
Data Structures 3:
 Sets, Maps and Hashing

Andries van Dam 2023 11/14/23 1/100

Review of Binary Search Trees

Andries van Dam 2023 11/14/23 2/100

BST Class (1/4)
● What do BSTs know how to do?

o much the same as sorted linked lists: insert, remove, size, empty
o BSTs also have their own search method – a bit more

complicated than simply iterating through its nodes

● What would an implementation of a BST class look like…
o in addition to data, left, and right child pointers, we’ll add a parent

“back” pointer for ease of implementation (for the remove method
– analogous to the previous pointer in doubly-linked lists!)

o you’ll learn more about implementing data structures in CS200!
Andries van Dam 2023 11/14/23 3/100

 Nodes, data items, and keys

● item is a composite that can contain many properties,
● one of which is a key that Nodes are sorted by (here,

ISBN #)

Node<Book>

item
parent
right
left

Book

isbn = 9783245206
pubDate = …
title = …
author = …

BinarySearchTree

root

null

Node<Book>

...

Node<Book>

...

Andries van Dam 2023 11/14/23 4/100

Comparable Book Class

• compareBooks is defined so we can
easily compare the isbn number of 2
books
o returns number that is <0, ==0 or >0,

depending on the ISBN numbers
▪ <0 if stored this.isbn < toCompare
▪ == 0 if this.isbn == toCompare
▪ >0 if this.isbn > toCompare

public class Book {
 // variable declarations, e.g., isbn, elided
 public Book(String author, String title,
 int isbn){
 //variable initializations elided
 }

 public int getISBN(){
 return this.isbn;
 }

 //other methods elided

 //compare isbn of book passed in to stored one
 public int compareBooks(Book toCompare){
 return (this.isbn - toCompare.getISBN());
 }
}

A more general Comparable interface
with a compare method to compare
any two objects is in the appendix of
last lecture

BST Class (2/4)

public class BinarySearchTree<Book> {

 private Node<Book> root;

 public BinarySearchTree(Book item) {
 //Root of the tree
 this.root = new Node(item, null);
 }

 // other methods shown next slide

}

In our example, we
use Book as Type

• Our BinarySearchTree stores
objects of type Book, meaning
we will be able to use all
methods Book has within our
BST

We’ll go over what Node
is in a few slides ☺

If you’d like to see an example
of a BST using a generic type
that works for more than just
books, check out last lecture
slide 88

BST Class (3/4)

public class BinarySearchTree<Book> {

 private Node<Book> root;

 public BinarySearchTree(Book item) {
 //Root of the tree
 this.root = new Node(item, null);
 }

 public void insert(Book newItem) {
 // . . .
 }

 //class continued
 public void remove(Book itemToRemove) {
 // . . .
 }

 public Node<Book> search(Book itemToFind) {
 // . . .
 }

 public int size() {
 // . . .
 }

} // end of class

BST Class (4/4)
● Our implementations of LinkedLists, Stacks, and Queues are “smart”

data structures that chain “dumb” nodes together
o the lists did all the work by maintaining previous and current

pointers and did the operations to search for, insert, and remove
information – thus, nodes were essentially data containers

● Now we will use a “dumb” tree with “smart” nodes that will delegate
using recursion
o tree will delegate action (such as searching, inserting, etc.) to its

root, which will then delegate to its appropriate child, and so on
o creates specialized Node class that stores its data item, parent, and

children, and can perform operations such as insert and remove
Andries van Dam 2023 11/14/23 8/100

BST: Node Class (1/3)
● “Smart” Node includes the following methods:
// pass in entire data item, containing key and returns that item if present

public Node<Book> search(Book itemToFind);

// pass in entire data item, containing key and inserts into the tree

public Node<Book> insert(Book newItem);

/* deletes Node pointing to itemToRemove, which contains key; removing Node
also will remove the matched data item instance (here, a Book) unless there’s
another reference to it */

public Node<Type> remove(Book itemToRemove);

● Plus setters and getters of instance variables, defined in the next slides
…

Andries van Dam 2023 11/14/23 9/100

BST: Node Class (2/3)
● Nodes have a maximum of two non-null children that hold

data
o four instance variables: item, parent, left, and right, with each having a

get and set method
o item represents the data item that Node stores. It also contains the key

attribute that Nodes are sorted by – we’ll make a Tree that stores Books
o parent represents the direct parent (another Node) of Node–only used in

remove method
o left represents Node’s left child and contains a subtree, all of whose data

items are less than Node’s data item
o right represents Node’s right child and contains a subtree, all of whose

data items are greater than Node’s data item
o arbitrarily select which child should contain item equal to Node’s data item

Andries van Dam 2023 11/14/23 10/100

BST: Node Class (3/3)
public class Node<Book> {

 private Book item;

 private Book parent;

 private Node<Book> left;

 private Node<Book> right;

 public Node(Book myItem, Node<Book> parent){ //construct a leaf node as default

 this.item = myItem;

 this.parent = parent;

 //child ptrs null for leaf nodes; set for internal nodes when child is created

 this.left = null;

 this.right = null;

 }

 // will define other methods in next slides…

} Andries van Dam 2023 11/14/23 11/100

Smart Node Approach
● BinarySearchTree is “dumb,” so it delegates to root, which in

turn will delegate recursively to its left or right child, as appropriate
// search method for entire BinarySearchTree:

public Node<Book> search(itemToFind) {

 return this.root.search(itemToFind);

}

● Smart node approach makes our code clean, simple and elegant
o non-recursive method is much messier, involving explicit bookkeeping of

which node in the tree we are currently processing
▪ we used the non-recursive method for sorted linked lists, but trees are more

complicated, and recursion is easier – a tree is composed of subtrees!
Andries van Dam 2023 11/14/23 12/100

Let’s Search a BST For a step-by-step
walkthrough of this
algorithm, see slide
100

Andries van Dam 2023 11/14/23 13/100

TopHat Question
What's the runtime of (recursive) search in a BST and why?

