
1 / 78
Andries van Dam © 2023 09/12/23

2 / 78
Andries van Dam © 2023 09/12/23

Visit our website here for

office hours and more

information!

https://cs.brown.edu/people/orgs/wics/#get-involved

3 / 78
Andries van Dam © 2023 09/12/23

Note Taking for CS15
• Slides are always uploaded to the

website before lectures!
• Physical copies

o print out the “Printable PDF” version of
the slides before lecture and take
notes while I’m speaking!

o if you’re on campus, you can find
instructions on how to Live
note-taking print here!

o If you download the PowerPoint
version of slides, you can take notes in
the lower part of the screen

Lucy Reyes’ notes from CS15!
(HTA in 2019)

https://ithelp.brown.edu/kb/articles/get-started-with-myprint

4 / 78
Andries van Dam © 2023 09/12/23

Lecture 2
Calling and Defining Methods in Java

5 / 78
Andries van Dam © 2023 09/12/23

6 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

7 / 78
Andries van Dam © 2023 09/12/23

• Models the “application world” as system of collaborating
objects

• In OOP, objects are ”smart” in their specialty
o have properties and behaviors (things they know how to do)

• Objects collaborate by sending each other messages
• Objects typically composed of other component objects

Object Oriented Programming

8 / 78
Andries van Dam © 2023 09/12/23

OOP as Modeling
● Write programs by modeling the problem as system

of collaborating components
o you determine what the building blocks are
o put them together so they cooperate properly
o like building with smart Legos, some

of which are pre-defined, some of which you
design!

o containment/association diagrams, like
the one shown here, are a great
way to help model your
program!

9 / 78
Andries van Dam © 2023 09/12/23

Example: Tetris (1/3)

● What are the game’s objects?
● What properties do they have?
● What do those objects know how

to do?

10 / 78
Andries van Dam © 2023 09/12/23

● What are the game’s objects?
o piece, board

● Properties: What attributes and components do they have?
○ board:

■ size
■ rows
■ columns

Example: Tetris (2/3)

○ piece:
■ orientation
■ position
■ shape
■ color
■ # of tiles

11 / 78
Andries van Dam © 2023 09/12/23

Example: Tetris (3/3)

○ board:
■ be created
■ remove rows
■ check for end of game

○ piece:
■ be created
■ fall
■ rotate
■ stop at collision

● Capabilities: What do those objects know how
to do?

12 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

13 / 78
Andries van Dam © 2023 09/12/23

• samBot is a robot who lives in a
2D grid world

• She knows how to do two things:
o move forward any number of steps

o turn right 90o

• We will learn how to communicate
with samBot using Java

Meet samBot (kudos to former HTA Sam Squires)

I created
samBot!

14 / 78
Andries van Dam © 2023 09/12/23

samBot’s World

• This is samBot’s world
• samBot starts in the

square at (0,0)
• She wants to get to the

square at (1,1)
• Thick black lines are

walls samBot can’t pass
through

0 1 2 3 4

0

1

2

(2,4)

15 / 78
Andries van Dam © 2023 09/12/23

Giving Instructions (1/3)

• Goal: move samBot from starting
position to destination by giving her
a list of instructions

• samBot only knows how to “move
forward n steps” and “turn right”

• What instructions should be given?

20 1 3 4

0

1

2

16 / 78
Andries van Dam © 2023 09/12/23

20 1 3 4

0

1

2

Giving Instructions (2/3)

• “Move forward 4 steps”
• “Turn right”
• “Move forward 1 step”
• “Turn right”
• “Move forward 3 steps”

Note: samBot moves in the direction her outstretched arm is pointing.
Yes, she can move sideways and upside down in this 2D world!

17 / 78
Andries van Dam © 2023 09/12/23

20 1 3 4

0

1

2

Giving Instructions (3/3)

• Instructions must be given in a
language samBot knows

• That’s where Java comes in!
• In Java, give instructions to an

object by giving it commands
o we use “sending a message” and “giving a

command” as synonyms!

