
0/60Andries van Dam © 2023 11/07/23

Finishing Lecture 18 – MyLinkedList

1/60Andries van Dam © 2023 11/07/23

Review: Accessing Data Items
• Variables: named by identifiers
o local variables
o parameters
o instance variables

• Indexed items: named by index
o in Arrays
o in ArrayLists

• Referenced items: “named” by pointer
o next and element in nodes

2/60Andries van Dam © 2023 11/07/23

Review: Accessing
Nodes Via Pointers

this.head.getNext();

• This does not get next field of head, which
doesn’t have such a field, being just a
pointer

• Instead, read this as “get next field of the
node head points to”

• What does this.tail.getNext()
produce?

• What does this.tail.getElement()
produce?

• note we can access a variable by its unique
name, index, contents, or here, via a pointer

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

last node

…

Node<Type>

Node<Type> next
Type element

null

head

tail

3/60Andries van Dam © 2023 11/07/23

remove Method
• We have implemented methods to remove first and last
elements of MyLinkedList

• What if we want to remove any element from
MyLinkedList?

• Let’s write a general remove method
o think of it in 2 phases:

- a search loop to find correct element (or end of list)
- breaking the chain to jump over the element to be removed

4/60Andries van Dam © 2023 11/07/23

• Search loop through Nodes until an
element matches itemToRemove

• “Jump over” Node by re-linking
predecessor of Node (using loop’s
prev pointer) to successor of Node
(via its next reference)

• With no more reference to Node, it
is garbage collected at termination
of method

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>
Node<Type> next
Type element

garbage-
collected

to remove

…

…

prev

curr

prev

curr

curr = null

remove Method

5/60Andries van Dam © 2023 11/07/23

• Edge Case(s)
o again: can’t delete from empty list
o if removing first item or last item,

delegate to
removeFirst/removeLast

• General Case

o iterate over list until itemToRemove is
found in ptr-chasing loop

o again: need prev, so we can re-link
predecessor of curr. Node is GC’d
upon return.

public Node<Type> remove(Type itemToRemove){
 if (this.isEmpty()) {
 System.out.println(“List is empty”);
 return null;
 }
 if (itemToRemove.equals(this.head.getElement())) {
 return this.removeFirst();
 }
 if (itemToRemove.equals(this.tail.getElement())) {
 return this.removeLast();
 }
 //advance to 2nd item
 Node<Type> curr = this.head.getNext();
 Node<Type> prev = this.head;
 while (curr != null) {//pointer-chasing loop to find el.
 if (curr.getElement().equals(itemToRemove)) {
 prev.setNext(curr.getNext()); //jump over node
 this.size--; //decrement size
 return curr;
 }
 prev = curr; //if not found, bop pointers
 curr = curr.getNext();
 }
 return null; //return null if itemToRemove is not found
}

Note: caller of remove can find out if item was
successfully found (and removed) by testing for
!= null

remove Method

6/60Andries van Dam © 2023 11/07/23

remove Runtime
public Node<Type> remove(Type itemToRemove){
 if (this.isEmpty()) { // 1 op
 System.out.println(“List is empty”); // 1 op
 return null;
 }
 if (itemToRemove.equals(this.head.getElement())) { // 1 op
 return this.removeFirst(); // O(1)
 }
 if (itemToRemove.equals(this.tail.getElement())) { // 1 op
 return this.removeLast(); // O(n) pointer chase till list end
 }
 Node<Type> curr = this.head.getNext(); // 1 op
 Node<Type> prev = this.head; // 1 op
 while (curr != null) { // n ops
 if (itemToRemove.equals(curr.getElement())) { // 1 op
 prev.setNext(curr.getNext()); // 1 op
 this.size--; // 1 op

 return curr; // 1 op
 }
 prev = curr; // 1 op
 curr = curr.getNext(); // 1 op
 }
 return null; // 1 op
}

→ remove(Type
itemToRemove) is O(n)

7/60Andries van Dam © 2023 11/07/23

TopHat Question
Given that animals is a Singly Linked List of n animals, curr points to the
node with an animal to be removed from the list, that prev points to curr’s
predecessor, and that curr is not the tail of the list, what will this code
fragment do?

prev.setNext(curr.getNext());
curr = prev.getNext();
System.out.println(curr.getElement());

A. List is unchanged, prints out removed animal
B. List is unchanged, prints out the animal after the one that got removed
C. List loses an animal, prints out removed animal
D. List loses an animal, prints out the animal after the one that was removed

8/60Andries van Dam © 2023 11/07/23

Doubly Linked List (1/3)
• Is there an easier/faster way to get to previous node

while removing a node?
o with Doubly Linked Lists, nodes have references both to next

and previous nodes

o can traverse list both backwards and forwards – Linked List still
stores reference to front of list with head and back of list with
tail

o modify Node class to have two pointers: next and prev
o eliminates pointer-chasing loop because prev points to

predecessor of every Node, at cost of second pointer
o classic space-time tradeoff!

9/60Andries van Dam © 2023 11/07/23

Doubly Linked List (2/3)

• For Singly Linked List, processing typically goes from first to last
node, e.g. search, finding place to insert or delete

• Sometimes, particularly for sorted list, need to go in the opposite
direction
o e.g., sort CS15 students on their final grades in ascending order. Find

lowest numeric grade that will be recorded as an “A”. Then ask: who
has a lower grade but is closer to the “A” cut-off, i.e., in the grey area,
and therefore should be considered for “benefit of the doubt”?

