
Andries van Dam © 2023 11/28/23
1 / 57

Andries van Dam © 2023 11/28/23

Lecture 20
A Brief History of Computers & Programming

Languages
See “The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution” by Walter Isaacson.

Copyright © 2014 by Walter Isaacson

Andries van Dam © 2023 11/28/23
3 / 57

Andries van Dam © 2023 11/28/23

In the beginning… (1/12)
● Calculating and Calculus come from Latin word

calculus (“a pebble or stone used for counting”),
diminutive of calx (“limestone”)

● Crucial inventions are the positional numbering
system, zero1, and early algorithms such as
multiplication and division
o Algorithm is named after 8th century Persian

mathematician and astronomer Al-Khwarizmi who
was trained in Indian and Greek sources

o Algebra is derived from al-jabr, one of the
operations he used for solving quadratic equations

1 Zero appears to have been invented in India, by Babylonians, Mayans, and Chinese.
Carbon dating of an ancient Indian document, the Bakhshali manuscript, has recently
placed the first written occurrence of the number zero in the third or fourth century A.D.,
about 500 years earlier than previously believed.
(https://www.nytimes.com/2017/10/07/opinion/sunday/who-invented-zero.html)

4 / 57

Andries van Dam © 2023 11/28/23

● Suanpan/Soroban/Abacus and other counting devices in
multiple civilizations centuries AD! (and still in use!)

● Tables, logarithms and slide rules
o 1614: Napier publishes logarithms

o 1620s: first slide rules based on logs, effectively analog computing

In the beginning… (2/12)

Napier
5 / 57

Andries van Dam © 2023 11/28/23

• Antikythera mechanism
o Hand-powered orrery (model of the Solar

System)
o Oldest known example of an analog

computer dated ~200 BC
o Discovered in a Greek shipwreck in 1901
o 37 meshing bronze gears enabling it to

follow the movements of the Moon and the
Sun through the zodiac, to predict eclipses
and to model the irregular orbit of the Moon

6 / 49
Source: Wikipedia

In the beginning… (3/12)

https://en.wikipedia.org/wiki/Orrery
https://en.wikipedia.org/wiki/Antikythera_mechanism

Andries van Dam © 2023 11/28/23

● Long history of mechanical clocks, orreries, elaborate music boxes and instruments, up to and
including today’s player pianos (listen to Gershwin)

o Mechanized music museum in Utrecht, NL – Museum Speelklok (player clock, like player
piano)

▪ Museum dedicated to mechanical music making

▪ Rush E – The Impossible Piano Piece

▪ Wintergatan – Marble Machine

In the beginning… (4/12)

Video Link 7 / 57

http://www.museumspeelklok.nl/Agenda/Rondleiding
https://www.museumspeelklok.nl/lang/en/
https://www.youtube.com/watch?v=Qskm9MTz2V4
https://www.youtube.com/watch?v=IvUU8joBb1Q
https://www.museumspeelklok.nl/lang/en/
https://www.dropbox.com/sh/8172hb9t8pzehcn/AABsRzO5BBnjmFfYnPsAhW8Ia?dl=0&preview=IMG_6708.MOV

Andries van Dam © 2023 11/28/23

● Led to mechanical devices based on cogs on wheels and carry mechanisms
o 1645: Blaise Pascal creates the Pascaline adding machine – up to 8 dials
o 1672: Leibniz Calculating Machine (“stepped reckoner” could add, subtract, multiply, and

divide)
o Newton, Leibniz… -> Clockwork Universe, with God as the clock-maker

In the beginning… (5/12)

Blaise Pascal Pascaline Leibniz Calculating
Machine

8 / 57

Andries van Dam © 2023 11/28/23

The Jacquard Loom
● 1725: Perforated paper roll to control the patterns woven on a loom by Bouchon
● 1728: Falcon laced punch cards together by string
● 1801: Jacquard gets award for pattern loom driven by punched cards

9 / 57

Andries van Dam © 2023 11/28/23

● 1822: Eccentric British inventor Charles Babbage proposed
idea of mechanical calculation to compute polynomials (for
ballistics, longitude tables): The Difference Engine
o this machine was designed but not built

o the name derives from its method of divided differences Charles Babbage

A modern implementation of the difference engine was
finally completed by the London Science Museum in 2002