A. O(n) – because you only iterate once
B. O(2n) – because you go visit both the left and right subtrees
C. O(n/2) – because you incorporate the idea of “bisection” to eliminate half

the number of nodes to search at each recursion
D. O(log2n) - because you incorporate the idea of “bisection” to eliminate

half the number of nodes to search at each recursion
E. O(n2) – because recursion makes your runtime quadratic

Andries van Dam 2023 11/14/23 14/100

M

H P

O Y

S

B J

A I L

Searching a BST Recursively Is O(log2N)
● Search path: start with root M and choose path to I (for

a reasonably balanced tree, M will be more or less “in
the middle,” and left and right subtrees will be
roughly the same size)
o structurally, the height of a reasonably

balanced tree with n nodes is about log2n
o at most, we visit each level of the tree once
o so, runtime performance of searching is

O(log2N) as long as tree is reasonably
balanced, which will be true if entry order
is reasonably random

o O(log2N) is much less than N, this is thus much more efficient!
Andries van Dam 2023 11/14/23 15/100

Searching a BST Recursively
public Node<Book> search(Book itemToFind) {

 //if itemToFind is the thing we’re searching for

 if(this.item.compareBooks(itemToFind) == 0) {
 return this.item;
 //if item > itemToFind, can only be in left tree
 } else if(this.item.compareBooks(itemToFind) > 0) {

 if(this.left != null) {

 return this.left.search(itemToFind);

 }

 //if item < itemToFind, can only be in right tree

 } else if (this.right != null) {

 return this.right.search(itemToFind);

 }

 }

 //Only get here if itemToFind isn’t in tree, otherwise would’ve returned sooner

 return null;

}

M

H P

O Y

S

B J

A I L

Andries van Dam 2023 11/14/23 16/100

Let’s Add to a BST (1/3) For a step-by-step
walkthrough of this
algorithm, see slide
109 of last lecture

Andries van Dam 2023 11/14/23 17/100

Let’s Add to a BST (2/3) For a step-by-step
walkthrough of this
algorithm, see slide
112

Andries van Dam 2023 11/14/23 18/100

Let’s Add to a BST (3/3) For a step-by-step
walkthrough of this
algorithm, see slide
112

Andries van Dam 2023 11/14/23 19/100

Insertion into a BST
● Search BST starting at root until we find where the data to

insert belongs
o insert data when we reach a Node whose appropriate L or R child is null

● That Node makes a new Node, sets the new Node’s data
to the data to insert, and sets child reference to this new
Node

● Runtime is O(log2N), yay!
o O(log2N) to search the nearly balanced tree to find the place to insert

o constant time operations to make new Node and link it in
Andries van Dam 2023 11/14/23 20/100

Insertion Code in BST

//Tree’s insert delegates to root

public Node<Book> insert(Book newItem) {

 //if tree is empty, make first node. No traversal necessary!

 if(this.root == null) {

 this.root = new Node(newItem, null); //root’s parent is null

 return this.root;

 } else {

 //delegate to Node’s insert() method

 return this.root.insert(newItem);

 }

}

● Again, we use a “Smart Node” approach and delegate

Andries van Dam 2023 11/14/23 21/100

Insertion Code in Node
public Node<Book> insert(Book newItem) {

 if (this.item.compareBooks(newItem) > 0) { //newItem should be in left subtree

 if(this.left == null) { //left child is null – we’ve found the place to insert!

 this.left = new Node(newItem, this);

 return this.left;

 } else { //keep traversing down tree

 return this.left.insert(newItem);

 }

 } else { //newItem should be in right subtree

 if(this.right == null) { //right child is null–we’ve found the place to insert!

 this.right = new Node(newItem, this);

 return this.right;

 } else { //keep traversing down tree

 return this.right.insert(newItem);

 }

 }

}

Reference to the new Node is
passed up the tree so it can be
returned by the tree

Andries van Dam 2023 11/14/23 22/100

Notes on Trees (1/2)

● Different insertion order of nodes results in different trees
o if you insert a node referencing data value of 18 into empty tree, that node will

become root

o if you then insert a node referencing data value of 12, it will become left child of root

o however, if you insert node referencing 12 into an empty tree, it will become root

o then, if you insert one referencing 18, that node will become right child of root

o even with same nodes, different insertion order makes different trees!

o on average, for reasonably random (unsorted) arrival order, trees will look similar in
depth so order doesn’t play a major role in runtime

Andries van Dam 2023 11/14/23 23/100

Notes on Trees (2/2)
● When searching for a value, reaching another value that is greater

than the one being searched for does not mean that the value
being searched for is not present in tree (whereas it does in linked
lists!)
o it may well still be contained in left subtree of node of greater

value that has just been encountered
o thus, where you might have given up in linked lists, you can’t

give up here until you reach a leaf (but depth is roughly
log2N for a nearly balanced tree, which is much smaller than
N/2!)

Andries van Dam 2023 11/14/23 24/100

Preorder Traversal of BST
● Preorder traversal

o “pre-order” because self is visited before (“pre-”) visiting children
o again, use recursion!

public void preOrder() {

 //Check for null children elided

System.out.println(curr.item);

 this.left.preOrder();

 this.right.preOrder();

}

M
H P

O Y

S

B J

A I L

M H B A J I L P O Y S

A

B

H

I

J

L

M

O

P

S

Y

Preorder traversal!

Andries van Dam 2023 11/14/23 25/100

Postorder Traversal of BST
● Postorder traversal

o “post-order” because self is visited after (“post-”) visiting children
o again, use recursion!

public void postOrder() {

 //Check for null children elided

 this.left.postOrder();

 this.right.postOrder();

 System.out.println(curr.item);

}

M
H P

O Y

S

B J

A I L

A B I L J H O S Y P M

A

B

H

I

J

L

M

O

P

S

Y

Postorder traversal!

Andries van Dam 2023 11/14/23 26/100

Inorder Traversal of BST
● Inorder traversal

o “in-order” because self is visited between (“in-”) visiting children
o again, use recursion!

public void inOrder() {

 //Check for null children elided

 this.left.inOrder();

System.out.println(curr.item);

 this.right.inOrder();

}

M
H P

O Y

S

B J

A I L

A B H I J L M O P S Y

To learn more about the exciting world of trees, take CS200 (CSCI0200): Program Design
with Data Structures and Algorithms!

A

B

H

I

J

L

M

O

P

S

Y

Inorder traversal!

Andries van Dam 2023 11/14/23 27/100

Tree Runtime
● Binary Search Tree has a search of O(log2n) runtime, can we make it faster?
● Could make a ternary tree! (each node has at least 3 children)

o O(log3n) runtime

● Or a 10-way tree with O(log10n) runtime
● Let’s try the runtime for a search with 1,000,000 nodes

o log101,000,000 = 6

o log21,000,00 < 20, so shallower but broader tree

● Analysis: the logs are not sufficiently different and the comparison (basically an
n-way nested if-else-if) is far more time consuming, hence not worth it

● Furthermore, binary tree makes it easy to produce an ordered list
Andries van Dam 2023 11/14/23 28/100

Prefix, Infix, Postfix Notation for Arithmetic
Expressions (1/2)
• When you type an equation into a spreadsheet, you use Infix; when you

type an equation into many Hewlett-Packard calculators, you use

Postfix, also known as “Reverse Polish Notation,” or “RPN,” after its

inventor Polish Logician Jan Lukasiewicz (1924)

