curr.getNext();

}

node = curr.getNext();

Nothing useful, throws a NullPointerException
Points to the last node on the list

Points to the second node on the list

Points to the head of the list

OO w2»

Andries van Dam © 2023 11/07/23

36/60

search Method for MyLinkedList

* Loops through list until public Node<Type> search(Type el) {
. Node<Type> curr = this.head;
element is found or end
is reached (curr==null)

while (curr != null) {
if (curr.getElement().equals(el)) {

. . return curr;
* If a Node’s element is }

= .getNext();
same as the argument, , curn T currgeilet)
return curr

return null;

* |f no elements match,
return null

Andries van Dam © 2023 11/07/23 37/60

search Runtime

public Node<Type> search(Type el) {

Node<Type> curr = this.head; // 1 op
while (curr != null) { // n ops
if (curr.getElement().equals(el)) { // 1 op
return curr; // 1 op
}
curr = curr.getNext(); // 1 op
}
return null; // 1 op

— search(Type el) is O(n)

Andries van Dam © 2023 11/07/23 38/60

remove Method

 We have implemented methods to remove first and last
elements of MyLinkedList

« What if we want to remove any element from
MyLinkedList?

» Let's write a general remove method
o think of it in 2 phases:

- a search loop to find correct element (or end of list)
- breaking the chain to jump over the element to be removed

Andries van Dam © 2023 11/07/23 39/60

prev

remove Method N\ | |

Node<Type>

* Loop through Nodes until an curr
element matches itemToRemove prev > | Node<Type> next
T~

Type element

« “Jump over” Node by re-linking

r r of Node in usin Node<Type>
p ed,ecesso of (again using curr amay(g ‘0 remove
loop’s prev pointer) to successor Node<§
. . curr = null Type eemen
of Node (via its next reference) —
« With no more reference to Node, it Node<Type>
IS garbage collected at termination Node<Type> next
of method Type element |
\/

40/60

Andries van Dam © 2023 11/07/23

public Type remove(Type itemToRemove){
if (this.isEmpty()) {

remove Meth Od System.out.println(“List is empty”);

return null;

¥
Edge CaSG(S) if (itemToRemove.equals(this.head.getElement())) {
o again: can’t delete from empty list return this.removefirst();
o if removing first item or last item, if (itemToRemove.equals(this.tail.getElement())) {
delegate to return this.removelast();
¥

removeFirst/removelLast

Node<Type> curr

this.head.getNext();

Genera| Case Node<Type> prev = this.head;
.) o ~ while (curr != null) {
o) |terate over IlSt Untl| 1temToRemove IS if (curr.getElement().equals(itemToRemove)) {
found in ptr-chasing loop prev.setNext(curr.getNext());
. : this.size--;
o again: need prev, so we can re I|,nk return curr. getElement ()
predecessor of curr. Node is GC'd }
upon return. prev = curr;
curr = curr.getNext();
}
Note: caller of remove can find out if item was return null;
successfully found (and removed) by testing for }
I= null _ 41/60
Andries van Dam © 2023 11/07/23

remove Runtime

public Type remove(Type itemToRemove){

if (this.isEmpty()) { // 1 op
System.out.println(“List is empty”); // 1 op
return null;
}
if (itemToRemove.equals(this.head.getElement())) { // 1 op
return this.removeFirst(); // 0(1)
}
if (itemToRemove.equals(this.tail.getElement())) { // 1 op
return this.removelLast(); // 0(n) pointer chase till list end
}
Node<Type> curr = this.head.getNext(); // 1 op
Node<Type> prev = this.head; // 1 op
while (curr != null) { // n ops
if (itemToRemove.equals(curr.getElement())) { // 1 op — remove(Type
prev.setNext(curr.getNext()); // 1 op itemToRemove) is O(n)
this.size--; // 1 op
return curr.getElement(); // 1 op
}
prev = curr; // 1 op
curr = curr.getNext(); // 1 op
}
return null; // 1 op

¥
Andries van Dam © 2023 11/07/23 42/60

TopHat Question

Given that animals is a Singly Linked List of n animals, curr points to the
node with an animal to be removed from the list, that prev points to curr’s
predecessor, and that curr is not the tail of the list, what will this code
fragment do?

