
Andries van Dam © 2023 9/14/23 1/96

Andries van Dam © 2023 9/14/23 2/96

Lecture 3
Introduction to Parameters / Math

Andries van Dam © 2023 9/14/23 3/96

• A class provides a blueprint for instances of that class

• Instances send each other messages

• Instances respond to a message via a method

• Format of messages is <instance>.<method>();
o e.g., samBot.moveForward(3);

• Sometimes an instance want to send a message to itself, using a
method defined in its own class: this.<method>();

• this means “me, myself” AND the method is defined in this class

o Choreographer tells dancer: dancer3.pirouette(2);

o Dancer tells themself: this.pirouette(2);

o Note: we’ve not yet learned how to create new instances of any class

Review of Inter-Object Communication

Note: Object is used

loosely for both class

and instance. We try

to minimize our use of

this overloaded term

Andries van Dam © 2023 9/14/23 4/96

• Mathematical functions in Java

• Defining more complicated methods with inputs and outputs

• The constructor

• Creating instances of a class

• Understanding Java flow of control

This Lecture:

Andries van Dam © 2023 9/14/23 5/96

● We know how to define simple methods

● Today, we will define more complicated methods that have
both inputs and outputs

● Along the way, we will learn the basics of manipulating
numbers in Java

Defining Methods

Andries van Dam © 2023 9/14/23 6/96

BookstoreAccountant

● We will define a
BookstoreAccountant class that
models an employee in a
bookstore, calculating certain costs
o finding the price of a purchase,

calculating change needed, etc.

● Each of the accountant’s methods
will have inputs (numbers) and a
single output (number)

Andries van Dam © 2023 9/14/23 7/96

● First, we’ll talk about
numbers and
mathematical
expressions in Java

Basic Math in Java

Andries van Dam © 2023 9/14/23 8/96

● An integer is a whole number, positive or negative,
including 0

● Depending on size (number of digits) of the integer,
you can use one of four numerical base types
(primitive Java data types): byte, short, int, and
long, in increasing order of number of bits of precision

● Bit: binary digit, 0 or 1

Integers

Andries van Dam © 2023 9/14/23 9/96

Base Type Size Minimum Value Maximum Value

byte 8 bits -128 (-27) 127 (27 - 1)

short 16 bits -32,768 (-215) 32,767 (215 - 1)

int 32 bits -2,147,483,648 (-231) 2,147,483,647 (231 - 1)

long 64 bits -9,223,372,...,808 (-263) 9,223,372,...,807 (263 - 1)

In CS15, almost always use int – good range and we’re not
as memory-starved as we used to be so don’t need byte

Integers

Andries van Dam © 2023 9/14/23 10/96

Floating Point Numbers

● Sometimes, need rational and irrational numbers, i.e.,
numbers with decimal points

● How to represent pi = 3.14159...?

● Floating point numbers

o called “floating point” because decimal point can “float”– no fixed

number of digits before and after it – historical nomenclature

o used for representing numbers in “scientific notation,” with decimal

point and exponent, e.g., 4.3 x 10-5

● Two numerical base types in Java represent floating point
numbers: float and double

Andries van Dam © 2023 9/14/23 11/96

Floating Point Numbers

Base Type Size

float 32 bits

double 64 bits

Feel free to use both in CS15. Use of double is

more common in modern Java code

Andries van Dam © 2023 9/14/23 12/96

● Example expressions:

4 + 5
3.33 * 3
11 % 4
3.0 / 2.0
3 / 2

Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% remainder

Operators and Math Expressions (1/2)

Andries van Dam © 2023 9/14/23 13/96

● Example expressions:

4 + 5
3.33 * 3
11 % 4
3.0 / 2.0
3 / 2

● What does each of
these expressions
evaluate to?

why???

→ 9
→ 9.99

→ 3
→ 1.50

→ 1

Operators and Math Expressions (2/2)

Andries van Dam © 2023 9/14/23 14/96

3 / 2 → 1
3.0 / 2 → 1.50
3 / 2.0 → 1.50
3.0 / 2.0 → 1.50

● When dividing two integer types,
result is “rounded down” to an int
after remainder is dropped

● 3 / 2 evaluates to 1

● If either number involved is
floating point, result is floating
point: allows greater “precision,”
i.e., fractional portion.

o 10 / 3 → 3

o 10 / 3.0 → 3.3333… (more precise)

o called mixed-mode arithmetic

Be careful with integer division!