88.3 91.1 93.5 98.787.1 ……

10/60Andries van Dam © 2023 11/07/23

Doubly Linked List (3/3)
• This kind of backing-up can’t easily be done with the

Singly Linked List implementation we have so far
o could build our own specialized search method, which would scan from

the head and be, at a minimum, O(n)

• It is simpler for Doubly Linked Lists:
o find student with lowest “A” using search

o use prev pointer, which points to the predecessor of a node (O(1)), and
back up until hit end of B+/A- grey area

11/115Andries van Dam © 2023 11/15/22

Lecture 19
Stacks, Queues, and Trees

12/115Andries van Dam © 2023 11/15/22

Stacks and Queues

Abstractions that are Wrappers for MyLinkedList

13/115Andries van Dam © 2023 11/15/22

Outline

• Stacks and Queues
• Trees

14/115Andries van Dam © 2023 11/15/22

Stacks
● Stack has special methods for insertion

and deletion, and two others for size
o push and pop
o isEmpty, size

● Instead of being able to insert and delete
nodes from anywhere in the list, can only
add and delete nodes from top of Stack
o LIFO (Last In, First Out)

● We’ll implement a stack with a linked list

15/115Andries van Dam © 2023 11/15/22

Methods of a Stack
● Add element to top of stack

● Remove element from top of stack

● Returns whether stack has any elements

● Returns number of elements in stack

public void push(Type el)

public Type pop()

public boolean isEmpty()

public int size()

16/115Andries van Dam © 2023 11/15/22

1 2

1 1 1

1

3

2 2

2

4

1
2

1

3

2
4

1

push(1) push(2) push(3) pop()

push(4) pop() pop() pop()

17/115Andries van Dam © 2023 11/15/22

Stack Constructor ● When generic Stack is
instantiated, it contains an empty
MyLinkedList

● When using a stack, you will
replace Type with type of object
your Stack will hold – enforces
homogeneity

● Note: Stack uses classic “wrapper”
pattern to modify functionality of
the data structure, MyLinkedList,
and to add other methods

public class Stack<Type> {

 private MyLinkedList<Type> list;

 public Stack() {

 this.list = new MyLinkedList<Type>();

 }

 /* other methods elided */

}

18/115Andries van Dam © 2023 11/15/22

321
Implementing Push

● Let’s see behavior...
● When element is pushed, it is always added to front of list
● Thus, Stack delegates to the MyLinkedList, this.list

to implement push

//in the Stack<Type> class ...

public Node<Type> push(Type newData) {

 return this.list.addFirst(newData);

}

19/115Andries van Dam © 2023 11/15/22

Implementing Pop
//in the Stack<Type> class ...

public Type pop() {

 return this.list.removeFirst();

}

● Let’s see what this does...

● When popping element, it is always
removed from top of Stack, so call
removeFirst on MyLinkedList –
again, delegation

● removeFirst returns element
removed, and Stack in turn returns it

● Remember that removeFirst
method of MyLinkedList first checks
to see if list is empty

1

3
2

20/115Andries van Dam © 2023 11/15/22

isEmpty

● Stack will be empty if the
MyLinkedList, list, is
empty - delegation

● Returns true if Stack is
empty; false otherwise

//in the Stack<Type> class ...

public boolean isEmpty() {

 return this.list.isEmpty();

}

21/115Andries van Dam © 2023 11/15/22

size

● Size of Stack will be number of
elements that the MyLinkedList,
list contains – delegation

● Size is updated whenever Node is
added to or deleted from list
during push and pop methods

//in the Stack<Type> class ...

public int size() {

 return this.list.size();

}

22/115Andries van Dam © 2023 11/15/22

TopHat Question
Look over the following code:

 Who’s left in the stack?

Stack<HeadTA> myStack = new Stack<>(); A. htaSarah
myStack.push(htaSarah); B. htaAllie
myStack.push(htaAllie); C. htaCannon
myStack.pop(); D. none of them!
myStack.push(htaCannon);
myStack.pop();

23/115Andries van Dam © 2023 11/15/22

Example: Execution Stacks
● Each method has an Activation Record (AR) – recall recursion lecture
o contains execution pointer to next instruction in method
o contains all local variables and parameters used by method

● When methods execute and call other methods, Java uses a Stack to
keep track of the order of execution: “stack trace”

o when a method calls another method, Java adds activation record of called
method to Stack

o when new method is finished, its AR is removed from Stack, and previous
method is continued

o method could be different or a recursively called clone, when execution pointer
points into same immutable code, but different values for variables/parameters

24/115Andries van Dam © 2023 11/15/22

Execution Stacks

AR of Method
E

AR of Method
D

AR of Method
C

AR of Method
B

AR of Method
A Top of Stack

A

E

B

D

C

A calls B
B calls C
… etc.

When E finishes, its AR is popped. Then D’s AR is popped, etc. Note this
handles the tracking of invocations (clones) in recursion automatically

25/115Andries van Dam © 2023 11/15/22

Stack Trace
● When an exception is thrown in a program, get a long

list of methods and line numbers known as a stack trace

 Exception in thread “main” java.lang.NullPointerException

 at DoodleJump.scroll(DoodleJump.java:94)
 at DoodleJump.updateGame(DoodleJump.java:44)
 ...

● A stack trace prints out all methods currently on
execution stack

● If exception is thrown during execution of recursive
method, prints all calls to recursive method

26/115Andries van Dam © 2023 11/15/22

Bootstrapping Data Structures
● This implementation of the stack data structure uses a

wrapper of a contained MyLinkedList, but user has no
knowledge of that

● Could also implement it with an Array or ArrayList
o Array implementation could be more difficult--Array’s have fixed size, so

would have to copy our Array into a larger one as we push more objects onto
the Stack

o User’s code should not be affected even if the implementation of Stack changes
(true for methods as well, if their semantics isn’t changed) – loose coupling!

● We’ll use the same technique to implement a Queue

27/115Andries van Dam © 2023 11/15/22

What are Queues?
● Similar to stacks, but elements are

removed in different order
o information retrieved in the same

order it was stored
o FIFO: First In, First Out (as

opposed to stacks, which are
LIFO: Last In, First Out)

● Examples:
o standing in line for merch at the

Eras Tour
o waitlist for TA hours after

randomization
Server at Seattle restaurant reminding
herself what order customers get served in

28/115Andries van Dam © 2023 11/15/22

Methods of a Queue

• Add element to end of queue

• Remove element from beginning of queue

• Returns whether queue has any elements

• Returns number of elements in queue

public void enqueue(Type el)

public Type dequeue()

public boolean isEmpty()

public int size()