In the beginning… (6/12)

10 / 57

Andries van Dam © 2023 11/28/23

In the beginning… (7/12)
● Proposed combining mechanical calculation with idea of

feeding instructions via punched cards in the style of music
boxes and the Jacquard Loom, thus designing the first
(mechanical) computer: the Analytical Engine
o first had to invent tools for the precise machining

required, but the Analytical Engine was never
completed

o however, the “architecture” is strikingly similar to
essence of modern computers: driven by instructions,
has arithmetic unit, memory, input/output

Jacquard Loom

Punch cards on a
Jacquard Loom

Babbage’s son built a small part of his analytic engine in 1910, and the
Science Museum has begun the process of building a complete version

11 / 57

Andries van Dam © 2023 11/28/23

In the beginning… (8/12)
● 1845: John Clark, cousin of founders of the Clarks’ shoes

empire, built the Eureka, a machine that produced
“polished line[s] of Latin poetry”
o one of the forerunners of the programmable computer
o machine that generated Latin hexameter verse

▪ hexameter is the meter of ancient epics, of the poets
Ovid and Virgil

▪ the strict rules of Latin hexameter make it similar to
following a mathematical formula

o 26 million possible permutations
▪ “If we had it running continuously, it would take 74

years for it to do its full tour before it started
repeating itself.”

12 / 57

Andries van Dam © 2023 11/28/23

● ~1845: Augusta Ada Lovelace (Lord Byron’s
daughter) is a mathematician, poet and
philosopher, writes program to calculate
Bernoulli numbers for the Analytical Engine
o first known computer program and programmer!
o “machine does exactly what you tell it to do”

o in other words, if you can tell it what to do, it will do
it faithfully – the essence of computers & s/w!

o “The Analytical Engine weaves algebraic
patterns the way the Jacquard Loom weaves
flowers and leaves”

o Ada programming language named in her honor
was a DOD-sponsored language
▪ for writing programs using software engineering

principles, including Abstract Data Types

A piece of the analytic engine (photo
from the Science Museum of

London)

In the beginning… (9/12)

IBM Pavilion visitors view computer
operating Jacquard loom during the

1968 World's Fair known as
HemisFair '68 in San Antonio.

Weaver/Programmer: Janice Lowry

13 / 57

Andries van Dam © 2023 11/28/23

● 1890 Census bureau used Hollerith’s tabulator fed by punch-cards
● 1900s: Specialists programmed “business machines" (note IBM’s original

name) by actually changing hardware’s wiring
o advanced models used plug boards - try to debug that!

In the beginning… (10/12)

14 / 57

Andries van Dam © 2023 11/28/23

● 1930s: The IBM Automatic Sequence
Controlled Calculator (ASCC),
called Mark I was designed by Harvard
University’s staff
o Howard Aiken presented the first

design in November 1937
o it served as a general purpose

electro-mechanical (relay)
computer that was used in the war
effort during the last part of World War
II – ballistic and bomb calculations

o Grace Hopper credited with finding a
real bug

In the beginning… (11/12)

First actual case of bug being found.
See: "The moth in the relay"

15 / 57

http://www.computerworld.com/article/2515483/enterprise-applications/epic-failures--11-infamous-software-bugs.html

Andries van Dam © 2023 11/28/23

● 1946: J. Presper Eckert and John Mauchly at University of Pennsylvania built
Electronic Numerical Integrator and Computer (ENIAC)
o first electronic general purpose “automatic” computer, used for ballistics and bomb calculations
o 18,000 vacuum tubes, MTBF of 20 minutes! Still programmed by wiring
o 5,000 adds/ subtracts/sec, 400 multiplies/sec, 35 divisions or square roots/sec (10 digit numbers)
o men wanted to build hardware, left less prestigious “programming” to the all-female corps of

programmers, called “computers”, a 19th century term
▪ Article: The Forgotten Female Programmers Who Created Modern Tech

In the beginning… (12/12)

J. Presper Eckert John Mauchly
16 / 57

https://ftp.arl.army.mil/~mike/comphist/eniac-story.html
http://www.npr.org/sections/alltechconsidered/2014/10/06/345799830/the-forgotten-female-programmers-who-created-modern-tech