18 / 78
Andries van Dam © 2023 09/12/23

“Calling Methods”: Giving Commands in Java (1/2)

• samBot can only handle commands she knows how to
respond to

• These responses are called methods!
o “method” is short for “method for responding to a command.”

Therefore, whenever samBot gets a command, she must respond by
utilizing a predefined method

• Objects cooperate by giving each other commands
o caller is the object giving the command

o receiver is the object receiving the command

19 / 78
Andries van Dam © 2023 09/12/23

• samBot already has one method for “move forward n steps” and
another method for “turn right”

• When we send a command to samBot to “move forward” or “turn
right” in Java, we are calling a method on samBot

“Calling Methods”: Giving Commands in Java (2/2)

Hey samBot, turn
right!

caller receiver
(samBot)

method call (command
passed from caller to receiver)

20 / 78
Andries van Dam © 2023 09/12/23

Turning samBot right
• samBot’s “turn right” method is called turnRight

• To call methods on samBot in Java, you need to address her by
name!

• To call the turnRight method on samBot:

samBot.turnRight();

• Every command to samBot takes the form:

 samBot.<method name(…)>;

• What are those parentheses at the end of the method for?

You can substitute any
method inside < >!

; ends Java statement

Method names don’t have spaces!
Our style guide has capitalization
conventions, e.g., “camelCase”

21 / 78
Andries van Dam © 2023 09/12/23

Moving samBot forward
• Remember: when telling samBot to move forward, you need to tell

her how many steps to move

• samBot’s “move forward” method is named moveForward

• To call this method in Java:

samBot.moveForward(<number of steps>);

• This means that if we want her to move forward 2 steps, we say:

samBot.moveForward(2);

22 / 78
Andries van Dam © 2023 09/12/23

Calling Methods: Important Points
• Method calls in Java have parentheses after the method’s name

• In the definition (body) of the method, extra pieces of information to
be taken in by the method are called parameters; in the call to the
method, the actual values taken in are called arguments
o e.g., in defining f(x), x is the parameter; in calling f(2), 2 is the argument

o more on parameters and arguments next lecture!

• If the method needs any information, include it between the
parentheses (e.g., samBot.moveForward(2);)

• If no extra information is needed, leave the parentheses empty (e.g.,
samBot.turnRight();)

23 / 78
Andries van Dam © 2023 09/12/23

Guiding samBot in Java
• Tell samBot to move forward 4 steps
• Tell samBot to turn right
• Tell samBot to move forward 1 step
• Tell samBot to turn right
• Tell samBot to move forward 3 steps

0 1 2 3 4

0

1

2

“pseudocode” Java code

→ samBot.moveForward(4);
→ samBot.turnRight();
→ samBot.moveForward(1);

→ samBot.turnRight();
→ samBot.moveForward(3);

An informal notation of
English, math, and
Java-like commands

24 / 78
Andries van Dam © 2023 09/12/23

• Simulating lines of code by hand checks that each line
produces correct action

• In hand simulation, you play the role of the computer
o lines of code are “instructions” for the computer
o try to follow “instructions” and see if you get desired result
o if result is incorrect, one or more instructions or the order of instructions

may be incorrect

Hand Simulation

25 / 78
Andries van Dam © 2023 09/12/23

Hand Simulation of This Code

samBot.moveForward(4);

samBot.turnRight();

samBot.moveForward(1);

samBot.turnRight();

samBot.moveForward(3);

0 1 2 3 4

0

1

2

26 / 78
Andries van Dam © 2023 09/12/23

• To make lectures less passive, improve engagement, and

• To gauge how well you are following a lecture, stop lecture and let
you answer simple questions through TopHat
o sign up here if you haven’t done so already

• Question will be released when a “TopHat Question” slide comes up

• Approximately 1-minute window to answer the question

• We will collect results real-time and discuss the answers during lecture

• 5% of total grade– another good reason to attend!