29/115Andries van Dam © 2023 11/15/22

Enqueuing and Dequeuing

Before Enqueuing
1 2 3

head of
queue

tail of
queue

4

student to
add

After Enqueuing
 1 2 3 4

head of
queue

tail of
queue

● Enqueuing: adds a node
● Dequeuing: removes a node

30/115Andries van Dam © 2023 11/15/22

Enqueuing and Dequeuing

 1

dequeued
student

Before Dequeuing

head of
queue

 1 2 3 4

tail of
queue

2 3 4

After Dequeuing

head of
queue

tail of
queue

● Enqueuing: adds a node to the back
● Dequeuing: removes a node from the front

31/115Andries van Dam © 2023 11/15/22

Our Queue

● Contain a MyLinkedList within Queue class
o enqueue will add to the end of MyLinkedList
o dequeue will remove the first element in MyLinkedList

public class Queue<Type> {

private MyLinkedList<Type> list;

public Queue() {
this.list = new MyLinkedList<Type>();

}
// Other methods elided

}

● Again use a wrapper for a contained MyLinkedList. As with Stack,
we’ll hide most of MLL’s functionality and provide special methods that
delegate the actual work to the MLL

32/115Andries van Dam © 2023 11/15/22

enqueue

● Just call list’s addLast method – delegation

public void enqueue(Type newNode) {

 this.list.addLast(newNode);

}

• This will add newNode to end of list

33/115Andries van Dam © 2023 11/15/22

dequeue

● We want first node in list
● Use list’s removeFirst method – delegation

● What if list is empty? There will be nothing to dequeue!
● Our MyLinkedList class’s removeFirst() method returns

null in this case, so dequeue does as well

public Type dequeue() {

return this.list.removeFirst();

}

34/115Andries van Dam © 2023 11/15/22

isEmpty() and size()
● As with Stacks, very

simple methods; just
delegate to our wrapped
MyLinkedList

public int size() {

return this.list.size();

}

public boolean isEmpty() {

return this.list.isEmpty();

}

35/115Andries van Dam © 2023 11/15/22

TopHat Question
In order from head to tail, a queue contains the following: katniss,
gale, finnick, beetee. We remove each person from the queue by
calling dequeue() and then immediately push() each dequeued
person onto a stack.

At the end of the process, what is the order of the stack from top to
bottom?

A. katniss, gale, finnick, beetee
B. katniss, beetee, gale, finnick
C. beetee, finnick, gale, katniss
D. It's random every time.

36/115Andries van Dam © 2023 11/15/22

Outline

• Stacks and Queues
• Trees

37/115Andries van Dam © 2023 11/15/22

Trees

38/115Andries van Dam © 2023 11/15/22

Searching in a Linked List (1/2)
● Searching for element in LinkedList involves pointer chasing and

checking consecutive Nodes to find it (or not)
○ it is sequential access
○ O(N) – can stop sooner for element not found if list is sorted

● Getting Nth element in an Array or ArrayList by index is random
access (which means O(1)), but (content-based) searching for
particular element, even with index, remains sequential O(N)

● Even though LinkedLists support indexing (dictated by Java’s
List interface), getting the ith element is also done (under the
hood) by pointer chasing and hence is O(N)

39/115Andries van Dam © 2023 11/15/22

Searching in a Linked List (2/2)
● For N elements, search time is O(N)

o unsorted: sequentially check every node in list until element (“search
key”) being searched for is found, or end of list is reached
▪ if in list, for a uniform distribution of keys, average search time for a

random element is N/2
▪ if not in list, it is N

o sorted: average* search time is N/2 if found, N/2 if not found (the win!)
o we ignore issue of duplicates

● No efficient way to access Nth node in list (via index)

● Insert and remove similarly have average search time of N/2 to
find the right place

*Actually more complicated than this – depends on distribution of keys

40/115Andries van Dam © 2023 11/15/22

Searching, Inserting, Removing
Search if
unsorted

Search if sorted Insert/remove after
search

Linked list O(N) O(N) O(1)

Array O(N) O(log N) [coming
next]

O(N)

41/115Andries van Dam © 2023 11/15/22

Binary Search (1/4)
● Searching sorted linked list is sequential access

● We can do better with a sorted array that allows random access at any
index to improve sequential search

● Remember merge sort with search O(log2N) where we did “bisection” on
the array at each pass

● If we had a sorted array, we could do the same thing
○ start in the middle
○ keep bisecting array, deciding which portion of the sub-array the search key

lies in, until we find that key or can’t subdivide further (not in array)
○ For N elements, search time is O(log2N) (since we reduce number of

elements to search by half each time), very efficient!

42/115Andries van Dam © 2023 11/15/22

Binary Search (2/4)

● log2N grows much more slowly than N, especially for large N
N (int) log(N)

1
10

100
1,000

10,000
1,000,000

10,000,000
100,000,000

1,000,000,000

0
3
7

10
13
17
20
23
27*relatively small n in this graph, but imagine how

large the difference is as n increases

43/115Andries van Dam © 2023 11/15/22

Binary Search (3/4)

● A sorted array can be searched quickly using bisection because arrays
are indexed

● ArrayLists (implemented in Java using arrays) are indexed too, so a
sorted ArrayList shares this advantage! But inserting and removing from
ArrayLists is slow (except for insertion and removal at either end)!
o Inserting into or deleting from an arbitrary index in ArrayList causes all successor

elements shift over. Thus insertion and deletion have same worst-case run time O(N)

● Advantage of linkedLists is insert/remove by manipulating pointer chain is
faster [O(1)] than shifting elements [O(N)], but search can’t be done with
bisection 😞, a real downside if search is done frequently

44/115Andries van Dam © 2023 11/15/22

Binary Search (4/4)
● Is there a data structure that provides both search speed of sorted

arrays and ArrayLists and insertion/deletion efficiency of linked lists?
● Yes, indeed! Trees! They provide much faster searching than linked lists

and much faster insertions than arrays!