Andries van Dam © 2023 11/28/23

Belatedly Recognized Female Pioneers (1/2)

• “Code Girls: The Untold Story of the American Women
Code Breakers of World War II” by Liza Mundy

• During World War II, a group of women were chosen for
their abilities and math

• They decoded several Japanese messages which enabled
the US to sink military ships and stop enemy attacks

• Among them, was Ann Caracristi who became the first
female NSA director in 1980

• The Women Who Helped America Crack Axis Code
17 / 57

https://www.nytimes.com/2017/11/06/books/review/liza-mundy-code-girls-world-war-ii.html

Andries van Dam © 2023 11/28/23

• “Hidden Figures: The True Story of Four Black Women
and the Space Race” by Margot Lee Shetterly, also
made into a movie in 2016

• Tells the story of the black women who worked in
NASA, in segregated Virginia and contributed to the
successful launch of the first men in space

• Katherine Goble made accurate calculations which
allowed the Friendship 7 shuttle to launch successfully

• Dorothy Vaughan taught herself FORTRAN so she and
her co-workers could operate the new IBM machines,
and was named supervisor

• Mary Jackson obtained her engineering degree and
was hired as an engineer at NASA

Belatedly Recognized Female Pioneers (2/2)

18 / 57

Andries van Dam © 2023 11/28/23

Stored Program Computer Architecture (1/2)
● 1945: John von Neumann publishes

seminal concept of “stored program”
computer, aka von Neumann architecture
o wrote first paper detailing the idea, based

on discussions w/ Mauchly's team,
influenced by Turing’s work on the
Universal Turing Machine (S 26)

o “it’s bits all the way down…” for both data
and instructions

o program can be stored in main memory
and even treated as data to be operated
on–paved the way for modern computers

o ENIAC+ embodied the idea (1948), UK
Manchester’s Baby (1948) first design with
von Neumann architecture

19 / 57

Andries van Dam © 2023 11/28/23

Stored Program Computer Architecture (2/2)

CPU

I/O Interface Memory

Address

Data

Control

S
ystem

 B
uses

Simplified Processor Architecture

● Simple instruction execution loop in CPU
o use instruction register to fetch instruction stored at that address in memory,

increment instruction counter, decode and execute instruction
o instruction typically is <op-code> <memory address>

CS15 Final Project Othello uses the minimax algorithm!

o instruction may update memory – even
modify stored program itself, e.g., for
loops. Unsafe: now we use h/w looping
w/ index registers

● von Neumann was a polymath: worked
on atom and hydrogen bombs,
co-invented “game theory” (including
minimax), computational biology, etc.

20 / 57

*

*”bus” means bundle of wires

Andries van Dam © 2023 11/28/23

Moore’s Law and the Shrinking Computer (1/2)
● Moore’s (1) “Law”: an observation that over the

history of computing hardware, number of
transistors in a dense integrated circuit doubles
approximately every two years
o In < 6 years it increases an order of magnitude!

● Smaller feature size, greater density means shorter
paths, faster signal propagation in microprocessors

● We benefit not just from microminiaturization of the
CPU but also from great electromechanical
engineering of peripheral devices (e.g., disk
controllers, disks – 40MB was a big disk in the 60s!)
My graphics group’s dual Meta-4 mini in ‘70s had
32KB, 1MB disk, ran a complete time-sharing
system

(1) Gordon Moore was the co-founder of Intel and the co-inventor of the integrated circuit, which led to microprocessors, etc.

21 / 57

Andries van Dam © 2023 11/28/23

Mainframe Machine Room

IBM System 360 /65 with 2314 disk unit;
8x25MB = 200 Mbytes (late 1960’s)

1100 x IBM 2316 29Mbyte disks in one 32
Gbyte microSD card

22 / 57

Andries van Dam © 2023 11/28/23

● IBM z13 microprocessor (6-8 cores @5 Ghz) has about
same computing power as 5,000 football fields worth of
Brown’s IBM /360 mod 50s (.14MIPS) 50+ years
ago–mainframes still selling!