• Drop lowest 4 scores

TopHat Question Logistics Join Code: 553500

https://success.tophat.com/s/article/Brown-University-SSO

27 / 78
Andries van Dam © 2023 09/12/23

TopHat Question
Where will samBot end up when this code is executed?

samBot.moveForward(3);

samBot.turnRight();

samBot.turnRight();

samBot.moveForward(1);

A B
C

D
Choose one of the positions or
E: None of the above

Join Code: 553500

28 / 78
Andries van Dam © 2023 09/12/23

public class RobotMover {

/* additional stencil code elided*/

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

• Let’s demonstrate this code for real

• First, put it inside real Java program

• Grayed-out code specifies context in
which an arbitrary robot named
myRobot, a parameter of the
moveRobot method, executes
instructions

o part of stencil code written for you
by the TAs, which also includes any
robot’s capability to respond to
moveForward and turnRight−
more on this later

Putting Code Fragments in a Real Program (1/2)

29 / 78
Andries van Dam © 2023 09/12/23

• Before, we’ve talked about
objects that handle
messages with "methods"

• Introducing a new concept…
classes!

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

We’re about to explain this
part of the code!

Putting Code Fragments in a Real Program (2/2)

30 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

31 / 78
Andries van Dam © 2023 09/12/23

What is a class?
• A class is a blueprint for a

corresponding type of object

• An object’s class defines its
properties and capabilities
(methods)
o more on this in a few slides!

• Let’s embed the moveRobot code
fragment (method) that moves
samBot (or any other Robot) in a
new class called RobotMover

• Need to tell Java compiler about
RobotMover before we can use it

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

32 / 78
Andries van Dam © 2023 09/12/23

Declaring and Defining a Class (1/3)
• Like a dictionary entry, first declare

term, then provide definition

• First line declares RobotMover class

• Breaking it down:
o public indicates any other object

can use instances of this class
o class indicates to Java compiler that

we are about to define a new class
o RobotMover is the name we have

chosen for our class

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

Note: public and class are Java “reserved words” aka “keywords” and have
pre-defined meanings in Java; use Java keywords a lot

declaration of the RobotMover class

33 / 78
Andries van Dam © 2023 09/12/23

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

myRobot.moveForward(4);

myRobot.turnRight();

myRobot.moveForward(1);

myRobot.turnRight();

myRobot.moveForward(3);

}

}

• Class definition (aka “body”) defines
properties and capabilities of class

o contained within curly braces that
follow the class declaration

• A class’s capabilities (“what it knows how
to do”) are defined by its methods –
RobotMover thus far only shows one
specific method, moveRobot

o each method has a declaration
followed by its definition (also
enclosed in {…} braces)

• A class’s properties are defined by its
instance variables – more on this next
week definition of RobotMover class

definition of moveRobot method

declaration of
moveRobot method

Declaring and Defining a Class (2/3)

34 / 78
Andries van Dam © 2023 09/12/23

• General form for a class:
declaration

• To make code more compact, typically put opening brace on same line as
declaration - Java compiler doesn’t care

• Each class goes in its own file, where name of file must match name of class

o RobotMover class is contained in file “RobotMover.java”

<visibility> class <Name> {

<code (properties and
capabilities) that defines class>

}

definition

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

/* method body */

}

}

Declaring and Defining a Class (3/3)

35 / 78
Andries van Dam © 2023 09/12/23

The Robot class (defined by the TAs)

• public class Robot declares
a class called Robot

• Information about the properties
and capabilities of Robots (the
class definition) goes within the
red curly braces

Note: Normally, support code is a “black box” that you can’t examine

in-line comment
public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

/* other code elided-- if you’re curious,

check out Robot.java in the stencil code!*/

}

36 / 78
Andries van Dam © 2023 09/12/23

Methods of the TA's Robot class
• public void turnRight() and

public void moveForward(int
numberOfSteps) each declare a
method

o more on void later!