45/115Andries van Dam © 2023 11/15/22

Trees vs Linked Lists (1/2)
● Singly linked list – collection of nodes where each node references

only one neighbor, the node’s successor:

46/115Andries van Dam © 2023 11/15/22

Trees vs Linked Lists (2/2)

● Tree – also collection of
nodes, but each node may
reference multiple
successors/children

● Trees can be used to
model a hierarchical
organization of data

root

47/115Andries van Dam © 2023 11/15/22

Technical Definition of a Tree
● Finite set, T, of one or more nodes

such that:
o T has one designated root node
o remaining nodes partitioned into

disjoint sets: T1, T2, … Tn

o each Ti is also a self-contained
tree, called subtree of T

● Look at the image on the right-
where have we seen seen such
hierarchies like this before?

root

T1
T2

T3

48/115Andries van Dam © 2023 11/15/22

Graphical Containment Hierarchies as Trees
● Levels of containment of GUI components

● Higher levels contain more components
● Lower levels contained by all above them

o Panes contained by root pane, which is
contained by Scene

Scene

BorderPane

 root

Pane
gamePane

Rectangle
doodle

Rectangle
platform

VBox

controlPane

Button
b1

Label
l1

49/115Andries van Dam © 2023 11/15/22

Tree Structure
● Note that the tree structure

has meaning
o any subtree of T, Ti, is also

a tree with specific values

● Can be useful to only examine
specific subtrees of T

root

T1
T2

T3

50/115Andries van Dam © 2023 11/15/22

Tree Terminology
● A is the root node
● B is the parent of D and E
● D and E are children of B
● (C F) is an edge
● D, E, F, G, and I are external nodes or leaves
o (i.e., nodes with no children)

● A, B, C, and H are internal nodes
● depth (level) of E is 2 (number of edges to root)
● height of the tree is 3 (max number of edges in path from root)
● degree of node B is 2 (number of children)

A

B

H

C

D G

I

E F

51/115Andries van Dam © 2023 11/15/22

Binary Trees
● Each internal node has a maximum of 2

successors, called children
o i.e., each internal node has degree 2 at most

● Recursive definition of binary tree: A binary
tree is either an:
o external node (leaf), or
o internal node (root) with one or two binary trees

as children (left subtree, right subtree)
o empty tree (represented by a null pointer)

o Note: These nodes are similar to the linked list
nodes, with one data and two child pointers –
we show the data element inside the circle

A

B C

ED F

G

52/115Andries van Dam © 2023 11/15/22

Properties of Binary Trees (1/2)
● A binary tree is full when each node has exactly zero or two children
● Binary tree is perfect when, for every level i, there are 2i nodes (i.e.,

each level contains a complete set of nodes)
o thus, adding anything to the tree would increase its height

Level

0

1

2

3

53/115Andries van Dam © 2023 11/15/22

Properties of Binary Trees (2/2)

● In a full Binary Tree: (# leaf nodes) = (# internal nodes) + 1

● In a perfect Binary Tree: (# nodes at level i) = 2i

● In a perfect Binary Tree: (# leaf nodes) <= 2(height)

● In a perfect Binary Tree: (height) >= log2(# nodes) - 1

54/115Andries van Dam © 2023 11/15/22

Binary Search Tree a.k.a BST (1/2)
● Binary search tree stores keys in its nodes such that, for every

node, keys in left subtree are smaller, and keys in right subtree are
larger

M

H P

O Y

S

B J

A I L

Note: the keys here are
sorted alphabetically!

55/115Andries van Dam © 2023 11/15/22

BST (2/2)
● Below is also BST but much less balanced. Gee, it looks like a linked list!
● The shape of the trees is determined by the order in which elements are

inserted
H

More Balanced

B M

A T

V

M

Unbalanced

H

B

A

T

V

56/115Andries van Dam © 2023 11/15/22

BST Class (1/4)
● What do BSTs know how to do?

o much the same as sorted linked lists: insert, remove, size, empty
o BSTs also have their own search method – a bit more

complicated than simply iterating through its nodes

● What would an implementation of a BST class look like…
o in addition to data, left, and right child pointers, we’ll add a parent

“back” pointer for ease of implementation (for the remove method
– analogous to the previous pointer in doubly-linked lists!)

o you’ll learn more about implementing data structures in CS200!

57/115Andries van Dam © 2023 11/15/22

 Nodes, data, and keys

● data is a composite that can contain many properties,
● one of which is a key that Nodes are sorted by (here,

ISBN #)

Node<Book>

data
parent
right
left

Book

isbn = 9783245206
pubDate = …
title = …
author = …

BinarySearchTree

root

null

Node<Book>

...

Node<Book>

...

58/115Andries van Dam © 2023 11/15/22

Comparable Book Class

• compareBooks is defined so we can
easily compare the value of 2 books
o returns number that is <0, 0 or >0,

depending on the ISBN numbers
o <0 if stored this.isbn < toCompare

public class Book {
 // variable declarations, e.g., isbn, elided
 public Book(String author, String title,
 int isbn){
 //variable initializations elided
 }

 public int getISBN(){
 return this.isbn;
 }

 //other methods elided

 //compare isbn of book passed in to stored one
 public int compareBooks(Book compareBook){
 return (this.isbn - compareBook.getISBN());
 }
}

59/115Andries van Dam © 2023 11/15/22

BST Class (2/4)
public class BinarySearchTree<Book> {

 private Node<Book> root;

 public BinarySearchTree(Book data) {
 //Root of the tree
 this.root = new Node(data, null);
 }

 // other methods shown next slide

}

In our example, we
use Book as Type

• Our BinarySearchTree stores
objects of type Book, meaning
we will be able to use all
methods Book has within our
BST

We’ll go over what Node
is in a few slides ☺

If you’d like to see an example of a
BST using a generic type that works
for more than just books, check out
slide 87 ;)

60/115Andries van Dam © 2023 11/15/22

BST Class (3/4)
public class BinarySearchTree<Book> {

 private Node<Book> root;

 public BinarySearchTree(Book data) {
 //Root of the tree
 this.root = new Node(data, null);
 }

 public void insert(Book newData) {
 // . . .
 }

 //class continued
 public void remove(Book dataToRemove) {
 // . . .
 }

 public Node<Book> search(Book dataToFind) {
 // . . .
 }

 public int size() {
 // . . .
 }

} // end of class

61/115Andries van Dam © 2023 11/15/22

BST Class (4/4)
● Our implementations of LinkedLists, Stacks, and Queues are “smart”

data structures that chain “dumb” nodes together
o the lists did all the work by maintaining previous and current

pointers and did the operations to search for, insert, and remove
information – thus, nodes were essentially data containers

● Now we will use a “dumb” tree with “smart” nodes that will delegate
using recursion
o tree will delegate action (such as searching, inserting, etc.) to its

root, which will then delegate to its appropriate child, and so on
o creates specialized Node class that stores its data, parent, and

children, and can perform operations such as insert and remove

62/115Andries van Dam © 2023 11/15/22

BST: Node Class (1/3)
● “Smart” Node includes the following methods:
// pass in entire data item, containing key and returns that item

public Node<Book> search(Book dataToFind);