• Easier to evaluate Postfix because it has no parentheses and evaluates

in a single left-to-right pass

• Use Dijkstra’s 2-stack shunting yard algorithm to convert from

user-entered Infix to easy-to-handle Postfix – compile or interpret it on

the fly Andries van Dam 2023 11/14/23 29/100

Prefix, Infix, Postfix Notation for Arithmetic
Expressions (2/2)

• Infix, Prefix, and Postfix refer to

where the operator goes relative to

its operands
o Infix: (fully parenthesized)

▪ ((1 * 2) + (3 * 4)) - ((5 - 6) + (7 / 8))

o Prefix:

▪ - + * 1 2 * 3 4 + - 5 6 / 7 8

o Postfix:

▪ 1 2 * 3 4 * + 5 6 - 7 8 / + -

• Graphical representation for
equation:

Andries van Dam 2023 11/14/23 30/100

Dijkstra’s Infix-to-Postfix Algorithm (1/2)
• 2 stack algorithm for single-pass Infix to Postfix

conversion, using operator precedence
• (a + (b * (c ^ d))) ⇒ a b c d ^ * +
• Use rule matrix to implement strategy
o A) Push operands onto operand stack; push operators in

precedence order onto the operator stack

o B) When precedence order would be disturbed, pop
operator stack until order is restored, evaluating each pair
of operands popped from the operand stack and pushing
the result back onto the operand stack.

o Note that equal precedence displaces. At the end of
the statement (marked by ; or CR) all operators are
popped.

o C) “(“ starts a new substack;
 “)” pops until it’s matching “(“

A A A A C

A B B B C

A A B B C

A A A B C

A A A A E

Incoming
Operator

(

^

*/

+-

e

(^ */ +-)
Top of
Stack

Note: our Stack implementation
doesn’t allow accessing the
top-element without popping it; Java’s
implementation has a peek methodAndries van Dam 2023 11/14/23 31/100

Operand Stack

Operator
Stack

Precedence
Checker

8 - 4 * 16

3
2

64-56

Dijkstra’s Infix-to-Postfix Algorithm (2/2)

A A A A C

A B B B C

A A B B C

A A A B C

A A A A E

Incoming
Operator

(

^

*/

+-

e

Top of
Stack (^ */ +-)

(a + (b * (c ^ d))) ⇒ a b c d ^ * +

Andries van Dam 2023 11/14/23 32

Outline
• Trees, Continued
• Sets
• Maps
• Extra Material: Preview of CS200

Andries van Dam 2023 11/14/23 33/100

Sets and Maps

Andries van Dam 2023 11/14/23 34/100

∪

Introducing… Sets
• A set is a collection of unique, unordered elements

o no duplicates
o A == {2,3,5} == {5,3,2}
o A, B can be single elements or sets of multiple

elements
• Basic operations of the Set data structure:

o add element to set
o remove element from set
o check if element is in set
o Union: merge two sets together

▪ ex: Union set contains students who are CS15 students or
graduate students (or both – inclusive or)

o Intersection: Intersection set contains only elements
in two sets that are in both
▪ ex: students who are both CS15 students and graduate students

A B
A∩B

5
6

2

3
7

3 9

Andries van Dam 2023 11/14/23 35/100

Set Data Structure (1/2)
• Sets can be implemented using arrays, lists, hashing (coming up), etc.
• No indices, no random access
• Useful for:
o checking if elements of one collection are also a part of another collection

▪ (e.g., finding all students in CS15 who are also taking ECON0100).
▪ Since there is no explicit intersection operator in Java, we must loop through the elements of the smaller

set, and check membership in the larger set

o preventing array from storing duplicates by checking an element to be inserted against a
set of previously encountered names:
▪ if already in the set, it is a duplicate, if not, enter it into array and set.
▪ efficiency of checking if an element is in a set (O(1)) vs. efficiency of searching the array (O(N))

Andries van Dam 2023 11/14/23 36/100

Set Data Structure (2/2)
•Because there is no order/index, Sets
can be implemented differently (and
far simpler) than Lists and other
data structures we have shown so far

•Java has a class
java.util.HashSet<Type>
specialized for set operations. This
class implements the Set interface
and is backed by a Hash Table (later)

Andries van Dam 2023 11/14/23 37/100

HashSet Methods (1/2)
/*Constructor returns new HashSet capable of holding elements of type Type.
 *Java will let us create non-homogeneous sets, but we rarely want this, so
 *specify use the generic Type to enforce homogeneity */
public HashSet<Type>()

/*adds element e to HashSet, if not already present (returns false if
f*element is already present)*/
public boolean add(Type e)

/*returns true if this set contains the specified element.
 *note on parameter type: Java accepts any Object since the elements of
f*your set could be any object, but you should supply one of type Type
f*for good programming practices */
public boolean contains(Object o)

Andries van Dam 2023 11/14/23 38/100

HashSet Methods (2/2)
//removes all elements from this set
public void clear()

//returns true if this set contains no elements
public boolean isEmpty()

/*removes specified element from this set if present
 *note on parameter type: Java accepts any Object since the elements of
j*your set could be any object, but you should supply one of type Type*/
public boolean remove(Object o)

//returns the number of elements in this set
public int size()

//see JavaDocs for more methods, including set union and intersection

Andries van Dam 2023 11/14/23 39/100

Iteration over a HashSet
•You can also iterate over elements stored in a HashSet by using
a for-each loop.
o as it is a set, there is no guaranteed order of processing elements

HashSet<String> strings = new HashSet<String>();

//elided adding elements to the set

for (String s:strings) {//in HashSet strings, of type String, for each element s
System.out.println(s); //prints all Strings in HashSet

}

Andries van Dam 2023 11/14/23 40/100

HashSet Example
//somewhere in your app
HashSet<String> springCourses = new HashSet<String>();
springCourses.add(“BIOL0200”);
springCourses.add(“ECON0110”);
//elided adding rest of Banner

//in another part of your program
if (springCourses.contains(“CS0200”){
 System.out.println(“I can take cs200 next semester!”);
}
//elided checking for other classes

As we will see, each check for set membership takes just O(1)! i.e., no actual searching!

Andries van Dam 2023 11/14/23 41/100

Outline
• Trees, Continued
• Sets
• Maps
• Extra Material: Preview of CS200

Andries van Dam 2023 11/14/23 42/100

Introducing… Maps (1/2)
• Maps are used to store (key, value)

pairs.
o a key is used to lookup its corresponding value

• (Word, Definition) in a dictionary
• (Brown ID, Person) in Banner
• (Name, Phone #) in a contacts list
• Think of a map as discrete function

that maps from domain to co-domain

Domain(HTAs) Codomain(ID#)

Example of a simple map using
just an array.