• moveForward needs to know how
many steps to move, so the
parameter is int numberOfSteps
within parentheses

o int tells compiler this parameter
is an “integer” (“moveForward
takes a single parameter called
numberOfSteps of type int”)

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

/* other code elided-- if you’re curious, check

out Robot.java in the stencil code!*/

}

Note that when we call moveForward, we
have to pass an argument of type int or
the Java compiler will throw an error

37 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

38 / 78
Andries van Dam © 2023 09/12/23

Classes and Instances (1/4)
• samBot is an instance of class Robot

o this means samBot is a particular Robot that was built using
the Robot class as a blueprint (another instance could be
chloeBot)

• All Robots (all instances of the class Robot) are
restricted to the exact same capabilities: the methods
defined in the Robot class. What one Robot instance
can do, all instances can do since they are made with
the same blueprint!

• All Robots also have the exact same properties (i.e.,
every Robot has a Color and a Size)
o they all have these properties (e.g. Size), but the values of

these properties may differ between instances (e.g., a big
samBot and small chloeBot)

39 / 78
Andries van Dam © 2023 09/12/23

The Robot class is
like a blueprint

Classes and Instances (2/4)

https://www.youtube.com/watch?v=zMW98Oaa5_U

40 / 78
Andries van Dam © 2023 09/12/23

• We can use the Robot class to build actual Robots - instances of
the class Robot, whose properties (like their color in this case) may
vary (next lecture)

Classes and Instances (3/4)

samBot blueBot pinkBot greenBot

41 / 78
Andries van Dam © 2023 09/12/23

instance instance instance instance

Classes and Instances (4/4)

• Method calls are done on instances of the class. These are four instances of
the same class (blueprint)

samBot blueBot pinkBot greenBot

42 / 78
Andries van Dam © 2023 09/12/23

TopHat Question
You know that blueBot and pinkBot are instances of the
same class. Let’s say that the call pinkBot.chaChaSlide();
makes pinkBot do the cha-cha slide. Which of the following is
true?

A. The call blueBot.chaChaSlide(); might make blueBot
do the cha-cha slide or another popular line dance instead

B. The call blueBot.chaChaSlide(); will make blueBot do
the cha-cha slide

C. You have no guarantee that blueBot has the method
chaChaSlide();

Join Code: 553500

43 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

44 / 78
Andries van Dam © 2023 09/12/23

Defining Methods
• We have already learned about

defining classes, let’s now talk
about defining methods

• Let’s use a variation of our previous
example

0 1 2 3 4

0

1

2

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot myRobot) {

// Your code goes here!

// …
// …

}

}

45 / 78
Andries van Dam © 2023 09/12/23

Declaring vs. Defining Methods

• Declaring a method means the class knows how to do
a new task, e.g., any instance of class Robot can
chaChaSlide()

• Defining a method actually explains how all instances
of the class execute this task (i.e., what sequence of
commands it specifies)
o chaChaSlide() could include stepping backwards, alternating feet,

stepping forward

• For now, you will need to both declare and define your
methods

46 / 78
Andries van Dam © 2023 09/12/23

A Variation on moveRobot (1/2)

0 1 2 3 4

0

1

2

public class RobotMover {

/* additional code elided */

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

47 / 78
Andries van Dam © 2023 09/12/23

public class RobotMover {

/* additional code elided */

public void newMoveRobot(Robot myRobot) {

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

• Lots of code for a simple problem

• Any Robot instance like samBot only
knows how to turn right, so must call
turnRight three times to make her
turn left

• If she understood how to “turn left,”
would be much less code!

• We can ask the TAs to modify
samBot to turn left by declaring and
defining a new method in Robot
called turnLeft

A Variation on moveRobot (2/2)

“turn left”

“turn left”

“turn left”

48 / 78
Andries van Dam © 2023 09/12/23

Defining a Method (1/2)

• Almost all methods take on this
general form:

• When calling turnRight or
moveForward on an instance of the
Robot class, all code between
method’s curly braces is executed

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

}

<visibility> <type> <name> (<parameters>) {
 <list of statements within method>
}

explanation in later lecture

49 / 78
Andries van Dam © 2023 09/12/23

Defining a Method (2/2)

• We’re going to define a new
method: turnLeft

• To make a Robot turn left,
tell it to turn right three times

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

 }

}

50 / 78
Andries van Dam © 2023 09/12/23

Outline

• Calling methods

• Declaring and defining a class

• Instances of a class

• Defining methods

• The this keyword

51 / 78
Andries van Dam © 2023 09/12/23

• When working with the class
RobotMover, we were talking to
samBot, an instance of class Robot

• To tell her to turn right, we said
“samBot.turnRight();”

• Why do the TAs now write
“this.turnRight();”?