// pass in entire data item, containing key and inserts into the tree

public Node<Book> insert(Book newData);

/* deletes Node pointing to dataToRemove, which contains key; removing Node
also will remove the matched data instance (here, a Book) unless there’s
another reference to it */

public Node<Type> remove(Book dataToRemove);

● Plus setters and getters of instance variables, defined in the next
slides …

63/115Andries van Dam © 2023 11/15/22

BST: Node Class (2/3)
● Nodes have a maximum of two non-null children that hold

data
o four instance variables: data, parent, left, and right, with each having a

get and set method.
o data represents the data that Node stores. It also contains the key attribute

that Nodes are sorted by – we’ll make a Tree that stores Books
o parent represents the direct parent (another Node) of Node–only used in

remove method
o left represents Node’s left child and contains a subtree, all of whose data is

less than Node’s data
o right represents Node’s right child and contains a subtree, all of whose

data is greater than Node’s data
o arbitrarily select which child should contain data equal to Node’s data

64/115Andries van Dam © 2023 11/15/22

BST: Node Class (3/3)
public class Node<Book> {

 private Book data;

 private Book parent;

 private Node<Book> left;

 private Node<Book> right;

 public Node(Book data, Node<Book> parent){ //construct a leaf node as default

 this.data = data;

 this.parent = parent;

 //child ptrs null for leaf nodes; set for internal nodes when child is created

 this.left = null;

 this.right = null;

 }

 // will define other methods in next slides…

}

65/115Andries van Dam © 2023 11/15/22

Smart Node Approach
● BinarySearchTree is “dumb,” so it delegates to root, which in

turn will delegate recursively to its left or right child, as appropriate
// search method for entire BinarySearchTree:

public Node<Book> search(dataToFind) {

 return this.root.search(dataToFind);

}

● Smart node approach makes our code clean, simple and elegant
o non-recursive method is much messier, involving explicit bookkeeping of

which node in the tree we are currently processing
▪ we used the non-recursive method for sorted linked lists, but trees are more

complicated, and recursion is easier – a tree is composed of subtrees!

66/115Andries van Dam © 2023 11/15/22

Let’s Search a BST For a step-by-step
walkthrough of this
algorithm, see slide 100

67/115Andries van Dam © 2023 11/15/22

TopHat Question
What's the runtime of (recursive) search in a BST and why?

A. O(n) – because you only iterate once
B. O(2n) – because you go visit both the left and right subtrees
C. O(n/2) – because you incorporate the idea of “bisection” to eliminate

half the number of nodes to search at each recursion
D. O(log2n) - because you incorporate the idea of “bisection” to eliminate

half the number of nodes to search at each recursion
E. O(n2) – because recursion makes your runtime quadratic

68/115Andries van Dam © 2023 11/15/22

M

H P

O Y

S

B J

A I L

Searching a BST Recursively Is O(log2N)
● Search path: start with root M and choose path to I (for

a reasonably balanced tree, M will be more or less “in
the middle,” and left and right subtrees will be
roughly the same size)
o structurally, the height of a reasonably

balanced tree with n nodes is about log2n
o at most, we visit each level of the tree once
o so, runtime performance of searching is

O(log2N) as long as tree is reasonably
balanced, which will be true if entry order
is reasonably random

o O(log2N) is much less than N, this is thus much more efficient!

69/115Andries van Dam © 2023 11/15/22

Searching a BST Recursively
public Node<Book> search(Book dataToFind) {

 //if data is the thing we’re searching for

 if(this.data.compareBooks(dataToFind) == 0) {

 return this.data;

 //if data > dataToFind, can only be in left tree

 } else if(data.compareBooks(dataToFind) > 0) {

 if(this.left != null) {

 return this.left.search(dataToFind);

 }

 //if data < dataToFind, can only be in right tree

 } else if (this.right != null) {

 return this.right.search(dataToFind);

 }

 }

 //Only get here if dataToFind isn’t in tree, otherwise would’ve returned sooner

 return null;

}

M

H P

O Y

S

B J

A I L

70/115Andries van Dam © 2023 11/15/22

Let’s Add to a BST (1/3) For a step-by-step
walkthrough of this
algorithm, see slide 112

71/115Andries van Dam © 2023 11/15/22

Let’s Add to a BST (2/3) For a step-by-step
walkthrough of this
algorithm, see slide 112

72/115Andries van Dam © 2023 11/15/22

Let’s Add to a BST (3/3) For a step-by-step
walkthrough of this
algorithm, see slide 112

73/115Andries van Dam © 2023 11/15/22

Insertion into a BST
● Search BST starting at root until we find where the data to

insert belongs
o insert data when we reach a Node whose appropriate L or R child is null

● That Node makes a new Node, sets the new Node’s data
to the data to insert, and sets child reference to this new
Node

● Runtime is O(log2N), yay!
o O(log2N) to search the nearly balanced tree to find the place to insert

o constant time operations to make new Node and link it in

74/115Andries van Dam © 2023 11/15/22

Insertion Code in BST

//Tree’s insert delegates to root

public Node<Book> insert(Book newData) {

 //if tree is empty, make first node. No traversal necessary!

 if(this.root == null) {

 this.root = new Node(newData, null); //root’s parent is null

 return this.root;

 } else {

 //delegate to Node’s insert() method

 return this.root.insert(newData);

 }

}

● Again, we use a “Smart Node” approach and delegate

75/115Andries van Dam © 2023 11/15/22

Insertion Code in Node
public Node<Book> insert(Book newData) {

 if (this.data.compareBooks(newData) > 0) { //newData should be in left subtree

 if(this.left == null) { //left child is null – we’ve found the place to insert!

 this.left = new Node(newData, this);

 return this.left;

 } else { //keep traversing down tree

 return this.left.insert(newData);

 }

 } else { //newData should be in right subtree

 if(this.right == null) { //right child is null–we’ve found the place to insert!

 this.right = new Node(newData, this);

 return this.right;

 } else { //keep traversing down tree

 return this.right.insert(newData);

 }

 }

}

Reference to the new Node is
passed up the tree so it can be
returned by the tree