● A Look at Mainframe History as IBM System/360 Turns 50,
COBOL Turns 55

● But are Silicon chips hitting a limit? Transistors with a single
atom?

● What’s next: biological computers? Quantum computers?
o qubits store multiple states (superposition, like fundamental and

harmonics in sound), allowing parallel storage and
computation–big engineering problem to make them
(cryogenic)

o factorization for large N shown to be doable with quantum
computers–would wreak havoc with en/decryption, e-commerce

o making a full QC, let alone a general purpose QC using
non-semi-conductor solutions, still in research stage
o “arms race” between China and US for supremacy in QC

Moore’s Law and the Shrinking Computer (2/2)

23 / 57

https://www.eweek.com/servers/a-look-at-mainframe-history-as-ibm-system-360-turns-50-cobol-turns-55/
https://www.eweek.com/servers/a-look-at-mainframe-history-as-ibm-system-360-turns-50-cobol-turns-55/

Andries van Dam © 2023 11/28/23

Computers get faster, but do they get more “powerful”?
● Computer is the only Universal Machine!
● Yet theoretically only need 6 instructions for ANY algorithm!

o load accumulator (high-speed register) from memory address
o store accumulator to memory address
o subtract contents of memory address from accumulator, store result in accumulator
o jump to memory address (instruction) if accumulator < 0 (“conditional jump”)
o read to accumulator from external input device
o write from accumulator to external output device

● You can build
o add by subtracting negative numbers
o divide by repeated subtract, multiply by repeated add
o if-then-else and loops with conditional jump
o output to printer by write into special memory location

24 / 57

Andries van Dam © 2023 11/28/23

Tradeoffs in Power/Complexity of Instruction
● Tradeoffs

o complexity of instruction (how much it does)
o speed of instruction execution
o size of instruction set (and can compiler take advantage of them)

● Today’s computers
o Complex Instruction Set Computer (CISC) > 500

▪ started with IBM mainframes in 50s and 60s, now “Intel architecture” dominates
o Reduced Instruction Set Computers (RISC) 100–300 (simpler but faster instructions)

▪ major innovation and important in 80s and 90s
o Intel architecture has adapted best ideas from RISC
o ARM architecture also RISC; used in phones, tablets, Macs. Arduino boards for IoT
o emphasis today is on “multi-core” (multiple CPUs per chip) and low-power designs
o GPUs (Graphics Processing Units) are even more powerful. For games, but also for

data crunching, e.g., scientific simulation (weather prediction, protein folding, machine
learning, LLMs…) – increasingly use GPU clusters for heavy duty computation
▪ program GPUs with “shader programming” in CS123, Intro to Graphics

25 / 57

Andries van Dam © 2023 11/28/23

Turing, Computability (1/3)
● Alan Turing (1912–1954): logician, mathematician, cryptanalyst, first computer

scientist, theoretical biologist
● Designed code breaking machine “the Bombe” to crack the WWII German

Enigma cypher – crucial in winning the war!
● Envisioned a test for when to call a machine “intelligent” - Turing test

26 / 57
https://www.britannica.com/topic/Bombe

https://www.britannica.com/topic/Bombe

Andries van Dam © 2023 11/28/23

Turing, Computability (2/3)
● Formalized notions of algorithm, computer and

mechanized computing in an era that was very
concerned with what was computable and what
was not, mechanized mathematics, e.g.,
undecidability, halting problem, etc….also
started AI, Turing Test

● Turing Machine as the simplest possible
conceptual device to execute an arbitrary
algorithm: device with a writable tape and a
read/write head; the logic is in a table

27 / 57

Andries van Dam © 2023 11/28/23

● Table contains the “program” of “instructions” as a “state
machine”–if in state i and read 1, do action x, then go to a next
state; if read 0, do action y, go to a next state. Simple actions:

1) move the r/w head one square left or right
2) read/write current cell (empty or tape alphabet)
3) does not have to halt

● Universal Turing Machine that could simulate any other TM by
simulating its table.
o proof that one could build a universal “programmable” computer
o MIT’s AI pioneer Marvin Minsky devised a 43-state UTM!

