
0/60Andries van Dam © 2023 11/07/23

Lecture 18
Data Structures I:

LinkedLists



1/60Andries van Dam © 2023 11/07/23

Outline
• Linked Lists

• Stacks and Queues (next lecture)

• Trees (next lecture)

• HashSets and HashMaps (next lecture)



2/60Andries van Dam © 2023 11/07/23

Linked Lists

Tribute 1 Tribute 2 Tribute 3 Tribute 4 



3/60Andries van Dam © 2023 11/07/23

What is a LinkedList? (1/2)

• Collection of nodes stored anywhere in memory linked in a “daisy 
chain” to form sequence of elements
o as with Arrays and ArrayLists, it can represent an unordered set or an 

ordered (sorted) sequence of data elements
• A LinkedList holds a reference (pointer) to its first node (head) and 

its last node (tail) – internal nodes maintain list via their references to 
their next nodes 

C S 1 5

head

tail



4/60Andries van Dam © 2023 11/07/23

What is a LinkedList? (2/2)

• Each node holds an element and a reference to next node in list

• Most methods will involve: 

o “pointer-chasing” through the LinkedList (for search and finding correct place to insert 

or delete) 

o breaking and resetting the LinkedList to perform insertion or deletion of nodes

• But there won’t be data movement! Hence efficient for dynamic collections

head

tail

C S 1 5



5/60Andries van Dam © 2023 11/07/23

Ex: HTA LinkedList
LinkedList<HTA> //note generic

Node<HTA> head      Node<HTA> tail

Node<HTA>

Node<HTA> next

HTA data element

Allie

null

Note that this is an 
instance diagram, not a 

class diagram, because it 
has specific values!

Node<HTA>

Node<HTA> next

HTA data element

Node<HTA>

Node<HTA> next

HTA data element

Node<HTA>

Node<HTA> next

HTA data element

Anastasio Cannon Lexi

<HTA>

Node<HTA>

Node<HTA> next

HTA data element

Sarah



6/60Andries van Dam © 2023 11/07/23

When to Use Different Data Structures for 
Collections (1/2)

• ArrayLists get their name because they implement 
Java’s List interface (defined soon) and are 
implemented using Arrays

• LinkedLists also implement the List interface and 
are an alternative to ArrayLists that avoid data 
movement for insertion and deletion 
o uses pointer manipulation rather than moving elements in an 

array



7/60Andries van Dam © 2023 11/07/23

• How to decide between data structures?
o choose based on the way data is accessed and stored in your 

algorithm
o access and store operations of different data structures can 

have very different impacts on an algorithm’s overall 
efficiency–recall Big-O analysis  

o even without N very large, there can be significant performance 
differences

o roughly, Arrays if mostly static collection, ArrayLists if need 
more update dynamics while retaining easy accessibility, and 
LinkedList if more updates than accesses

When to Use Different Data Structures for 
Collections (2/2)



8/60Andries van Dam © 2023 11/07/23

Data Structure Comparison
Array

• Indexed (explicit 
access to ith 
item)

• If user moves 
elements during 
insertion or 
deletion, their 
indices will 
change 
correspondingly

• Can’t change 
size dynamically

LinkedList
• Not indexed – to access the 

nth element, must start at the 
beginning and go to the next 
node n times → no random 
access! 

• Can grow/shrink dynamically

• Uses nodes and pointers 
instead of Arrays

• Can insert or remove nodes 
anywhere in the list without 
data movement through the 
rest of the list

ArrayList
• Indexed (explicit access to 

ith item)

• Indices of successor items 
automatically updated 
following an inserted or 
deleted item

• Can grow/shrink 
dynamically

• Java uses an Array as 
underlying data structure 
(and does data shuffling 
itself) 



9/60Andries van Dam © 2023 11/07/23

Linked List Implementations (1/2)
• Find java.util implementation at:         

http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html 

• To learn list processing, we’ll make our own implementation of this 
data structure, MyLinkedList (MLL):

o difference between MLL and Java’s implementation is that Java 
uses something like our MLL to build a more advanced data 
structure that implements Java’s List interface

o while there is overlap, there are also differences in the methods 
provided, and their names/return types 

o in CS200, you will use LinkedLists in your own programs

http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html


10/60Andries van Dam © 2023 11/07/23

Linked List Implementations (2/2)