Andries van Dam 2023 11/14/23 43/100

Introducing… Maps (2/2)
• Java provides java.util.HashMap<K,V> class
• Often called a “hash table”
• Other structures that provide maps include TreeMap ,
HashTable, LinkedHashMap, and more
o each has its own advantages and drawbacks
o we will focus on HashMap

•HashMaps have constant time insert, removal, and
search!–explained shortly

Andries van Dam 2023 11/14/23 44/100

HashMap Syntax (1/2)
• Like other data structures, need to specify type of

elements it holds
• This time need to specify type of both key AND value
• The key and value can be instances of any class
new HashMap<KeyClass, ValueClass>();

•Only one entry for a given key - no duplicates

Andries van Dam 2023 11/14/23 45/100

HashMap Syntax (2/2)
● If we wanted to map an Integer to its String representation
 HashMap<Integer, String> intTable = new HashMap<>();

● If we wanted to map a TA to their Birthday
 HashMap<CS15TA, Date> birthdayTable = new HashMap<>();

● In all cases, both key and value types must resolve to a type (e.g.,
class, interface)

● Note: Can’t use int or boolean as a type because they are primitives,
not classes
o so use a built-in class that is equivalent to that primitive, Integer or Boolean

respectively

Andries van Dam 2023 11/14/23 46/100

java.util.HashMap Methods (1/2)
/*K refers to type of Key, V to type of value.
 *Adds specified key, value pair to the table, returns value.
 If there already was an entry for this key, it is replaced/
public V put(K key, V value)

/*returns value to which the specified key is mapped, or null
 *if map contains no mapping for the key.
 *note on parameter type: Java accepts any Object, but you should
j*supply the same type as the key*/
public V get(Object key)

//returns the number of keys in this hashtable
public int size()

Andries van Dam 2023 11/14/23 47/100

java.util.HashMap Methods (2/2)
/*note on parameter type: Java accepts any Object, but you
 *should supply the same type as the key.
 Predicate tests if specified object is a key in this hash table/
public boolean containsKey(Object key)

//returns true if hash table maps at least one key to this value
public boolean containsValue(Object Value)

/*removes key and its corresponding value from hash table,
 *returns value which the key mapped to or null if key had no mapping */
public V remove(Object key)

//more methods in JavaDocs
Andries van Dam 2023 11/14/23 48/100

Finding out your friends’ logins (1/4)
• Given an array of CS students who have the properties

“csLogin” and “real name”, how might you efficiently find
out your friends’ logins?

• Givens
o String[] friends, an array of your friends’ names
o CSStudent[] students, an array of students with each entry

consisting of a “csLogin” and a “real name”, accessed via
accesor methods

Andries van Dam 2023 11/14/23 49/100

Finding out your friends’ logins (2/4)
• Old Approach:

for (int i=0; i < friends.length; i++){ //for all friends
 for (int j=0; j < students.length; j++){ //for all students
 if (friends[i].equals(students[j].getName())){ //getName() elided

 String login = students[j].getLogin(); //getLogin() elided
 System.out.println(friends[i] + “’s login is ” + login + “!”);
 }
 }
}

• Note: Use String class’ equals() method because “==” checks for
equality of reference, not of content

• This is O(n2)–far from optimal

Andries van Dam 2023 11/14/23 50/100

Finding out your friends’ logins (3/4)
• Better solution: use a HashMap to store students instead of

an array:

o key → name

o value → cslogin

o use name to look up cslogin!

Andries van Dam 2023 11/14/23 51/100

Finding out your friends’ logins (4/4)
HashMap<String, String> myTable = new HashMap<>();

for (CSStudent student : students){ //same array of students
 //getName() and getLogin() code elided
 myTable.put(student.getName(), student.getLogin()); //build HashMap
}

for (String friendName : friends){ //same array of friends
 String login = myTable.get(friendName); //look up friend’s login

 if (login == null){ //if friend does not have login
 System.out.println(“No login found for ” + friendName);
 continue;
 }

 System.out.println(friendName + “’s login is ” + login + “!”);
}

• Each insert and search in HashMap is only O(1)!
Andries van Dam 2023 11/14/23 52/100

Map Implementation (1/4)
• How do we implement a Map with constant-time insertion,

removal, and search?
• In essence, we are searching through a data structure for value

associated with key
o similar to searching problem we have been trying to optimize

• Searching in an array:
o unsorted array is O(n)
o sorted array is O(log n), as is tree

▪ remember binary partitioning of array in merge sort where tree depicting passes
had depth of log2n?; same for binary search tree?

o can we do even better than log2n?!? That would be O(1)!!!
▪ yes: with hashing, but has limitations

Andries van Dam 2023 11/14/23 53/100

• Try a radically different approach, using an
array

• What if we could directly use the key as an
index to access appropriate spot in the array?

• Remember: digits, alphanumerics, symbols,
even control characters are all stored as 8-bit
bytes–“it’s bits all the way down…”

o see ASCII table
o numbers in binary can be used to index into an array

to get oct or hex equivalent
o O(1) to find the hex or oct string in the array at a

given index!!!

Map Implementation (2/4)

Andries van Dam 2023 11/14/23 54/100

Map Implementation (3/4)
• But creating an array to look up CS15 students (value) based on

Banner ID # (key) would be a tremendous waste of space
o if ID number is the letter B followed by eight digits (e.g., B00011111), there

are 108 combinations!
o do not want to allocate 100,000,000 words for no more than 400 students
o (1 word = 4 bytes)
o array would be terribly sparse…

• What about using social security number?
o would need to allocate 109 words, about 4 gigabytes, for no more than 400

students! And think about arbitrary names <30 chars: need 2630 !!

Andries van Dam 2023 11/14/23 55/100

Map Implementation (4/4)
oThus, two major problems:
o how can we deal with arbitrarily long keys, both numeric and

alphanumeric?
o how can we build a small, dense (i.e., space-efficient) array

that we can index into to find keys and values?

•Impossible?
o No, we approximate

Andries van Dam 2023 11/14/23 56/100

Hashing
• How do we approximate?

o we use hashing
o hashing refers to computing an array index from an

arbitrarily large key using a hash function
o hash function takes in key and returns index in array

• Index leads to a simple value or an entire object
• Therefore, a two-step process:
o hash to create index
o use index to get value

hash
function indexkey value

array

Andries van Dam 2023 11/14/23 57/100

Hashing
• Array used in hashing typically holds several hundred to several

thousand entries; size typically a prime (e.g., 1051)
o array of instances of the class HTA containing all relevant data

Hash(‘Sarah’)= 8

Hash(‘Allie’)= 0

Hash(‘Cannon’)= 4

Hash(‘Lexi’)= 10

AnastasioHash(‘Anastasio’)= 95

0

N - 1

.