● Turing committed suicide after being prosecuted and “treated”
(chemically castrated) for being gay
o PM Gordon Brown publicly apologized in 2009, Queen Elizabeth

granted a posthumous pardon in 2013

Marvin Minsky

Born: August 9, 1927

Died: January 24, 2016

Turing, Computability (3/3)

28 / 57

Andries van Dam © 2023 11/28/23

First, Numeric Machine Language, Then Came
Assembly Language (1/2)

● 1949: John Mauchly develops Short Order Code
o first assembly language
o provided vehicle for higher-level languages to be developed

● Symbolic code that is 1:1 with machine code

o load accumulator with contents stored at address 4
o program translates to machine code via table lookup of opcode, decimal to binary

conversion algorithm
o assembler early example of treating a program as data!

opcode

LOAD 4 0001 0000 0000 0000 0100

memory address

29 / 57

Andries van Dam © 2023 11/28/23

● Must be defined for each processor
o hard-wired for particular processor’s architecture
o generated by compilers for higher-level languages

● Modern processors are very complicated
o so writing at assembly language level takes real skill (learn it in CS33!)
o compilers can optimize code globally for high-level languages, using sophisticated

computation graphs
o programmers generally optimize code only locally

● Still used today when speed and size count
o embedded computers, device drivers, games
o programmer must understand hardware well to use effectively
o increasingly, C is used as a “machine-independent” assembly language (CS33)

First, Numeric Machine Language, Then Came
Assembly Language (2/2)

30 / 57

Andries van Dam © 2023 11/28/23

● Attempt to make programming more intuitive
o closer to programmer’s concepts (high-level)
o further from machine’s concepts (low-level)

● Symbolic code that is 1:N with machine code
o one high-level instruction may become tens or hundreds of machine code instructions

● Most importantly, machine independent
o avoided vendor lock-in
o depended on compiler to translate high-level constructs to computer’s machine code
o thus allows one source program to be used on many target architectures

● Still trying to make languages higher level
o Java guarantees single compilation, same execution on multiple machines via byte

codes: write once, run everywhere
o compile to byte code virtual machine; computer will have virtual machine interpreter

High-Level Languages

31 / 57

Andries van Dam © 2023 11/28/23

High-Level Languages: Important Dates (1/2)
● 1957: John Backus et al. at IBM develop FORTRAN language

and compiler
o FORmula TRANslator
o still used today, mostly for scientific computing, highly optimized for

number crunching
● 1959: Committee on Data System Languages develops COBOL

o led by Rear Admiral Grace Hopper, one of first modern
programmers (Grace Hopper Celebration of Women in Computing –
from ~200 in 2001 to ~ 20,000 in 2018!)

o Common Business Oriented Language, “English-like,” support for
data records

o still tons of legacy code in banks, insurance companies, retail…
(Y2K!)

32 / 57

Andries van Dam © 2023 11/28/23

● 1959: John McCarthy develops LISP
o LISt Processing
o seen as slow, so primarily used only for “AI” projects
o Scheme is a modern Lisp-like “functional programming” language
o Python (CS200) can be seen as language with LISP functionality, but with

modern syntax (http://norvig.com/python-lisp.html)
o Pyret (CS111) is also a similar language, and often used for education

(https://www.pyret.org/pyret-code/)
● 1960: ALGOL 60 standard published

o ALGOrithm Language; formally defined; task/procedure decomp. oriented
o basis of most popular languages today

● 1964: John Kemeny and Thomas Kurtz at Dartmouth develop BASIC
o Beginners All-purpose Symbolic Instruction Code
o simple language, meant to be used by beginners and non-professionals,

efficient on microcomputers
o was popularized by Microsoft’s Visual BASIC, now largely replaced by

JavaScript and TypeScript (OOPLs)

High-Level Languages: Important Dates (1/2)

33 / 57

http://norvig.com/python-lisp.html
https://www.pyret.org/pyret-code/

Andries van Dam © 2023 11/28/23

Structured Programming (1/2)
● 1968: Edsger Dijkstra writes landmark note: “GoTo

Statement Considered Harmful”
o GoTo, an unconditional branch without a return, leads

to spaghetti code
o no predictability, FoC can go anywhere in program,

can’t be understood by programmer or compiler

● New languages would have constructs for common one-in-one-out flows of
control for controlled branching–the return from the branch is prescribed
o if/else-if and switch statements
o while and for loops
o gives sequential, predictable order to code, only controlled branches allowed
o allows better code optimization