76/115Andries van Dam © 2023 11/15/22

Notes on Trees (1/2)

● Different insertion order of nodes results in different trees
o if you insert a node referencing data value of 18 into empty tree, that node will

become root

o if you then insert a node referencing data value of 12, it will become left child of root

o however, if you insert node referencing 12 into an empty tree, it will become root

o then, if you insert one referencing 18, that node will become right child of root

o even with same nodes, different insertion order makes different trees!

o on average, for reasonably random (unsorted) arrival order, trees will look similar in
depth so order doesn’t play a major role in runtime

77/115Andries van Dam © 2023 11/15/22

Notes on Trees (2/2)
● When searching for a value, reaching another value that is greater

than the one being searched for does not mean that the value
being searched for is not present in tree (whereas it does in linked
lists!)
o it may well still be contained in left subtree of node of greater

value that has just been encountered
o thus, where you might have given up in linked lists, you can’t

give up here until you reach a leaf (but depth is roughly
log2N for a nearly balanced tree, which is much smaller than
N/2!)

78/115Andries van Dam © 2023 11/15/22

Preorder Traversal of BST
● Preorder traversal

o “pre-order” because self is visited before (“pre-”) visiting children
o again, use recursion!

public void preOrder() {

 //Check for null children elided

System.out.println(curr.data);

 this.left.preOrder();

 this.right.preOrder();

}

M
H P

O Y

S

B J

A I L

M H B A J I L P O Y S

A

B

H

I

J

L

M

O

P

S

Y

Preorder traversal!

79/115Andries van Dam © 2023 11/15/22

Postorder Traversal of BST
● Postorder traversal

o “post-order” because self is visited after (“post-”) visiting children
o again, use recursion!

public void postOrder() {

 //Check for null children elided

 this.left.postOrder();

 this.right.postOrder();

 System.out.println(curr.data);

}

M
H P

O Y

S

B J

A I L

A B I L J H O S Y P M

A

B

H

I

J

L

M

O

P

S

Y

Postorder traversal!

80/115Andries van Dam © 2023 11/15/22

Inorder Traversal of BST
● Inorder traversal

o “in-order” because self is visited between (“in-”) visiting children
o again, use recursion!

public void inOrder() {

 //Check for null children elided

 this.left.inOrder();

System.out.println(curr.data);

 this.right.inOrder();

}

M
H P

O Y

S

B J

A I L

A B H I J L M O P S Y

To learn more about the exciting world of trees, take CS200 (CSCI0200): Program Design
with Data Structures and Algorithms!

A

B

H

I

J

L

M

O

P

S

Y

Inorder traversal!

81/115Andries van Dam © 2023 11/15/22

Using Prefix, Infix, Postfix Notation

• When you type an equation into a spreadsheet, you use Infix;
when you type an equation into many Hewlett-Packard
calculators, you use Postfix, also known as “Reverse Polish
Notation,” or “RPN,” after its inventor Polish Logician Jan
Lukasiewicz (1924)

• Easier to evaluate Postfix because it has no parentheses and
evaluates in a single left-to-right pass

• Use Dijkstra’s 2-stack shunting yard algorithm to convert from
user-entered Infix to easy-to-handle Postfix – compile or
interpret it on the fly (Covered in optional lecture Dec 6)

82/115Andries van Dam © 2023 11/15/22

Prefix, Infix, Postfix Notation for
Arithmetic Expressions

• Infix, Prefix, and Postfix refer to
where the operator goes relative
to its operands
o Infix: (fully parenthesized)

▪ ((1 * 2) + (3 * 4)) - ((5 - 6) + (7 / 8))
o Prefix:

▪ - + * 1 2 * 3 4 + - 5 6 / 7 8
o Postfix:

▪ 1 2 * 3 4 * + 5 6 - 7 8 / + -

• Graphical representation for
equation:

83/115Andries van Dam © 2023 11/15/22

Tree Runtime
● Binary Search Tree has a search of O(log2n) runtime, can we make it faster?
● Could make a ternary tree! (each node has at least 3 children)

o O(log3n) runtime

● Or a 10-way tree with O(log10n) runtime
● Let’s try the runtime for a search with 1,000,000 nodes

o log101,000,000 = 6

o log21,000,00 < 20, so shallower but broader tree

● Analysis: the logs are not sufficiently different and the comparison (basically an
n-way nested if-else-if) is far more time consuming, hence not worth it

● Furthermore, binary tree makes it easy to produce an ordered list

84/115Andries van Dam © 2023 11/15/22

Announcements
• Tetris deadlines
o early handin: Saturday 11/12
o on-time handin: Monday 11/14
o late handin: Wednesday 11/16

• HTA Hours Friday 3-4pm (as always!) in Friedman 101
o come talk to us about which FP to do!

85/115Andries van Dam © 2023 11/15/22

Wondering how to make a generic
BST that can store more than just

books?
(yes! there’s a way!)

86/115Andries van Dam © 2023 11/15/22

Appendix

• Generic BST
• Searching Simulation
• Insertion Demonstration

87/115Andries van Dam © 2023 11/15/22

 Nodes, data, and keys
● data is a composite that can contain many properties,
● one of which is a key that Nodes are sorted by (here,

ISBN #) – but how do we compare Nodes to sort them?

Node<Book>

data
parent
right
left

Book

isbn = 9783245206
pubDate = …
title = …
author = …

BinarySearchTree

root

null

Node<Book>

...

Node<Book>

...