• MyLinkedList (MLL) is a general building block for more 
specialized data structures we’ll build: Stacks, Queues, 
Sorted Linked Lists…

• We’ll start by defining a Singly Linked List for both 
unsorted and sorted items, then we’ll define a Doubly 
Linked List – users of these data structures don’t see any 
of these internals!

o will implement MLL as a Singly Linked List in next few slides 



11/60Andries van Dam © 2023 11/07/23

Singly Linked List (1/3) 
• MLL doesn’t implement full List 

interface
• Linked list is maintained by head 

and tail pointers; internal 
structure changes dynamically

• Constructor initializes instance 
variables

o head and tail are initially set to null
o size set to 0

• addFirst() appends Node to front 
of list and updates head to 
reference it

• addLast() appends Node to end of 
list and updates tail to reference it

public class MyLinkedList<CS15TA> {
      private Node<CS15TA> head;
      private Node<CS15TA> tail;
      private int size;

      public MyLinkedList() {
         this.head = null;
         this.tail = null;
         this.size = 0;
      }
    
      public Node<CS15TA> addFirst(CS15TA el) {

    //...
      }
      public Node<CS15TA> addLast(CS15TA el) {

      //...
      }

    // more on next slide

}

Generic – we literally code “<Type>” as a 
placeholder for the type chosen by the user of this 
data structure (ex.: MyLinkedList<CS15TA>, Java 
substitutes CS15TA with whatever Type)



12/60Andries van Dam © 2023 11/07/23

• removeFirst() 
removes first Node 
and returns element

• removeLast() 
removes last Node 
and returns element

• Remove() removes 
first occurrence of  
Node containing 
element el and 
returns it (implicit 
search)

    public Node<CS15TA> removeFirst() {
        //...
    }

    public Node<CS15TA> removeLast() {
        //...
    }

    public Node<CS15TA> remove(CS15TA el) {
        //...
    }

    // still more on next slide 

Note: we have aligned methods of LinkedList and 
ArrayList where possible, with methods differing as the data 
structures differ (i.e., ArrayList has no removeLast() since 
you can get last element with index = length-1) 

Singly Linked List (2/3) 



13/60Andries van Dam © 2023 11/07/23

• search() finds and 
returns Node containing el

• size() returns size of list
• isEmpty() checks if list is 

empty (returns boolean)
• getHead/getTail() 

return reference to 
head/tail Node of list

    public Node<CS15TA> search(CS15TA el) {
        //...
    }

    public int size() {
        //...
    }

    public boolean isEmpty() {
        //...
    }

    public Node<CS15TA> getHead() {
        //...
    }

    public Node<CS15TA> getTail() {
        //...
    }

Singly Linked List (3/3) 



14/60Andries van Dam © 2023 11/07/23

Singly Linked List Summary 
public class MyLinkedList<CS15TA> {
    private Node<CS15TA> head;
    private Node<CS15TA> tail;
    private int size;

    public MyLinkedList() {
        //...
    }

    public Node<CS15TA> addFirst(CS15TA el) {
        //...
    }

    public Node<CS15TA> addLast(CS15TA el) {
        //...
    }

    public Node<CS15TA> removeFirst() {
        //...
    }

    public Node<CS15TA> removeLast() {
        //...
    }

    public Node<CS15TA> remove(CS15TA e1) {
        //...
    }

    public Node<CS15TA> search(CS15TA e1) {
        //...
    }

    public int size() {
        //...
    }

    public boolean isEmpty() {
        //...
    }

    public Node<CS15TA> getHead() {
        //...
    }

    public Node<CS15TA> getTail() {
        //...
    }
}



15/60Andries van Dam © 2023 11/07/23

The Node Class
• Also uses generics; user of MLL 

specifies type and Java substitutes 
specified type in Node class’ methods

• Constructor initializes instance variables 
element and next 

• Its methods are made up of accessors 
and mutators for these variables:

o getNext() and setNext()
o getElement() and setElement()

• Type is a placeholder for whatever 
object Node will hold

public class Node<Type> {
    private Node<Type> next; 
    private Type element;
    
    public Node(Type element) {

   this.next = null;
   this.element = element;