• Recall the syntax for calling methods:
<instance>.<method>();

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

The this keyword (1/3)

52 / 78
Andries van Dam © 2023 09/12/23

The this keyword (2/3)
• The this keyword allows an

instance (like samBot) to call one
of its own methods on itself

• this is short for “this same
instance” or “defined in this
method”

• Use this to call an existing
method of Robot class
(turnRight()) within a new
method of Robot class
(turnLeft())

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

53 / 78
Andries van Dam © 2023 09/12/23

The this keyword (3/3)

• When samBot is told by, say, a
RobotMover instance to
turnLeft, she responds by
telling herself to turnRight three
times

• this.turnRight(); means “hey
me, turn right!”

• this is not required for code to
work, but it is good style and
CS15 expects it

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

54 / 78
Andries van Dam © 2023 09/12/23

We’re done!

• Now that Robot class has
turnLeft(), we can call
turnLeft() on any
instance of Robot

• We’ll see how we can use
turnLeft() to simplify our
code in a few slides

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

55 / 78
Andries van Dam © 2023 09/12/23

TopHat Question
Given the turnLeft method, what can

we say about this.turnRight();?

A. Other objects cannot call the turnRight()
method on instances of the Robot class

B. The current instance of the Robot class is calling
turnRight() on another instance of Robot

C. The current instance of the Robot class is calling
the turnRight() method on itself

D. The call this.turnRight(); will not appear
anywhere else in the Robot’s class definition

public class Robot {

/* additional code elided */

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

Join Code: 553500

56 / 78
Andries van Dam © 2023 09/12/23

Summary
Class

declaration

Class
definition Method

declaration

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

Method definition

57 / 78
Andries van Dam © 2023 09/12/23

Simplifying our code using turnLeft
public class RobotMover {

public void newMoveRobot(Robot myRobot)

{

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(3);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnRight();

myRobot.turnRight();

myRobot.turnRight();

myRobot.moveForward(2);

}

}

public class RobotMover {

public void newMoveRobot(Robot myRobot)

{

myRobot.turnRight();

myRobot.moveForward(2);

myRobot.turnLeft();

myRobot.moveForward(3);

myRobot.turnLeft();

myRobot.moveForward(2);

myRobot.turnLeft();

myRobot.moveForward(2);

}

} We’ve saved a lot of lines of
code by using turnLeft!

This is good! More lines of code make your
program harder to read, debug, and

maintain

58 / 78
Andries van Dam © 2023 09/12/23

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

// your code goes here!

// …
// …
// …

}

turnAround (1/3)

• The TAs could also define a
method that turns the Robot
around 180o

• See if you can declare and
define the method
turnAround

59 / 78
Andries van Dam © 2023 09/12/23

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

public void turnAround() {

this.turnRight();

this.turnRight();

}

}

turnAround (2/3)

• Now that the Robot class has
the method turnAround, we
can call the method on any
instance of the class Robot

• There are other ways of
implementing this method
that can work as well

60 / 78
Andries van Dam © 2023 09/12/23

turnAround (3/3)
• Instead of calling turnRight,

could call our newly created
method, turnLeft

• Both solutions will lead to the
same end goal, in that they will
turn the robot around 180o

• How do they differ? When we try
each of these implementations
with samBot, what will we see in
each case? Is one way better
than the other?