88/115Andries van Dam © 2023 11/15/22

Java’s Comparable<Type> interface (1/3)
• Previously we used == to check if two things are equal

o this only works correctly for primitive data types (e.g., int), or when we are comparing
two variables referencing the exact same object

o to compare Strings, need a different way to compare things

• We can implement the Comparable<Type> generic interface provided by Java

• It specifies the compareTo method, which returns an int

• Why don’t we just use ==, even when using something like ISBN, which is an int?
o can treat ISBNs as ints and compare them directly, but more generally we implement

the Comparable<Type> interface, which could easily accommodate comparing
Strings, such as author or title, or any other property

89/115Andries van Dam © 2023 11/15/22

Java’s Comparable<Type> interface (2/3)
• The Comparable<Type> interface is specialized (think of it as

parameterized) using generics

• Call compareTo on a variable of same type as specified in implementator
of interface (Book, in our case)
o currentBook.compareTo(bookToFind);

public interface Comparable<Type> {
 int compareTo(Type toCompare);
}

90/115Andries van Dam © 2023 11/15/22

Java’s Comparable<Type> interface (3/3)
• compareTo method must return an int

o negative if element on which compareTo is called is less than
element passed in as the parameter of the search

o 0 if element is equal to element passed in
o positive if element is greater than element passed in
o sign of int returned is all-important, magnitude is not and is

implementation dependent
• compareTo not only used for numerical comparisons–it

could be used for alphabetical or geometric comparisons
as well–depends on how you implement compareTo

91/115Andries van Dam © 2023 11/15/22

“Comparable” Book Class
• Recall format for compareTo:

o elementA.compareTo(elementB)

• Book class now implements
Comparable<Book>
o this means we can compare books,
 using bookA.compareTo(bookB)

• compareTo is defined according to
these specifications
o returns number that is <0, 0 or >0,

depending on the ISBN numbers
o <0 if stored this.isbn < toCompare

public class Book implements Comparable<Book> {
 // variable declarations, e.g., isbn, elided
 public Book(String author, String title,
 int isbn){
 //variable initializations elided
 }

 public int getISBN(){
 return this.isbn;
 }

 //other methods elided

 //compare isbn of book passed in to stored one
 @Override
 public int compareTo(Book toCompare){
 return (this.isbn - toCompare.getISBN());
 }
}

92/115Andries van Dam © 2023 11/15/22

BST Class (2/4)
public class BinarySearchTree<Type extends
 Comparable<Type>> {

 private Node<Type> root;

 public BinarySearchTree(Type data) {
 //Root of the tree
 this.root = new Node(data, null);
 }

 // other methods shown next slide

}

In our example use
Book as Type

• Using keyword extends in this
way ensures that Type
implements Comparable<Type>

○ note nested <>
○ nested <> to show it modifies

Type and not the class

• All elements stored in
MyLinkedList must now have
compareTo method for Type;
thus restricts generic

93/115Andries van Dam © 2023 11/15/22

BST Class (3/4)
public class BinarySearchTree<Type extends
 Comparable<Type>> {

 private Node<Type> root;

 public BinarySearchTree(Type data) {
 //Root of the tree
 this.root = new Node(data, null);
 }

 public void insert(Type newData) {
 // . . .
 }

 //class continued
 public void remove(Type dataToRemove) {
 // . . .
 }

 public Node<Type> search(Type dataToFind) {
 // . . .
 }

 public int size() {
 // . . .
 }

} // end of class

94/115Andries van Dam © 2023 11/15/22

BST Class (4/4)
● Our implementations of LinkedLists, Stacks, and Queues are “smart”

data structures that chain “dumb” nodes together
o the lists did all the work by maintaining previous and current

pointers and did the operations to search for, insert, and remove
information – thus, nodes were essentially data containers

● Now we will use a “dumb” tree with “smart” nodes that will delegate
using recursion
o tree will delegate action (such as searching, inserting, etc.) to its

root, which will then delegate to its appropriate child, and so on
o creates specialized Node class that stores its data, parent, and

children, and can perform operations such as insert and remove

95/115Andries van Dam © 2023 11/15/22

BST: Node Class (1/3)
● “Smart” Node includes the following methods:
// pass in entire data item, containing key, so compareTo() will work

public Node<Type> search(Type dataToFind);

public Node<Type> insert(Type newData);

/* remove deletes Node pointing to dataToRemove, which contains key;
removing Node also will remove the matched data element instance unless
there’s another reference to it */

public Node<Type> remove(Type dataToRemove);

● Plus setters and getters of instance variables, defined in the next
slides …

96/115Andries van Dam © 2023 11/15/22

BST: Node Class (2/3)
● Nodes have a maximum of two non-null children that hold

data implementing Comparable<Type>
o four instance variables: data, parent, left, and right, with each having a

get and set method.
o data represents the data that Node stores. It also contains the key attribute

that Nodes are sorted by – we’ll make a Tree that stores Books
o parent represents the direct parent (another Node) of Node–only used in

remove method
o left represents Node’s left child and contains a subtree, all of whose data is

less than Node’s data
o right represents Node’s right child and contains a subtree, all of whose

data is greater than Node’s data
o arbitrarily select which child should contain data equal to Node’s data

97/115Andries van Dam © 2023 11/15/22

BST: Node Class (3/3)
public class Node<Type implements Comparable<Type>> {

 private Type data;

 private Type parent;

 private Node<Type> left;

 private Node<Type> right;

 public Node(Type data, Node<Type> parent){ //construct a leaf node as default

 this.data = data;

 this.parent = parent;

 //child ptrs null for leaf nodes; set for internal nodes when child is created

 this.left = null;

 this.right = null;

 }

 // will define other methods in next slides…

}

98/115Andries van Dam © 2023 11/15/22

Smart Node Approach
● BinarySearchTree is “dumb,” so it delegates to root, which in

turn will delegate recursively to its left or right child, as appropriate
// search method for entire BinarySearchTree:

public Node<Type> search(dataToFind) {

 return this.root.search(dataToFind);

}

● Smart node approach makes our code clean, simple and elegant
o non-recursive method is much messier, involving explicit bookkeeping of

which node in the tree we are currently processing
▪ we used the non-recursive method for sorted linked lists, but trees are more

complicated, and recursion is easier – a tree is composed of subtrees!

99/115Andries van Dam © 2023 11/15/22

Appendix

• Generic BST
• Searching Simulation
• Insertion Demonstration

100/115Andries van Dam © 2023 11/15/22

Searching Simulation (animated)
● What if we want to know if 224 is in Tree?
● Tree says:

123

252

224

16

“Hey Root! Ya got
224?”

“Let’s see. I’m not 224.
But if 224 is in tree,
since it’s larger, it would
be to my right. I’ll ask
my right child and
return its answer.”

123 says:

101/115Andries van Dam © 2023 11/15/22

Searching Simulation (animated)
● What if we want to know if 224 is in Tree?

“I’m not 224. I
better ask my left
child and return
its answer.”

252 says:

123

252

224

16

102/115Andries van Dam © 2023 11/15/22

Searching Simulation (animated)
● What if we want to know if 224 is in Tree?