    }
    
    public Node<Type> getNext() { 
        return this.next; 
    }

    public void setNext(Node<Type> next) {
        this.next = next;
    }
    
    public Type getElement() { 
        return this.element; 
    }

    public void setElement(Type element) {
        this.element = element;
    }
}

Node<Type>

Node<Type> next
Type element

element



16/60Andries van Dam © 2023 11/07/23

Ex: A pile of Books
• Before implementing LinkedList’s 

internals, let’s see how to use one 
to model a simple pile of Books

o “user” here is another programmer using 
the MyLinkedList we’re making

• Elements in our pile will be of type 
Book

o each has title, author(s), date and ISBN 
(International Standard Book Number)

o want list that can store any Book

Book

Node<Type> _next
String author
String title
int isbn

getAuthor()
getTitle()
getISBN()
…



17/60Andries van Dam © 2023 11/07/23

Book Class public class Book {
    private String author;
    private String title;
    private int isbn;

    public Book(String author, 
                String title, int isbn) {
        this.author = author;
        this.title = title;
        this.isbn = isbn;
    }

    public int getISBN(){
        return this.isbn;
    }

    //other mutator and accessor 
    //methods elided
}

• Book’s constructor stores  
author, date and ISBN 
number of Book as instance 
variables

• For each property, get 
method returns that 
property’s value
o ex. getISBN() returns isbn 



18/60Andries van Dam © 2023 11/07/23

Ex: MyLinkedList<Book>
MyLinkedList<Book> books

Node<Book> head
Node<Book> tail
int size = 4

Node<Book> Node<Book> Node<Book> Node<Book>
Node<Book> next
Book element

Node<Book> next
Book element

Node<Book> next
Book element

Node<Book> next
Book element

Book
this.author = “Roald Dahl”
this.title = “The BFG”
this.isbn = 0142410381

Book
this.author = “Jon Krakauer” 
this.title = “Into The Wild”
this.isbn = 0385486804

Book
this.author = “Suzanne Collins” 
this.title = “Catching Fire”
this.isbn = 9780545425117

Book
this.author = “J. R. R. Tolkien” 
this.title = “The Hobbit”
this.isbn = 0345339681

null

Note: The LinkedList is the instance with 
head and tail references in it + the set of 
linked Nodes distributed in memory

Note: all this machinery hidden from user!



19/60Andries van Dam © 2023 11/07/23

element

// instance vars 
ellided

Implementation: addFirst – empty list

Node<Type>

Node<Type> next
Type element

new Node

null

For simplicity we elide 
initialization of element 
and showing what it 
points to  

• If list is empty, head and tail 
are null
o let’s only show list pointers

• Create new 
Node<ElementType>

• Update new node’s next 
variable to where head points 
to, which is null in this case
o constructor already had null – 

we’re accounting for general 
case

• Update head and tail 
variables to new node

MyLinkedList<Type>

Node<Type> head
Node<Type> tail

head
tail 



20/60Andries van Dam © 2023 11/07/23

addFirst – non empty Node<Type>

Node<Type> next
Type element

new Node

head

head 

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

tail

…

• Construct new Node

• Update its next variable to  
current head (in this case, 
some previously added    
Node that headed list)

• Update MLL’s head variable to 
the new Node

null



21/60Andries van Dam © 2023 11/07/23

Constructor and addFirst Method (1/2) 
public MyLinkedList<Type>() {
    this.head = null;
    this.tail = null;
    this.size = 0;
}

public Node<Type> addFirst(Type el) {
    this.size++;
    Node<Type> newNode 

= new Node<Type>(el);
    newNode.setNext(this.head); //previous head
    this.head = newNode;

   
    if (size == 1) {
        this.tail = newNode; 
    }
     
    return newNode;
}

• Constructor ─ as shown before
o initialize instance variables

• addFirst method
o increment size by 1
o create new Node ((S15:  

constructor stores el in element, 
null in next)

o update newNode’s next to first 
Node (pointed to by head)

o update MLL’s head to point to 
newNode 

o if size is 1, tail must also point 
to newNode (edge case)

o return newNode 



22/60Andries van Dam © 2023 11/07/23

public MyLinkedList() {
    this.head = null; // 1 op 
    this.tail = null; // 1 op 
    this.size = 0; // 1 op
}

public Node<Type> addFirst(Type el) {
    this.size++; // 1 op
    Node<Type> newNode = new Node<Type>(el); // 1 op
    newNode.setNext(this.head); // 1 op
    this.head = newNode; // 1 op

   
    if (size == 1) { // 1 op
        this.tail = newNode; // 1 op
    }
    return newNode; // 1 op
}