• Brown’s AM101, AM40, CS11 (CS15 precursors) switched to new structured
programming style using only 1-in, 1-out branching in late 60’s 34 / 57

Andries van Dam © 2023 11/28/23

Next Generation High-Level Procedural Languages

● Emphasize task decomposition, no bundling of data and procedures in “objects”
● 1964: Researchers at IBM develop PL/I, an omnibus language

o Programming Language I
o designed to synthesize best features of FORTRAN, COBOL, and Algol 60
o failed as attempt to be the one general purpose programming language

● 1970: Niklaus Wirth develops Pascal
o named for Blaise Pascal, designed to be an educational language

● 1972: Dennis Ritchie at Bell Labs develops C (also learned in CS33)
o predecessor named B
o often called portable assembly language
o surpassed COBOL as most popular language

35 / 57

Andries van Dam © 2023 11/28/23

Object-Oriented Programming Languages (1/3)

Even OOPLs are Relatively Old!

● 1967: Ole-Johan Dahl and Kristen Nygaard at Norwegian Computing
Centre develop Simula, SIMUlation Language and first OO programming
language, classes

● 1972: Alan Kay, Adele Goldberg, Dan Ingalls (all Computer History
Fellows), et al at Xerox develop Smalltalk and the windows metaphor/GUI

● 1972: Barbara Liskov at MIT develops CLU, with focus on ADTs (next slide)

36 / 57

Andries van Dam © 2023 11/28/23

● 1980: US Department of Defense develops Ada to combat plethora of
languages whose code doesn’t interoperate
o ADT’s, Objects, Concurrency…
o like PL/I, an omnibus, complex language
o defense contractors had trouble finding qualified staff to write in it

● 1983: Bjarne Stroustrup develops C++
o OO extensions to popular C language–named C++ as a play on the ++

operator (one better than C!)

Object-Oriented Programming Languages (2/3)

37 / 57

Andries van Dam © 2023 11/28/23

● 1995: James Gosling et al. at Sun Microsystems develop Java, a cleaned-up,
smaller dialect of C++
o meant to be internet and embedded device programming language
o provide facilities for better reuse and safety
o some professionals avoid it because it is seen as inefficient (use C++ or C instead)
o Microsoft’s C# is a powerful Java-ish competitor; also Python, Ruby-on-Rails
o JavaScript is NOT Java, and is mostly an OOPL

Important note: OOP is one of multiple programming paradigms, not a panacea.
Procedural and functional programming, and special purpose languages like
MATLAB and MATHEMATICA, are tools with their own applicability, and anyone
developing s/w needs to be multi-paradigm, multi-lingual

Object-Oriented Programming Languages (3/3)

38 / 57

39/49Andries van Dam © 2019 11/05/19

Remember APIs?
• Application Program(ming) Interfaces

o coined by former undergraduate Ira Cotton in 1968

• Think JavaDocs: Collection of method/function
invocations with their parameters and returns, with brief
descriptions of their functionality, error conditions, etc.

• NO implementation details – encapsulation!

Andries van Dam © 2023 11/28/23

Who “owns” APIs? (1/2)
● Oracle vs. Google reuse of APIs and Java code
● November 7, 2014: Computer Scientists Ask Supreme Court to Rule APIs

Can’t Be Copyrighted
o The Electronic Frontier Foundation (EFF) filed a brief with the Supreme Court,

arguing on behalf of 77 computer scientists that the justices should review a
disastrous appellate court decision finding that application programming interfaces
(APIs) are copyrightable

o That decision, handed down by the U.S. Court of Appeals for the Federal Circuit in
May, up-ended decades of settled legal precedent and industry practice

o Signatories to the amicus brief include five Turing Award winners, four National
Medal of Technology winners, and numerous fellows of the Association for
Computing Machinery, IEEE, and the American Academy of Arts and Sciences
▪ the list also includes designers of computer systems and programming

languages such as AppleScript, AWK, C++, Haskell, IBM S/360, Java,
JavaScript, Lotus 1-2-3, MS-DOS, Python, Scala, SmallTalk, TCP/IP, Unix, and
Wiki. Avd also signed