prev.setNext(curr.getNext());

curr = prev.getNext();

System.out.println(curr.getElement());

List is unchanged, prints out removed animal

List is unchanged, prints out the animal after the one that got removed
List loses an animal, prints out removed animal

List loses an animal, prints out the animal after the one that was removed

OO w»

Andries van Dam © 2023 11/07/23 43/60

Doubly Linked List (1/3)

* |s there an easier/faster way to get to previous node

while removing a node?

o with Doubly Linked Lists, nodes have references both to next
and previous nodes

o can traverse list both backwards and forwards — Linked List still
stores reference to front of list with head and back of list with
tail

o modify Node class to have two pointers: next and prev
o eliminates pointer-chasing loop because prev points to
predecessor of every Node, at cost of second pointer

o classic space-time tradeoff!

Andries van Dam © 2023 11/07/23 44/60

Doubly Linked List (2/3)

* For Singly Linked List, processing typically goes from first to last
node, e.g. search, finding place to insert or delete

« Sometimes, particularly for sorted list, need to go in the opposite
direction

(©)

e.g., sort CS15 students on their final grades in ascending order. Find
lowest numeric grade that will be recorded as an “A”. Then ask: who
has a lower grade but is closer to the “A” cut-off, i.e., in the grey area,
and therefore should be considered for “benefit of the doubt™?

Andries van Dam © 2023 11/07/23 45/60

Doubly Linked List (3/3)

« This kind of backing-up can’t easily be done with the
Singly Linked List implementation we have so far

o could build our own specialized search method, which would scan from
the head and be, at a minimum, O(n)

« |t is simpler for Doubly Linked Lists:
o find student with lowest “A” using search

o use prev pointer, which points to the predecessor of a node (O(1)), and
back up until hit end of B+/A- grey area

Andries van Dam © 2023 11/07/23 46/60

Announcements

o Tetris Is out!

o early handin: Saturday 11/11
o on-time handin: Monday 11/13
o late handin: Wednesday 11/15

o Tetris Code-Along 11/08 7:00pm Friedman Hall
- Recording on Website

« HTA hours in Friedman 101 Friday 3pm-4pm

o come and chat about course registration, the upcoming final project
or any other concerns you may have ©

Andries van Dam © 2023 11/07/23 47/60

- Cybersecurity and the -

..........

Future of Warfare

CS15 Fall 2023

Cybersecurity: A Brief History

Bob Thomas develops
the world's first worm,
the, “creeper.”

ARPANET develops into
the internet and
becomes widely used.

4

13963

13

71

73

33

7
/
/

The Pentagon develops
— ‘ the ARPANET, an early

/

computer network.
74 { . P /

Ray Tomlinson develops
s the first cybersecurity
{| program, the "reaper”.

Source: History of Computer Security

What is Cybersecurity?

“Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or
criminal use and the practice of ensuring confidentiality, integrity, and availability of

information.”
— United States Cybersecurity & Infrastructure Security Agency (i

[Ugrad] Phishing/scam message about summer break research

Fisler, Kathi Thu, Jun 8, 12:36 PM

tougrad »

Several Brown CS students (and faculty) have just reported receiving an email about a paid summer internship with me. Unfortunately,
that is a phishing/scam message. Please don't send information to the text number in the message or reply to the sender.

Brown IT is also being alerted about this.

Image Sources: Flat Icon

Chat GPT’s Popularity
Leveraged to Spread Malware

https://google.drive.com/u/0/uc...

Link to malware

Threat actors using Adam Erhat, a
well-known YouTuber market strategist
to earn trust and facilitate this
campaign

@ Chat.OpenAi
25m-Q

We've created GPT-4, the latest milestone in OpenAl’s effort in scaling
up deep learning.