→ addFirst(Type el) is O(1)

→ constructor is O(1)

Constructor and addFirst Runtime (2/2) 



23/60Andries van Dam © 2023 11/07/23

• MLL’s tail already points 
to the last Node in the list 

• Create a new Node<Type>

• Update tail’s node’s next 
pointer to the new node

• Then, update tail to the 
new Node

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

new Node

head

tail

tail

…

null

null

addLast Method (1/2)



24/60Andries van Dam © 2023 11/07/23

addLast Method (2/2)
public Node<Type> addLast(Type el) {
    Node<Type> newNode 

= new Node<Type>(el);
    if (this.size == 0) { 
        this.head = newNode;
        this.tail = newNode;
    }
    else { 
        this.tail.setNext(newNode);
        this.tail = newNode;
    }
    this.size++;
    return newNode;
}

• Edge Case
o if list is empty, update head and 

tail variables to newNode

• General Case
o update next of current last Node 

(to which tail is pointing – 
“update tail’s next”) to new 
last Node

o update tail to that new last 
Node

o new Node’s next variable 
already points to null

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

new node

tail

null
null



25/60Andries van Dam © 2023 11/07/23

addLast Runtime
public Node<Type> addLast(Type el) {
    Node<Type> newNode = new Node<Type>(el) // 1 op
    if (this.size == 0) { // 1 op
        this.head = newNode; // 1 op
        this.tail = newNode; // 1 op
    }
    else { 
        this.tail.setNext(newNode); // 1 op
        this.tail = newNode; // 1 op
    }
    this.size++; // 1 op
    return newNode; // 1 op
}

→ addLast(Type el) is O(1) 



26/60Andries van Dam © 2023 11/07/23

size and isEmpty Methods and Runtime

public int size() {
return this.size; // 1 op

}

public boolean isEmpty() {
 return this.size == 0; // 2 ops

}

→ size() is O(1)

→ isEmpty() is O(1)



27/60Andries van Dam © 2023 11/07/23

• Remove reference to 
original first Node by 
setting head variable to 
second Node, i.e., first 
Node’s successor Node, 
via first’s next  

• Node to remove is 
garbage-collected after 
termination of method

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type>  next
Type element

head 

head 

garbage-
collected

…

removeFirst Method (1/2)



28/60Andries van Dam © 2023 11/07/23

removeFirst Method (2/2)
public Type removeFirst() {
    if (this.size == 0) {
        System.out.println(“List is empty”);
        return null;
    }

    Type removed = this.head.getElement();
    this.head = this.head.getNext();  
    this.size--;
    if (this.size == 0) {
        this.tail = null;
    }
    return removed;
}

• Edge case for empty list  
o println is optional, just one way to 

handle error checking; caller should 
check for null in any case

• Store data element from first Node 
to removed 

• Then unchain first Node by resetting 
head to point to first Node’s 
successor

• If list is now empty, update tail to 
null (what did head get set to?)

• Node to remove is 
garbage-collected at method’s end



29/60Andries van Dam © 2023 11/07/23

public Type removeFirst() {
    if (this.size == 0) { // 1 op
        System.out.println(“List is empty”); // 1 op
        return null; // 1 op
    }

    Type removed = this.head.getElement(); // 1 op
    this.head = this.head.getNext(); // 1 op
    this.size--; // 1 op
    if (this.size == 0) { // 1 op
        this.tail = null; // 1 op
    }
    return removed; // 1 op
}

→ removeFirst() is O(1) 

removeFirst Runtime 



30/60Andries van Dam © 2023 11/07/23

Review: Accessing 
Nodes Via Pointers

this.head.getNext();

• This does not get next field of head, which 
doesn’t have such a field, being just a 
pointer

• Instead, read this as “get next field of the 
node head points to”

• What does this.tail.getNext() 
produce? 

• What does this.tail.getElement() 
produce? 

• note we can access a variable by its unique 
name, index, contents, or here, via a pointer

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

last node

…

Node<Type>

Node<Type> next
Type element

null

head 

tail



31/60Andries van Dam © 2023 11/07/23

TopHat Question
Given a Linked List of Nodes,

A -> B -> C -> D 

where head points to node A, what is this.head.getNext().getNext()? 