40 / 57

https://www.eff.org/document/amicus-brief-computer-scientists-scotus
https://www.eff.org/deeplinks/2014/05/dangerous-ruling-oracle-v-google-federal-circuit-reverses-sensible-lower-court

Andries van Dam © 2023 11/28/23

● June 29th 2015: Supreme Court refuses to rule on Court of Appeals ruling
upholding Oracle’s ownership of Java API’s; the suit for copyright infringement
against Google is ongoing, with Google using “fair use” doctrine
o May 2016: Jury ruled in Google’s favor, using “fair use” doctrine
o March 2018: After Oracle filed an appeal, Federal Appeals Court overturned the

jury and said Google’s use of Java was not “fair use.” Case is back to trial court to
determine damages. Google petitioned the entire Court to rehear the case, but The
Federal Circuit denied Google’s petition.

o January 2019: Google filed another petition asking the Supreme Court to review
Federal Circuit Decisions.

o April 5, 2021: Supreme Court rules Google’s use of APIs was “fair use” but
sidestepped whether APIs are copyrightable IP, though seemingly favoring the idea

● Question: even if you can copyright an API, is it enforceable?

Who “owns” APIs? (2/2)

41 / 57
References: Wikipedia, Electronic Frontier Foundation

https://en.wikipedia.org/wiki/Google_LLC_v._Oracle_America,_Inc.#:~:text=The%20Court%20issued%20its%20decision,Breyer%20wrote%20the%20majority%20opinion.
https://www.eff.org/cases/oracle-v-google

Andries van Dam © 2023 11/28/23

Reddit API Scandal & Protests
• Summer 2023: Reddit began charging for usage of it’s

API July 1st, which had previously been free to use
o a brutal price for outside indie developers
o popular 3rd party apps forced to shut down

▪ Christian Selig, developer of Apollo, would have owed Reddit
$20,000,000/year at the current pricing!

▪ Article: why disabled users joined the Reddit blackout
• 8000+ subreddits “went dark” in protest

o supposed to be 2 days, lasted 2+ months.
o sizable portion of the site -- were you affected?
o “like all blowups on Reddit, this one will pass ” -- Reddit CEO

Steve Huffman

42 / 57

https://www.theverge.com/2023/6/13/23759761/reddit-disability-accessibility-blackout-api-blind

Andries van Dam © 2023 11/28/23
43 / 57

Andries van Dam © 2023 11/28/23

Software Engineering (1/4)
● 1968: NATO Science Committee addresses “software crisis”

o hardware progressing rapidly, but not software
o software development seen mostly as craft with too much trial-and-error
o too little has changed – e.g., ACA website debacle! (and RI’s multiple failed

roll-outs: DMV, DHS SNAP, …)
o coins term software engineering

● 1975: Frederick Brooks writes landmark book “The Mythical Man-Month”
o says “no silver bullet,” software is inherently complex – most complex

man-made systems
o complexity can be ameliorated but cannot be cured by higher-level languages
o adding people to project delays it (“9 women can’t make a baby in a month”)

44 / 57

Andries van Dam © 2023 11/28/23

Software Engineering (2/4)

● 1990s: Les Hatton develops “30-5-1” rule
o from study of real commercial programs
o discovered 30 bugs per 1000 lines untested code on average, then only 5 in

well-tested code, and 1 bug still remaining after code in production
o rule held regardless of language, probably still true today!
o all commercial s/w has day-one bugs, and for non-life-threatening s/w, we tolerate it
o under the guise of “early availability” vendors let the user community debug
o unacceptable for mission-critical s/w used in nuclear reactors, weapons, vehicles,

medical apparatus, EFT and other banking apps, IRS s/w, etc.