“224? That’s me!
Hey, caller (252)
here’s your
answer.”

224 says:

(returning node indicates that
query is in tree)

Answer: 224 is in the Tree!

123

252

224

16

103/115Andries van Dam © 2023 11/15/22

Searching Simulation (animated)
● What if we want to know if 224 is in Tree?

“Hey, caller (123)!
Here’s your answer.”

252 says:

Answer: 224 is in the Tree!

Answer: 224 is in the Tree!

123

252

224

16

104/115Andries van Dam © 2023 11/15/22

Searching Simulation (animated)
● What if we want to know if 224 is in Tree?

Answer: 224 is in the Tree!

“Hey, Tree! Here’s your
answer”

123 says:

Answer: 224 is in the Tree!

123

252

224

16

105/115Andries van Dam © 2023 11/15/22

Searching Simulation - Recap
● What if we want to know if 224 is in Tree?
● Tree says “Hey Root! Ya got 224?”
● 123 says: “Let’s see. I’m not 224. But if

224 is in tree, it would be to my right. I’ll
ask my right child and return its answer.”

● 252 says: “I’m not 224, it’s smaller than me. I better ask my left
child and return its answer.”

● 224 says: “224? That’s me! Hey, caller (252) here’s your answer.”
(returning node indicates that query is in tree)

● 252 says: “Hey, caller (123)! Here’s your answer.”
● 123 says: “Hey, Tree! Here’s your answer.”`

123

252

224

16

Root

106/115Andries van Dam © 2023 11/15/22

M

H P

O Y

S

B J

A I L

Searching a BST Recursively Is O(log2N)
● Search path: start with root M and choose path to I (for

a reasonably balanced tree, M will be more or less “in
the middle,” and left and right subtrees will be
roughly the same size)
o structurally, the height of a reasonably

balanced tree with n nodes is about log2n
o at most, we visit each level of the tree once
o so, runtime performance of searching is

O(log2N) as long as tree is reasonably
balanced, which will be true if entry order
is reasonably random (slide 87)

107/115Andries van Dam © 2023 11/15/22

Searching a BST Recursively
public Node<Type> search(Type dataToFind) {

 //if data is the thing we’re searching for

 if(this.data.compareTo(dataToFind) == 0) {

 return this.data;

 //if data > dataToFind, can only be in left tree

 } else if(data.compareTo(dataToFind) > 0) {

 if(this.left != null) {

 return this.left.search(dataToFind);

 }

 //if data < dataToFind, can only be in right tree

 } else if (this.right != null) {

 return this.right.search(dataToFind);

 }

 }

 //Only get here if dataToFind isn’t in tree, otherwise would’ve returned sooner

 return null;

}

M

H P

O Y

S

B J

A I L

108/115Andries van Dam © 2023 11/15/22

Appendix

• Generic BST
• Searching Simulation
• Insertion Demonstration

109/115Andries van Dam © 2023 11/15/22

Insertion into a BST(1/2)
● Search BST starting at root until we find where the data to

insert belongs
o insert data when we reach a Node whose appropriate L or R child is null

● That Node makes a new Node, sets the new Node’s data
to the data to insert, and sets child reference to this new
Node

● Runtime is O(log2N), yay!
o O(log2N) to search the nearly balanced tree to find the place to insert

o constant time operations to make new Node and link it in

110/115Andries van Dam © 2023 11/15/22

Insertion into a BST(2/2)
● Example: Insert 115

Befor
e:

100

150

125 200

175140

50

80

75 85

30

20

After:

200

100

150

125

175140857520

30 80

115

50

111/115Andries van Dam © 2023 11/15/22

Insertion Code in BST

//Tree’s insert delegates to root

public Node<Type> insert(Type newData) {

 //if tree is empty, make first node. No traversal necessary!

 if(this.root == null) {

 this.root = new Node(newData, null); //root’s parent is null

 return this.root;

 } else {

 //delegate to Node’s insert() method

 return this.root.insert(newData);

 }

}

● Again, we use a “Smart Node” approach and delegate

112/115Andries van Dam © 2023 11/15/22

Insertion Code in Node
public Node<Type> insert(Type newData) { //insert method continued!

 if (this.data.compareTo(newData) > 0) { //newData should be in left subtree

 if(this.left == null) { //left child is null – we’ve found the place to insert!

 this.left = new Node(newData, this);

 return this.left;

 } else { //keep traversing down tree

 return this.left.insert(newData);

 }

 } else { //newData should be in right subtree

 if(this.right == null) { //right child is null–we’ve found the place to insert!

 this.right = new Node(newData, this);

 return this.right;

 } else { //keep traversing down tree

 return this.right.insert(newData);

 }

 }

}

Reference to the new Node is
passed up the tree so it can be
returned by the tree

113/115Andries van Dam © 2023 11/15/22

Insertion Simulation (1/4)
● Insert: 224
● First call insert in BST:

 this.root = this.root.insert(newData);

root 123

25216

114/115Andries van Dam © 2023 11/15/22

Insertion Simulation (2/4)
● 123 says: “I am less than 224. I’ll let my right child deal

with it.”
 if (this.data.compareTo(newData) > 0) {

 //code for inserting left elided

 } else {

 if(this.right == null) {

 //code for inserting with null right child elided

 } else {

 return this.right.insert(newData);

 }

 }

123

25216

115/115Andries van Dam © 2023 11/15/22

Insertion Simulation (3/4)
● 252 says: “I am greater than 224. I’ll pass it on to my left child –

but my left child is null!”

if (this.data.compareTo(newData) > 0) {

 if(this.left == null) {

 this.left = new Node(newData, this);

 return this.left;

 } else {

 //code for continuing traversal elided

 }

}

123

25216

116/115Andries van Dam © 2023 11/15/22

Insertion Simulation (4/4)
● 252 says: “You belong as my left child, 224. Let me make a node

for you, make this new node your home, and set that node as my
left child. Lastly, I will return a pointer to the new left node”. (And each
node, as its recursive invocation ends, passes the pointer to the new 224 node up to
its parent, eventually up to whatever method called on the tree’s search)

this.left = new Node(newData, this);

return this.left;

 Before 123

25216

224

After 123

25216