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

public void turnAround() {

this.turnLeft();

this.turnLeft();

}

}

61 / 78
Andries van Dam © 2023 09/12/23

Summary (1/2)

• Classes
o a class is a blueprint for a certain type of object

▪ example: Robot is a class

• Instances
o an instance of a class is a particular member of that

class whose methods we can call

▪ example: samBot is an instance of Robot

62 / 78
Andries van Dam © 2023 09/12/23

Summary (2/2)
• Calling methods

o an instance can call on the methods defined by its class

o general form: instance.<method name>(<parameters>);

▪ example: samBot.turnRight();

• Defining methods

o how we describe a capability of a class

o general form: <visibility> <type> <name> (<parameters>) { … }

▪ example: public void turnLeft() { … }

• The this keyword

o how an instance calls a method on itself within its class definition

▪ example: this.turnRight();

63 / 78
Andries van Dam © 2023 09/12/23

Announcements
• Lab 0 Linux and Terminal out today

o If you did not sign up for section or have not received an email
about your section, please email the HTAs

o Review GitHub/IntelliJ setup before lab!

• Rattytouille out tomorrow!
o Due Saturday 09/16

o No Early or Late Hand-in

• RISD students: please email the HTAs after class so we can make
sure we have your emails

• Newly registered RISD students come up to speak with Andy after
class

64 / 78
Andries van Dam © 2023 09/12/23

65 / 78
Andries van Dam © 2023 09/12/23

Intro to Socially
Responsible Computing

CS15 Fall 2023

66 / 78
Andries van Dam © 2023 09/12/23

Image
sources:
Open AI,
Apple

AI-generated image of Effie (Andy’s
Dog) coding

Apple Vision Pro headset

67 / 78
Andries van Dam © 2023 09/12/23

Image sources: NBC News, Futurism, Bloomberg, Justice Department

68 / 78
Andries van Dam © 2023 09/12/23

Headlines From 2022 Shown in
this Lecture

Recent Headlines

69 / 78
Andries van Dam © 2023 09/12/23

● Brown CS: implemented across 18 CS courses

○ 3 Fall 2023 SRC-focused courses:

■ CSCI 1805 -- Computers, Freedom and Privacy

■ CSCI 1860 – Cybersecurity Law and Policy

■ CSCI 1870 – Cybersecurity Ethics

What is Socially Responsible Computing?

● SRC @ Brown started in 2019 (in its 5th year)

● Similar initiatives: embedded ethiCS at Harvard, Stanford, ...

● Focus in CS15: get exposed to a broad range of topics that you
can explore later

70 / 78
Andries van Dam © 2023 09/12/23

“Technology is neither good, nor bad.
TECH DOES

NOT EXIST IN
A VACUUM

 Nor is it neutral…
… technology can have quite different
results when introduced into different
contexts or under different circumstances”

- Melvin Kranzberg, 1986

71 / 78
Andries van Dam © 2023 09/12/23

SRC is NOT about…

Guilting you
about your
internship

Hating on
technology

Hating on
capitalism

Telling you
what to believe

72 / 78
Andries van Dam © 2023 09/12/23

Our approach

•Cautious, pragmatic techno-optimism
•Empowering you to come to your own conclusions
•Allowing you to (start to) understand…

73 / 78
Andries van Dam © 2023 09/12/23

What does it mean for you?

Multidisciplinary solutions to today’s
challenges

74 / 78
Andries van Dam © 2023 09/12/23

What does it mean for you?

75 / 78
Andries van Dam © 2023 09/12/23

What does it mean for you?

Academic

What courses might complement CS
to get a more holistic understanding

of tech and society?

Career
What non-technical business

decisions shape today’s
technology?

Political

What policies could enhance the
benefits and mitigate the harms of

tech?

Technical

What can be done by developers to
ensure that their products have

good social impacts?

Individual

76 / 78
Andries van Dam © 2023 09/12/23

Topics in Socially Responsible Computing in
CS15

Labor Practices
and Future of

Work

Artificial
Intelligence

Social Media

Privacy Crypto

77 / 78
Andries van Dam © 2023 09/12/23

SRC in
CS15

Mode of Delivery
•Mini-lectures (this Thurs: A.I.)

•Lab and section activities

•Extra credit discussion
sections

78 / 78
Andries van Dam © 2023 09/12/23

Technology alone won’t solve our problems

Image source: xkcd Here To Help