A. Nothing, throws a NullPointerException
B.  B
C.  C
D.  D



32/60Andries van Dam © 2023 11/07/23

• As with removeFirst, remove 
Node by removing any references 
to it. Need to know predecessor, 
but no pointer to it!

• “Pointer-chase” in a loop until 
predecessor’s next is tail and 
reset predecessor’s next 
instance variable to null
o very inefficient–stay tuned

• Update tail
• Last Node is thereby garbage- 

collected!

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

last node

null

…

garbage-
collected

Node<Type>

Node<Type> next
Type element

null

head 

tail

removeLast Method



33/60Andries van Dam © 2023 11/07/23

removeLast Method public Type removeLast() {
    Type removed = null;
    if (this.size == 0) {
        System.out.println(“List is empty”);
    } else if (this.size == 1) {
        removed = this.head.getElement();
        this.head = null;  
        this.tail = null;
        this.size = 0;
    } else { //classic pointer-chasing loop
        Node curr = this.head;                    
        Node prev = null;
        while (curr.getNext() != null) {
            //bop the pointers
            prev = curr;
            curr = curr.getNext();
        } 
        removed = curr.getElement();
        prev.setNext(null); //unlink last
        this.tail = prev; //update tail
        this.size--;
    }
    return removed;
}

• Edge case(s)
o can’t delete from empty list 
o if there’s only one Node, update 

head and tail references to null

• General case
o iterate (“pointer-chase”) through 

list – common pattern using 
pointers to current and previous 
node in lockstep

o after loop ends, prev will point to 
Node just before last Node and 
curr will point to last Node 



34/60Andries van Dam © 2023 11/07/23

public Type removeLast() {
    Type removed = null;
    if (this.size == 0) {
        System.out.println(“List is empty”);
    } else if (this.size == 1) {
        removed = this.head.getElement();
        this.head = null;  
        this.tail = null;
        this.size--;
    } else { //classic pointer-chasing loop
        Node curr = this.head;                    
        Node prev = null;
        while (curr.getNext() != null) {
            //bop the pointers
            prev = curr;
            curr = curr.getNext();
        } 
        removed = curr.getElement();
        prev.setNext(null); //unlink last
        this.tail = prev; //update tail
        this.size--;
    }
    return removed;
}

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type>  next
Type element

last node

…
Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

prev

curr

null

null

prev

curr
prev

curr
prev
currprev

curr

null

…

head 

tail 

garbage-
collected

removeLast Method



35/60Andries van Dam © 2023 11/07/23

removeLast Runtime

→ 
removeLast()
 is O(n) 

public Type removeLast() {
    Type removed = null; // 1 op
    if(this.size == 0) { // 1 op
        System.out.println(“List is empty”); // 1 op
    }
    else if(this.size == 1) { // 1 op
        removed = this.head.getElement(); // 1 op
        this.head = null;  // 1 op
        this.tail = null; // 1 op
        this.size--; // 1 op
    }
    else{
        Node curr = this.head;              // 1 op      
        Node prev = null; // 1 op
        while (curr.getNext() != null) { // n ops
            prev = curr; // 1 op
            curr = curr.getNext(); // 1 op
        }
        removed = curr.getElement(); // 1 op
        prev.setNext(null); // 1 op
        this.tail = prev; // 1 op
        this.size--; // 1 op
    }
    return removed; // 1 op

}
     



36/60Andries van Dam © 2023 11/07/23

TopHat Question
Given that animals is a Singly Linked List of n animals, what is node pointing to? 

curr = this.head;
prev = null;
while (curr.getNext().getNext() != null) {
    prev = curr;
    curr = curr.getNext();
} 
node = curr.getNext();

A. Nothing useful, throws a NullPointerException
B. Points to the last node on the list
C. Points to the second node on the list 
D. Points to the head of the list



37/60Andries van Dam © 2023 11/07/23

search Method for MyLinkedList
public Node<Type> search(Type el) {
    Node<Type> curr = this.head;

    while (curr != null) {
        if (curr.getElement().equals(el)) {
            return curr;
        }
        curr = curr.getNext(); //bop pointer
    }

    return null; //got to end of list w/o finding
}

• Loops through list until 
element is found or end 
is reached (curr==null)