.

.

4

8

10

95

Lexi

Sarah

Cannon

Allie

Andries van Dam 2023 11/14/23 58/100

Hash Functions (1/4)
• An example of a hash function for alphanumeric keys

o ASCII is a bit representation that lets us represent all alphanumeric symbols
as integers

o take each character in key, convert to integer, sum integers─sum is index
o but what if index is greater than array size?
o use mod, i.e. (index % arrayLength) to ensure final index is in bounds

▪ think as if index is being “wrapped around”
o Note: hash functions are non-reversible, meaning can’t get original data from

output of hash function

Andries van Dam 2023 11/14/23 59/100

• Almost any reasonable function that uses all bits will do,
so choose a fast one, and one that distributes more or
less uniformly (randomly) in the array to minimize holes!

• A better hash function
o take a string, chop it into sections of 4 letters each, then take value of 32

bits that make up each 4-letter section and XOR (exclusive OR) them
together, then % (mod) that result by table size

• Will cover this more in CS200!

Hash Functions (2/4)

Andries van Dam 2023 11/14/23 60/100

Hash Functions (3/4)
• We want to turn “allie masthay” into an integer index for an array of

size 101
o Group into 4 character substrings

▪ “alli” , “emas” , “thay”
o Turn each character into ASCII

▪ 97 108 108 105 |101 109 97 115 | 116 104 97 121
▪ Turn each ASCII character into binary

o 01100001 01101100 01101100 01101001 | 01100101 01101101 01100001
01110011 | 01110100 01101000 01100001 01111001

Andries van Dam 2023 11/14/23 61/100

Hash Functions (4/4)
• We want to turn “allie masthay” into an integer index for an array of

size 101
o Turn each group into one value by mashing bits together

▪ “alli” 01100001011011000110110001101001
▪ “emas” 01100101011011010110000101110011
▪ “thay” 01110100011010000110000101111001
▪ XOR the 3 groups together
▪ 01100001011011000110110001101001 ^ 01100101011011010110000101110011 ^

01110100011010000110000101111001 = 01110000011010010110110001100011
▪ 01110000011010010110110001100011 (binary) 1885957219 (decimal)

o Mod by size of list to ensure it’s within the array
▪ Index = 1885957219 % 101 = 76

Andries van Dam 2023 11/14/23 62/100

Collisions (1/2)
• If we have 6,000 Brown student names that we are

mapping to Banner IDs using an array of size 1051,
clearly, we are going to get “collisions” where different
keys will hash to the same index

• Does that kill the idea? No!

• Instead of having an array of type Value, we instead
have each entry in the array be a head pointer to an
overflow “bucket” for all keys that hash to that index.
The bucket can be, e.g., our perennial favorite, the
unsorted singly linked list, or an array, whatever…

• So, if we get a collision, the linked list will hold all
values with keys associated to that bucket

0

1

2

Andries van Dam 2023 11/14/23 63/100

Collisions (2/2)
• Since collisions are frequent, for methods like get(key) and

remove(key), HashMap will have to iterate through all items in the
hashed bucket to get or remove the right object

• This is O(k), where k is the length of a bucket – k will be small, so
brute force search is fine

• The best hash functions minimize collisions

• Java has its own efficient hash function, covered in CS200

• A way to think about hashing: a fast, large initial division (e.g.,
1051-way), followed by a brute force search over a small bucket–even
bucket size 100 is fast!

• Built-in Java HashMap deals with collisions on its own
Andries van Dam 2023 11/14/23 64/100

Under The Hood: Java HashMaps

key1

Keys
Hashing

Array

…
…
…

…
…

ke
y2

4

va
lue24

key2

key3

…
…
…

key5929

key5930

null

null

null

ke
y1

05

va
lue105

ke
y1

va
lue1 … null

… null

Bucket with Key/Values Values

value1

value2

value3

…
…
…

value5929

value5930

… null

0

1

1050

Java

Andries van Dam 2023 11/14/23 65/100

HashMap Pseudocode
table = array of lists of some size
h = some hash function

public put(K key, V val):
 int index = h(key)
 table[index].addFirst(key, val) O(1), if h() runs in O(1) time

public V get(K key):
 int index = h(key)
 /*search through (key, val) pairs
 *in bucket at table[index] */
 for each (k, v) in table[index]:
 if k == key:
 return v
 return null //if not found, return null

Indexing with hash is O(1), and
buckets are usually well under 100, so
linear search time is trivial, O(1)

Note: LinkedLists only hold one element per node, so in actual code, use
instance of a class that holds key and value

Andries van Dam 2023 11/14/23 66/100

HashMap Example (1/2)
• We have seen some powerful data structures
• Can we combine them to create even more powerful data
structures?!

• YES! … but how?
• We saw how Java HashMaps leverage other data structures for the
collision buckets - we can combine even more!

• Example:
o We want to create a massive survival multiplayer game with 10,000 users.

▪ every player needs to be linked to their in-game properties
▪ knowing a player’s username, how can we get information about their properties?
▪ previously, we saw HashMaps that mapped Strings to Strings
▪ what if instead we used a simple data structure as our compound value?
▪ and stored a player’s properties into an ArrayList…

Andries van Dam 2023 11/14/23 67/100

HashMap Example (2/2) ft. ArrayLists

noobmaster69

Keys
(Username)

jeff

…
…
…

 Player’s Properties

…
…
…

Ja
va

AndyWater123

peetabread

bobDAbuilder

• Every player has a unique
username (a String), this will be
our key

• Let’s store each player’s
properties into an ArrayList,
this will be our value

• So we will map Strings to
ArrayLists as such:
HashMap<String,ArrayList<>>

• Allows for storing of dynamically
updated data!