45 / 57

Andries van Dam © 2023 11/28/23

Software Engineering (3/4)

● Sophisticated development and testing methodologies
o CS17 and CS19 teach students to write tests that inform

the implementation rather than write tests that are tailored
to the implementation

o goal is to cover both general and edge cases
o formal verification (proving h/w and s/w correct) is in the

ascendency again

46 / 57

Andries van Dam © 2023 11/28/23

Software Engineering (4/4)
● Libraries of reusable components

o companies offer well-tested common components
o “plug-n-play” frameworks to connect trusted catalogue parts
o OOP/D is a good paradigm to make this goal feasible–works well for GUI

widgets (aka controls), as in JavaFX, and large-scale components (e.g.,
“Enterprise JavaBeans”, QT Framework used in CS123)

● CS32: modern software engineering using Java!
● Note: new languages and software engineering technologies (frameworks,

IDEs…) still hot subjects, both in industry and in academia
o e.g. Apple’s Swift, positioned as successor to C and Objective-C, and Google’s

Dart, designed to make common problems in app development easier to catch

47 / 57

https://developer.apple.com/swift/
https://www.dartlang.org/

Andries van Dam © 2023 11/28/23

Implications of Information Technology
• Computing/IT history isn’t just about all the great strides we’ve made, and the fact that we’re still in the

dawn of this technological revolution!
• Growth was driven by techno-optimism and the disruption paradigm, focus of Schumpeter’s

“creative destruction” economic theory of the effects of innovation
o Steve Jobs: personal computing
o Bill Gates: information at your fingertips
o Mark Zuckerberg: connecting the world

• Now we recognize that there can be unforeseen, harmful consequences, disruption
o job displacement because of automation (eliminating and creating new jobs, upskilling, …)
o hacking of personal and corporate data
o integrity of the voting process

▪ influencing elections via fake news; disturbingly easy to hack voting machines,…
• Instead of bringing us together via affinity groups and virtual communities, these technologies have…

o created bubbles, hardening positions, amplifying the echo chamber, fueling conspiracy theories
o spread of alternate facts and the post-truth world
o fueled anti-ethnic/religious biases, “nationalism”
o Cambridge Analytica, psychographic profiles 🡪 micro-targeting, “YOU are the product”

Be techno-optimists, help improve our world, but think about unintended consequences
48 / 57

Andries van Dam © 2023 11/28/23

A Brief History Of CS15 (neé AM101/102, AM 51, CS11,…)
• 1965: Punched cards on the IBM 7070 mainframe

o Machine language and assembly language, all of CS except data bases, AI
and theory

o From one credit to two credits/semester, then split into different courses
• 1966: IBM System/360 Model 50, punched cards
• 1968: IBM System/360 Model 67, used with timesharing past 1978
• 1978: IBM System/360 Model 158
• Late 1960’s-early 70’s: Timesharing on dial-up (modems) typewriter and

80x20 alphanumeric terminals, but punched cards still used through 1980

49 / 57

Written by Andy and two
former 15 HTAs

Written by RIC Professor
Kate Sanders and Andy

• 1979: CS department created with 7 faculty in Kassar House,
• DEC VAX 11/780 for departmental use, advanced courses and

research
• 1985: Forty Apollo work stations in a ramped auditorium (pre-Sunlab) –

interactive algorithm animation in lectures (e.g., sorts)
o Brown was one of the 3 “Workstation Schools” (with MIT and CMU), first

Apple ed partner
• 1988: Sunlab in the new CIT

o Populated with 80 Sun Microsystems workstations
o Used by Brown CS students until homebuilt PCs with Linux OS in late ‘90s

🡪 PL/C 🡪 Pascal 🡪 OOP Pascal 🡪 JavaPL/1

Andries van Dam © 2023 11/28/23

Aside: Barbara Liskov’s Talk at Brown 11/06/14
● Biography:

o member of the National Academy of Engineering and the National Academy of Sciences,
the National Academy of Inventors.

o ACM Turing Award (the Nobel prize of CS), IEEE Von Neumann medal, Brown
honorary degree

● The Power of Abstraction
o abstraction is at the center of much work in Computer Science
o finding the right interface for a system as well as finding an effective design for a system

implementation
o furthermore, abstraction is the basis for program construction, allowing programs to be built in a

modular fashion.
● What I learned from her talk

o ADTs need to describe the behavior, not just the method signatures, return types, errors: “pragmatics”
o Java and other OOPLs can only provide support for enforcing that subtypes can do what supertypes

can–they can’t enforce the idea that subtypes should also exhibit the same behavior
o CS15 has de-emphasized inheritance, pushing interfaces and composition

50 / 57