• If a Node’s element is  
same as the argument, 
return curr 

• If no elements match, 
return null



38/60Andries van Dam © 2023 11/07/23

search Runtime 
public Node<Type> search(Type el) {
    Node<Type> curr = this.head; // 1 op

    while (curr != null) {  // n ops
        if (curr.getElement().equals(el)) {   // 1 op
            return curr; // 1 op
        }
        curr = curr.getNext(); // 1 op
    }

    return null; // 1 op
}

→ search(Type el) is O(n) 



39/60Andries van Dam © 2023 11/07/23

remove Method
• We have implemented methods to remove first and last 
elements of MyLinkedList

• What if we want to remove any element from 
MyLinkedList?

• Let’s write a general remove method
o think of it in 2 phases:

- a search loop to find correct element (or end of list)
- breaking the chain to jump over the element to be removed



40/60Andries van Dam © 2023 11/07/23

• Loop through Nodes until an 
element matches itemToRemove

• “Jump over” Node by re-linking 
predecessor of Node (again using 
loop’s prev pointer) to successor 
of Node (via its next reference)

• With no more reference to Node, it 
is garbage collected at termination 
of method

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>
Node<Type> next
Type element

garbage-
collected

to remove

…

…

prev

curr

prev

curr

curr = null

remove Method



41/60Andries van Dam © 2023 11/07/23

• Edge Case(s)
o again: can’t delete from empty list 
o if removing first item or last item, 

delegate to 
removeFirst/removeLast

 
• General Case

o iterate over list until itemToRemove is 
found in ptr-chasing loop

o again: need prev, so we can re-link 
predecessor of curr. Node is GC’d 
upon return. 

public Type remove(Type itemToRemove){
    if (this.isEmpty()) {
        System.out.println(“List is empty”);
        return null;
    }
    if (itemToRemove.equals(this.head.getElement())) {
        return this.removeFirst();
    }
    if (itemToRemove.equals(this.tail.getElement())) {
        return this.removeLast(); 
    }
    //advance to 2nd item
    Node<Type> curr = this.head.getNext();
    Node<Type> prev = this.head;
    while (curr != null) {//pointer-chasing loop to find el.
        if (curr.getElement().equals(itemToRemove)) {
            prev.setNext(curr.getNext()); //jump over node
            this.size--; //decrement size
            return curr.getElement();
        }  
        prev = curr; //if not found, bop pointers
        curr = curr.getNext();
    }
    return null; //return null if itemToRemove is not found
}

Note: caller of remove can find out if item was 
successfully found (and removed) by testing for 
!= null

remove Method



42/60Andries van Dam © 2023 11/07/23

remove Runtime
public Type remove(Type itemToRemove){
    if (this.isEmpty()) { // 1 op
        System.out.println(“List is empty”); // 1 op
        return null;
    }
    if (itemToRemove.equals(this.head.getElement())) { // 1 op
        return this.removeFirst(); // O(1)
    }
    if (itemToRemove.equals(this.tail.getElement())) { // 1 op
        return this.removeLast(); // O(n) pointer chase till list end
    }
    Node<Type> curr = this.head.getNext(); // 1 op
    Node<Type> prev = this.head; // 1 op
    while (curr != null) { // n ops
        if (itemToRemove.equals(curr.getElement())) { // 1 op
            prev.setNext(curr.getNext()); // 1 op
            this.size--; // 1 op

 return curr.getElement(); // 1 op
        }  
        prev = curr; // 1 op
        curr = curr.getNext(); // 1 op  
    }
    return null; // 1 op
}

→ remove(Type 
itemToRemove) is O(n) 



43/60Andries van Dam © 2023 11/07/23

TopHat Question
Given that animals is a Singly Linked List of n animals, curr points to the 
node with an animal to be removed from the list, that prev points to curr’s 
predecessor, and that curr is not the tail of the list, what will this code 
fragment do? 

prev.setNext(curr.getNext());
curr = prev.getNext();
System.out.println(curr.getElement());

A. List is unchanged, prints out removed animal
B. List is unchanged, prints out the animal after the one that got removed
C. List loses an animal, prints out removed animal
D. List loses an animal, prints out the animal after the one that was removed



44/60Andries van Dam © 2023 11/07/23

Doubly Linked List (1/3)
• Is there an easier/faster way to get to previous node 

while removing a node?
o with Doubly Linked Lists, nodes have references both to next 

and previous nodes

o can traverse list both backwards and forwards – Linked List still 
stores reference to front of list with head and back of list with 
tail

o modify Node class to have two pointers: next and prev
o eliminates pointer-chasing loop because prev points to 

predecessor of every Node, at cost of second pointer
o classic space-time tradeoff! 