These are all
ArrayLists

HashMap

unique ID

unique ID

unique ID

unique ID

unique ID

Values

Andries van Dam 2023 11/14/23 68/100

HashMaps… efficiency for free?
• Not quite
• While put() and get() methods on average run in O(1) time, each

takes more time than inserting at the end of an ArrayList, for
example

• A bit more memory expensive (array + buckets)
• Inefficient when many collisions occur (array too small)
• But it is likely the best solution overall, if you don’t need order

o (key, value) pairs are stored in random order based on hash. The best hash is random to
minimize collisions.

o trees can answer certain types of questions far more efficiently than a random hashmap
(e.g., what is the value closest to a given value)

Andries van Dam 2023 11/14/23 69/100

Hash Tables vs. Trees
● Hash Tables and Trees are different data structures used for different kinds

of problems

● For just searching, insert/remove, a Hash Table will be faster
o you know the exact key to search for

o find a student’s Banner ID given their name, key is name and value is Banner ID

● If you’re trying to solve a nearest neighbors problem, a BST will be faster
o find 4 people closest to a 95 in the class, key is grade and value is student name

o if you’re trying to find the min and max in an array of numbers, a BST will be faster

● Can produce an already sorted list of data items by traversing the tree
Andries van Dam 2023 11/14/23 70/100

Cryptographic Hashing (1/2)
• new techniques being developed even now that build on old ways of hashing

• normal hashing used for table look-up (key value mapping)

o takes large string of data and compresses it into small number of bytes to index into a relatively small table
of buckets (collisions expected)

• Cryptographic hashing conversely is used to map arbitrarily large text strings into unique small
strings, e.g., to map entire files into a 256 byte strings, for security and authentication. The hash,
also called a digest, is essentially a data fingerprint

• cryptographic hashing (SHA-1, MD4, SHA-2, MD5, SHA-256, …)

o encoded strings are unique and nearly impossible to replicate (effectively no collisions!)

▪ SHA-256 has 2256 combinations, meaning a 1/2256 chance of a collision!

o these hash functions are extremely computationally efficient

▪ somewhat more complicated, involving many more steps (but steps, e.g. xor’s, are very fast)

▪ output of the hash function is ‘random’, i.e. even the smallest change produces and entirely different hash

o hashes are nearly impossible to reverse, can’t get valuable information just by having the hashAndries van Dam 2023 11/14/23 71/100

Cryptographic Hashing (2/2)
• In SHA-256, messages up to 264 bit (or 2.3 billion gigabytes) are transformed into

hashes of 256 bits (32 bytes)

o this means that an object 7 times the size of Facebook’s data warehouse in 2014 (300 million GB)
passed to SHA-256 would produce a 32-letter string of ASCII characters

(https://medium.com/biffures/part-5-hashing-with-sha-256-4c2afc191c40)

• blockchain/cryptocurrency, digital signatures, anti-virus software, version control
software (Git)

o can check if files have changed since last time we saved/opened them

o can check if a file has been corrupted

• “Andy Van Dam” 0203360322c39ddbcdf8175f45d6cba0cd94e7bfcd955ad164519d5c3e9cd441

o using SHA-256

Andries van Dam 2023 11/14/23 72/100

Outline
• Trees, Continued
• Sets
• Maps
• Extra Material: Preview of CS200

Andries van Dam 2023 11/14/23 73/100

Annoucements
•Tetris deadlines

o late handin: Wednesday 11/15

•Final Projects Introduced at Thursday’s Lecture!!!

•HTA Hours Friday 3-4pm (as always!) in CIT 210

o come talk to us about which FP to do!

Andries van Dam 2023 11/14/23 74/100

The Last Lecture: SRC After
15

November 16 2023

SRC @ Brown
• Student & alum-founded initiatives

• Better World by Design: Student-led initiative at Brown
University and Rhode Island School of Design that
celebrates the interdisciplinary collaboration between
designers, educators, innovators, and learners.

• AI Robotics Ethics Society (AIRES): Club at Brown
which talks about AI Ethics

• Design for America: Organization which connects
students to local design projects tackling health,
economic, educational, or environmental challenges
(chapter at Brown)

• Impact Labs: Connects students to careers at the
intersection of technology and social good (founded
by Adi Melamed and Aaron Mayer)

• Independent Studies: Get course credit for working
on interesting self-directed research projects with
faculty (Brandon’s GPTA is an example! ☺)

https://www.betterworldxdesign.com/
https://www.theaires.org/
https://www.instagram.com/dfarisdbrown/?hl=en
https://www.impactlabs.io/
https://college.brown.edu/design-your-education/explore-open-curriculum/course-selection/curricular-programs/independent

SRC Courses @ Brown
• SRC-adjacent courses exist in lots of departments!
• Below are some (not all) courses offered next semester!

• Spring 2024
• MCM 0230: Digital Media
• PHIL 0403: Ethics and Politics of Data
• HMAN 2300: Introduction to Digital Humanities
• SRC-specific courses in CS

• CSCI1300: User Interfaces and User Experience
• CSCI 1800: Cybersecurity and International Relations
• CSCI 1952B: Responsible Computer Science in Practice
• CSCI 1952X: Contemporary Digital Policy and Politics
• Most courses in CS @ Brown have a SRC component (format & content as appropriate)

• SRC topics may be covered in some of the following departments:
• e.g., Science and Technology Studies (STS), CS, Public Policy, Psychology/Cognitive Science

(CLPS), History, Literary Arts, Urban Studies, Environmental Studies, Philosophy, Modern Culture
and Media (MCM), independent concentrations, and more!!

Alumni and SRC Beyond Brown (past & current projects)

• Alums working in Social Impact/Ethics & Tech: lots!
• danah boyd: Assistant Prof @ Georgetown and Partner Researcher at Microsoft

Research
• Lectures in AVD’s + Norm Meyorwitz’s Hypermedia course

• Daniel Kahn Gillmor: Senior Staff Technologist @ ACLU
• Solon Barocas: Cornell Information Science & Microsoft Research (AI Ethics)
• Sharon Lo: Product Manager (PM), Copilot + Repsonsible AI @ Github, Former

PM, Ethics @ Microsoft + founded Hack@Brown!
• Vandhana Ravi: Beeck Center for Social Impact @ Georgetown U
• Aaron Mayer: Impact Labs
• Tiffany Chen: Formerly Inclusive Design @ Microsoft
• Merrie Ringel Morris (CS15 TA): Director for Human-AI Interaction Research @

Google DeepMind
• Tanay Padhi (CS15 TA): phone-based contact tracing (Google + Apple + …)
• Matt Lerner: "Two Screens for Every Teacher"
• Brandon Diaz (Ex CS15 HTA, CS15 UTA): Investigated impact of generative AI on

intro CS education and created GPTA app.
• …

Thank you!!

• Thanks for listening and engaging with SRC
material!

• “You have agency!” - Andy
• If you have any questions/want to learn

more/want to learn about being an STA/just want
to chat about STAing/UTAing/Brown please
reach out!

• Adam: adam_mroueh@brown.edu
• Faizah: faizah_naqvi@brown.edu
• Katie: katie_y_li@brown.edu

mailto:adam_mroueh@brown.edu
mailto:faizah_naqvi@brown.edu
mailto:katie_y_li@brown.edu

Extra Optional Material
A Sneak-Peak Toward CS200!