The chat version GPT-V4 has just been released on March 12 and has
been used by nearly 100,000 advertisers

Al CHATGPT the future of advertising

Use chatGPT to define and segment your audience, create ads, test
ads, boost ad performance, | optimize spend _ all automated in real
time, at scale big

Dedicated chat version GPT-V4 for the advertising industry

@ Faster response, 5 times smarter than the old version

@ 25 times better learning and practical application

@ 40x better in analytics and marketing

@ Create content for advertising articles, promotions ... 25 times
better

@ 5 times better target audience

many more good features.

isadvantage is: only support specialized advertising
https://drive.google.com/u/0/uc... |

durce: CloudSEK

How Hackers Use Data: Ransomware

“Ransomware is a type of malware that locks a victim’s data or device and threatens to keep
it locked—or worse—unless the victim pays a ransom to the attacker.”

= [@]

IJ-I S — J
| S5
Server Infected

Online Ads

Scam emails

vulnerabilities websites

Source: Federal Trade Commission

Case Study: Colonial Pipelines Ransomware Attack

Colonial Pipeline system map

— Pipeline system — Sublines
® Main weekend delivery locations

Linden,
us New Jersey
You need pay now, or
190.363 BTC (+10%) - 22537.751 XMR GreenSborO
after doubled.
380.725 BTC (+10%) - 45075.501 XMR CharlOtte
' (110 - 450 Atlanta Spartanburgh
After payment we will provide you universal Meridian
decryptor for all network.
Example ransom message from DarkSide, the
group that hacked Colonial Pipelines
Houston, 200km
- i
Google ASS 200 miles
Source: Colonial Pipeline Company B|B|C|

Source: BBC, CISA, Reuters

Brown University hit by cyberattack, some systems still offline

By Sergiu Gatlan

Special_Events@brown.edu 08:43
A new day
You deets has been obtain by viper crewz https://

~500,000 email addresses were compromised in the
2021 cyberattack — this is the message leaked emails
would receive

April 2, 2021 04:01 PM

: . Questions to ask yourself when
Anatomy Of d phISh- you receive a suspicious email
From: BROWN Alert <dr jamwil@gmail.com>

Date: Mon, Aug 28, 2023 at 9:52 AM =[] Why would a Brown Alert be sent
from dr.jamewil@gmail.com?

Subject: Help Desk: Action Required
B E]\ Why is the To field blank and not addressed to me?

=] Is the Brown logo supposed to make it look official?

BROWN
Is there a threat to try and get me to act promptly?
This example includes one, saying “complete the
process in order to avoid suspension.”

Hello

This is to notify active staff, students and alumni that all mailbox acco,
link below to complete the process in order to avoid suspension 4

re being validated. Use the

VALIDATE My MAILBOX <253 Would OIT ask me to click on a link? And why when |
cursor over it does the URL look suspicious?

IT Support Desk < Who is this generic “IT Support Desk”, why is
z"il\there no mention of OIT, or a phone number

provided to call with questions?

Source: BleepingComputer, GoLocal Prov, Brown University

Case Study: SolarWinds Cyber Attack

“As of today, 9 federal agencies and about 100 private sector companies were
compromised.” —Anne Neuberger, Deputy National Security Advisor

22, U.S. DEPARTMENT OF

NV SE,

National Nuclear Security Administration

Source: White House, Microsoft, CNET

Cybersecurity + International Affairs

Y.\SECURI >

As cyberattacks become more common...

...cybersecurity groups work together
globally!

I & I Communications Centre de la sécurité
! Security Establishment des télécommunications

Centre canadien
pour la cybersécurité

Canadian Centre
for Cyber Security

@%ﬂ National Cyber

| Security Centre
a part of GCHQ

. Australian Government C\ Australian
Cyber Security
Australian Signals Directorate A\ \) Centre

// National Cyber
Security Centre

Groups that helped neutralize the Russian
malware “Snake,” a cyber-espionage malware

found in over 50 countries

Source: NSA

Future of cybersecurit

Executive ()rder on Improving the
Nation’s Cybersecurity

Source: NYTimes, The White House

Cybersecurity at Brown

LoD
W7,
£

BROWN

BROWN

Graduate Programs

Office of Information Technology

Courses at Brown:

CSCI 1040: The Basics of
Cryptographic Systems

CSCI 1360: Humans Factors in
Cybersecurity

CSCl 1660: Introduction to
Computer Security

CSCI1800: Cybersecurity and
International Relations

CSCI1870: Cybersecurity Ethics
CSCl 2660: Computer Security