45/60Andries van Dam © 2023 11/07/23

Doubly Linked List (2/3)

• For Singly Linked List, processing typically goes from first to last 
node, e.g. search, finding place to insert or delete

• Sometimes, particularly for sorted list, need to go in the opposite 
direction 
o e.g., sort CS15 students on their final grades in ascending order. Find 

lowest numeric grade that will be recorded as an “A”.  Then ask: who 
has a lower grade but is closer to the “A” cut-off, i.e., in the grey area, 
and therefore should be considered for “benefit of the doubt”?

88.3 91.1 93.5 98.787.1 ……



46/60Andries van Dam © 2023 11/07/23

Doubly Linked List (3/3)
• This kind of backing-up can’t easily be done with the 

Singly Linked List implementation we have so far
o could build our own specialized search method, which would scan from 

the head and be, at a minimum, O(n)

• It is simpler for Doubly Linked Lists:
o find student with lowest “A” using search

o use prev pointer, which points to the predecessor of a node (O(1)), and 
back up until hit end of B+/A- grey area



47/60Andries van Dam © 2023 11/07/23

Announcements
• Tetris is out!
o early handin: Saturday 11/11
o on-time handin: Monday 11/13
o late handin: Wednesday 11/15
o Tetris Code-Along 11/08 7:00pm Friedman Hall
- Recording on Website

• HTA hours in Friedman 101 Friday 3pm-4pm
o come and chat about course registration, the upcoming final project 

or any other concerns you may have ☺ 



Cybersecurity and the 
Future of Warfare

CS15 Fall 2023



Cybersecurity: A Brief History

Andy with IBM Graphics Display Unit, 1968
Source: History of Computer Security



What is Cybersecurity?

Critical infrastructure Network Cloud Things of Internet Application

Image Sources: Flat Icon

“Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or 
criminal use and the practice of ensuring confidentiality, integrity, and availability of 
information.” 
— United States Cybersecurity & Infrastructure Security Agency

Cybersecurity is increasingly being used to protect from cyberwarfare.



Source: CloudSEK

Chat GPT’s Popularity 
Leveraged to Spread Malware

https://google.drive.com/u/0/uc...
Link to malware

Threat actors using Adam Erhat, a 
well-known YouTuber market strategist 

to earn trust and facilitate this 
campaign



Source: Federal Trade Commission

How Hackers Use Data: Ransomware
“Ransomware is a type of malware that locks a victim’s data or device and threatens to keep 
it locked—or worse—unless the victim pays a ransom to the attacker.”
— IBM

Scam emails Server 
vulnerabilities

Infected 
websites Online Ads



Case Study: Colonial Pipelines Ransomware Attack

Source: BBC, CISA, Reuters

Example ransom message from DarkSide, the 
group that hacked Colonial Pipelines 



Source: BleepingComputer, GoLocal Prov, Brown University

~500,000 email addresses were compromised in the 
2021 cyberattack – this is the message leaked emails 
would receive



Source: White House, Microsoft, CNET

Case Study: SolarWinds Cyber Attack
“As of today, 9 federal agencies and about 100 private sector companies were 
compromised.” –Anne Neuberger, Deputy National Security Advisor



Cybersecurity + International Affairs

Source: NSA

As cyberattacks become more common…

…cybersecurity groups work together 
globally!

Groups that helped neutralize the Russian 
malware “Snake,” a cyber-espionage malware 

found in over 50 countries 



Future of cybersecurity

Automated 
weapons

Absolute 
control

Prototype for AI-controlled drone
Source: NYTimes, The White House



Courses at Brown:

CSCI 1040: The Basics of 
Cryptographic Systems

CSCI 1360: Humans Factors in 
Cybersecurity

CSCI 1660: Introduction to 
Computer Security

CSCI 1800: Cybersecurity and 
International Relations

CSCI 1870: Cybersecurity Ethics

CSCI 2660: Computer Security

Cybersecurity at Brown