Andries van Dam 2023 11/14/23 80/100

Building a Node List

Andries van Dam 2023 11/14/23 81/100

How To Build A Node List
•Now that we have a building block, there are a number of
methods we can implement to make a higher-level
NodeList that implements Java’s List interface (like
ArrayList does)
o note: List interface is very general…

•Main addition List mandates is to support indexing into
the NodeList. Let’s write one of the simpler ones:

o get(int i) method that returns element (Type) at that index

Andries van Dam 2023 11/14/23 82/100

search Private Helper Method
public class NodeList<Type> {
 //constructor elided
 private Node<Type> search(int i) {
 if(i < 0 || i >= this.size) {
 System.out.println(“Invalid index”);
 return null;
 }
 Node<Type> curr = this.head;
 //for loop stops at i; pointer-chase to i
 for (int counter = 0; counter < i;
 counter++) {
 curr = curr.getNext();
 }

 return curr;
 }
}

• First, define a search helper method
to return node at a particular index

• Want to use this helper method in the
class, but don’t want to expose found
nodes publicly; that would violate
encapsulation - make helper private

• If a provided index is out of bounds,
return null (print line is an optional
error message)

• Otherwise, iterate through list until
node at desired index is reached and
return that node

Andries van Dam 2023 11/14/23 83/100

search Private Helper Method Runtime
private Node<Type> search(int i) {
 if (i >= this.size || i < 0) { // 1 op
 System.out.println(“Invalid index”); // 1 op
 return null; // 1 op
 }

 Node<Type> curr = this.head; // 1 op
 for (int counter = 0; counter < i; counter++) { // n ops
 curr = curr.getNext(); // 1 op
 }

 return curr; // 1 op
}

→ search(int i) is
O(n)

Andries van Dam 2023 11/14/23 84/100

Public Wrapper Method

•Write the publicly accessible
wrapper code for the
NodeList’s get method
o this shows a very common pattern of

“thin wrappers” over private code

//inside NodeList
public Type get(int i) {

return
this.search(i).getElement();
}

Andries van Dam 2023 11/14/23 85/100

Reversing a Linked
List

Andries van Dam 2023 11/14/23 86/100

An Exercise
(common job interview question)

• Write a method that reverses the order of a MyLinkedList

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element

Node<Type>

Node<Type> next
Type element1

21

2

3

3

head

head

tail

tail

Andries van Dam 2023 11/14/23 87/100

Solution A
public MyLinkedList<Type> reverse(MyLinkedList<Type> toReverse) {
 if (toReverse.size() < 2) {
 return toReverse;
 }

 MyLinkedList<Type> newList = new MyLinkedList<Type>();

 int origSize = toReverse.size();

 while (newList.size() < origSize) {
 newList.addFirst(toReverse.removeFirst());
 }

 return newList;
}

• If list is empty or has 1
node, return list

• Otherwise, create a new list
of same type as input list

• Iterate through input list,
removing first element each
time and adding it as first
element of new list

Andries van Dam 2023 11/14/23 88/100

Solution B (1/2)

• Is there a better way?

• First algorithm reversed in O(n) time
o but it wasn’t “in-place” – (had to create a new list)
o memory use is also O(n)

• Can write a method within MyLinkedList that reverses
itself without creating new nodes
o still O(n) but in-place and therefore more efficient

Andries van Dam 2023 11/14/23 89/100

Solution B (2/2)
public void reverse() {
 Node<Type> prev = null;
 Node<Type> curr = this.head;
 Node<Type> next = null;
 //set tail to head
 this.tail = this.head;

 while (curr != null) {
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;
 }

 this.head = prev;
}

• Keep track of previous, current, and next
node

• While current node isn’t null, iterate
through nodes, resetting node pointers in
reverse

• In doing so, must be careful not to delete
any references further on in the list

• Finally, set the head pointer to what had
been the last node (held in the prev
variable)

• If the list is empty curr will be null, so
the loop will never begin and head will
continue to point to null Andries van Dam 2023 11/14/23 90/100

Solution B Walkthrough (1/15)

A B C

prev = null

curr

next = null

head tail

Andries van Dam 2023 11/14/23 91

Solution B Walkthrough (2/15)

prev = null

curr

next = null

head

this.tail = this.head;

tail

A B C

Andries van Dam 2023 11/14/23 92

Solution B Walkthrough (3/15)

prev = null

curr next

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 93

Solution B Walkthrough (4/15)

prev = null

curr next

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 94

Solution B Walkthrough (5/15)

null

curr next
prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 95

Solution B Walkthrough (6/15)

null

curr

nextprev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 96

Solution B Walkthrough (7/15)

null

curr nextprev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 97

Solution B Walkthrough (8/15)

null

curr nextprev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 98

Solution B Walkthrough (9/15)

null

curr next

prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 99

Solution B Walkthrough (10/15)

null

curr
nextprev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 100

Solution B Walkthrough (11/15)

null

curr

next = null

prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

A B C

Andries van Dam 2023 11/14/23 101

Solution B Walkthrough (12/15)

A B C

null

curr

next = null

prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

Andries van Dam 2023 11/14/23 102

Solution B Walkthrough (13/15)

A B C

null

curr

next = null

prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

Andries van Dam 2023 11/14/23 103

Solution B Walkthrough (14/15)

A B C

null

curr = null

next = null

prev

head

while(curr!=null){
 next = curr.getNext();
 curr.setNext(prev);
 prev = curr;
 curr = next;

}

tail

Andries van Dam 2023 11/14/23 104

Solution B Walkthrough (15/15)

A B C

null

curr = null

next = null

prev

head

this.head = this.prev;

tail

Andries van Dam 2023 11/14/23 105

Using a Stack to
Reverse a Linked List

Andries van Dam 2023 11/14/23 106/100

Reverse a Linked List with a Stack (1/4)

● How can we use a Stack to reverse a Linked
List?

● Linked List: Caden, Chloe, Gaby, Orlando

● Note: user wouldn’t see head and tail –
implementation detail

tailhead

Andries van Dam 2023 11/14/23 107/100

Reverse a Linked List with a Stack (2/4)

● Solution:

o while Linked List is not empty, remove from Linked List and
push elements onto Stack

o then, while Stack is not empty, pop elements from Stack
and add to Linked List

Andries van Dam 2023 11/14/23 108/100

Reverse a Linked List with a Stack (3/4)

while(!this.list.isEmpty()) {

stack.push(this.list.removeFirst());

}

Stack

AllieCharliePatrick Caroline
tailhead

Andries van Dam 2023 11/14/23 109/100

Reverse a Linked List with a Stack (4/4)

Stack

Caden

Chloe

Gaby

Orlando

tailhead

while(!this.list.isEmpty()) {

stack.push(this.list.removeFirst());

}

tail
Null

head tail

Andries van Dam 2023 11/14/23 110/100

Check for Balanced
Parentheses

Andries van Dam 2023 11/14/23 111/100

Check for Balanced Parentheses (1/2)

● Check for balanced parentheses in a given string

● Balanced: [()()]{[()]}

● Not balanced: [(])

Andries van Dam 2023 11/14/23 112/100

Check for Balanced Parentheses (2/2)
● Go through every character, if it is a starting bracket, push it

onto the stack
● If it is a closing bracket, pop from the stack

o if stack is empty, return false
● The bracket you pop should be the opening bracket that

corresponds to the closing bracket you are looking at
o if it is not, return false

● If you get through every character and you haven’t returned
false, check if stack is empty

● If it is, the brackets are balanced!
Andries van Dam 2023 11/14/23 113/100

Check for Balanced Parentheses Pseudocode

for each bracket in string:

if stack is empty:
return true

if it is a starting bracket:
push it onto stack

if the popped character is not the matching opening bracket:
return false

if it is a closing bracket:
pop from the stack

Andries van Dam 2023 11/14/23 114/100

[()])][(

Check for Balanced Parentheses Walkthrough (1/6)
for each bracket in string:

if it is a starting bracket:
push it onto stack

if it is a closing bracket:
pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

StackAndries van Dam 2023 11/14/23 115/100

for each bracket in string:
if it is a starting bracket:

push it onto stack
if it is a closing bracket:

pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

[
Stack

()])][(

Check for Balanced Parentheses Walkthrough (2/6)

Andries van Dam 2023 11/14/23 116/100

[
Stack

()]

Match! Keep
going…

[(

for each bracket in string:
if it is a starting bracket:

push it onto stack
if it is a closing bracket:

pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

Check for Balanced Parentheses Walkthrough (3/6)

Andries van Dam 2023 11/14/23 117/100

for each bracket in string:
if it is a starting bracket:

push it onto stack
if it is a closing bracket:

pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

[
Stack

)]

Match! Keep
going…

[(

Check for Balanced Parentheses Walkthrough (4/6)

Andries van Dam 2023 11/14/23 118/100

for each bracket in string:
if it is a starting bracket:

push it onto stack
if it is a closing bracket:

pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

[

Stack

)][(

Check for Balanced Parentheses Walkthrough (5/6)

Andries van Dam 2023 11/14/23 119/100

for each bracket in string:
if it is a starting bracket:

push it onto stack
if it is a closing bracket:

pop from the stack
if the popped character is not the matching opening bracket:

return false
if stack is empty

return true

Stack

)][(

Check for Balanced Parentheses Walkthrough (6/6)

Andries van Dam 2023 11/14/23 120/100

for (int i=0; i<parenthesesArray.length; i++) {

 //If the element at this index is either starting bracket, push onto stack

 if (parenthesesArray[i].equals(“[”) || parenthesesArray[i].equals(“(”)) {

 myStack.push(parenthesesArray[i]);
 }
 //If the element at this index is either closing bracket, pop off of stack

 //Note use of built-in equals() method to compare Strings- returns a boolean

 if (parenthesesArray[i].equals(“]”) || parenthesesArray.equals(“)”)) {

 String popped = myStack.pop();

 if (parenthesesArray[i].equals(“)”) && !popped.equals(“(”)) {

 return false;
 }
 else if (parenthesesArray[i].equals(“]”) && !popped.equals(“[”)) {

 return false;
 }
 }
}
if (myStack.isEmpty()) {

 return true;
}

Exercise 2 Actual Code

Andries van Dam 2023 11/14/23 121/100

Model TA Hours Line

Andries van Dam 2023 11/14/23 122/100

TA Hours Line (1/2)
• Let’s model the TA hours line
• Because it is FIFO, we need to use a queue!
• What functionality do we need?

o a method for students to be added to the line
o a method for TAs to help the line until it is empty

Andries van Dam 2023 11/14/23 123/100

TA Hours Line (2/2)
• Start by initializing queue and
ta

• Define a method for adding to
hours line
o this can be used before hours or

during hours to sign up
• Define a method for seeing a
student –uses CS15TA’s help()

• Define a method for emptying
the queue
o useful after the cutoff is set

public class TAHoursLine{
 private Queue<Student> queue;
 private CS15TA ta;

 public TAHoursLine(CS15TA ta){
 this.queue = new Queue<Student>();
 this.ta = ta;
 }

 public Student addToLine(Student s){
 return this.queue.enqueue(s);
 }

 public void seeStudent(){
 this.ta.help(this.queue.dequeue());
 }

 public void holdHoursUntilCutoff(){
 while(!this.queue.isEmpty()){
 this.seeStudent();
 }
 }
}

Andries van Dam 2023 11/14/23 124/100

Counting Frequency in
an Array

Andries van Dam 2023 11/14/23 125/100

Counting frequency in an Array (1/4)
• How many times does a given word show up in a given string?
• Consider a book as one long String. That’s too hard to

search, so let’s chop the string into individual words using
punctuation as a separator and put each word in an array

• Givens
o String[] _book, an array of Strings, each an individual word
o String searchTerm, the word you’re looking for

Andries van Dam 2023 11/14/23 126/100

Counting frequency in an Array (2/4)
public void frequency(String searchTerm) {
 int wordCounter = 0; //frequency of single term
 for (String word : _book){

 if (word.equals(searchTerm)){
wordCounter++;

 }
 }
 System.out.println(searchTerm + “ appears ” +

wordCounter + “ times”);
}

Andries van Dam 2023 11/14/23 127/100

Counting frequency in an Array (3/4)
• When tracking one word, code is simple
• But what if we wanted to keep track of 5 words? 100?
• Should we make instance variables to count the

frequency of each word? For each term in the book?
o should we iterate through book for each of the search terms? Sounds like

O(n2)...

Andries van Dam 2023 11/14/23 128/100

Counting frequency in an Array (4/4)
HashMap<String, Integer> countMap = new HashMap<String, Integer>();
/*_book is an array of words.
 * If currWord in _book matches a search term,
 * put currWord back with updated count. By using
 * put(), we replace current entry in hashMap.
 * Note use of Integer rather than int because you
 * can’t use base types as generics */
for (String currWord : _book){
 if (countMap.containsKey(currWord){
 Integer count = countMap.get(currWord);
 count++;
 countMap.put(currWord, count);
 }
 else{
 //First time seeing word
 countMap.put(currWord, 1);
 }
}

/*separate method: searchTerms is now an array of
s* Strings we’re counting */
public void frequencies(String[] searchTerms) {
 for (String word : searchTerms){
 Integer freq = 0;
 if (countMap.get(word) != null){
 freq = countMap.get(word);
 }
 System.out.println(word + “ shows up ” +

freq + “ times!”);
 }
}

Despite increase in search terms, still O(n)

Andries van Dam 2023 11/14/23 129/100