Andries van Dam © 2023 9/14/23 15/96

● Java follows the same evaluation
rules that you learned in math class
years ago – PEMDAS (Parentheses,
Exponents, Multiplication/Division,
Addition/Subtraction)

● Evaluation takes place left to right,
except:

o expressions in parentheses
evaluated first, starting at the
innermost level

o operators evaluated in order of
precedence/priority (* has priority
over +)

2 + 4 * 3 - 7 → 7

(2 + 3) + (11 / 12) → 5

3 + (2 - (6 / 3)) → 3

Evaluating Math Expressions

Andries van Dam © 2023 9/14/23 16/96

TopHat Question

What does x evaluate to?

int x = (((5 / 2) * 3) + 5);

A. 12.5
B. 11
C. 13
D. 10
E. 12

Andries van Dam © 2023 9/14/23 17/96

BookstoreAccountant

● BookstoreAccountants should be able to find the price
of a set of books

● When we tell a BookstoreAccountant to calculate a
price, we want it to perform the calculation and then tell
us the answer

● To do this, we need to learn how to write a method that
returns a value – in this case, a number

Andries van Dam © 2023 9/14/23 18/96

public class Robot {

public void turnRight() {

// code that turns robot right

}

public void moveForward(int numberOfSteps) {

// code that moves robot forward

}

public void turnLeft() {

this.turnRight();

this.turnRight();

this.turnRight();

}

}

● The return type of a method is the

kind of data it gives back to

whomever called it

● So far, we have only seen return

type void

● A method with a return type of

void doesn’t give back anything

when it’s done executing

● void just means “this method does

not return anything”

Return Type (1/2)

Andries van Dam © 2023 9/14/23 19/96

A silly example:

public int giveMeTwo() {
return 2;

}

● If we want a method to return
something, replace void with
the type of thing we want to
return

● If method should return an
integer, specify int return type

● When return type is not void,
we have promised to end the
method with a return
statement
o any code following the return

statement will not be executed

return statement

Return statements always take the form:

return <something of specified return type>;

Return Type (2/2)

return type

Andries van Dam © 2023 9/14/23 20/96

Accountant (1/6)
public class BookstoreAccountant {

/* Some code elided */

public int priceTenDollarBook() {

return 10;

}

}

● Let’s write a silly method for
BookstoreAccountant called
priceTenDollarBook() that finds
the cost of a $10 book

● It will return the value “10” to
whoever called it

● We will generalize this example
soon…

“10” is an integer – it matches

the return type, int!

Andries van Dam © 2023 9/14/23 21/96

● What does it mean for a method to “return a value to whomever
calls it”?

● Another object can call priceTenDollarBook() on a
BookstoreAccountant from somewhere else in our program and
use the result

● For example, consider a Bookstore class that has an accountant
named myAccountant

● We will demonstrate how the Bookstore can call the method and
use the result

Accountant (2/6)

Andries van Dam © 2023 9/14/23 22/96

/*

* Assume a Bookstore instance has created an

* instance of BookstoreAccount named myAccountant

*/

myAccountant.priceTenDollarBook();

public class BookstoreAccountant {

/* Some code elided */

public int priceTenDollarBook() {
return 10;

}

}

● We started by just calling

priceTenDollarBook()

● This is fine, it will return 10, but we are not

doing anything with that result!

● Let’s use the returned value by printing it

to the terminal

Accountant (3/6)

Andries van Dam © 2023 9/14/23 23/96

Aside: System.out.println

● System.out.println() is an awesome tool for testing and
debugging your code – learn to use it!

● Helps the user see what is happening in your code by printing out
values to the terminal as it executes

● NOT equivalent to return, meaning other methods cannot see/use
what is printed

● If Bookstore program is not behaving properly, can test whether
priceTenDollarBook() is the problem by printing its return value to
verify that it is “10” (yes, obvious in this trivial case, but not in
general!)

Andries van Dam © 2023 9/14/23 24/96

Accountant (4/6)

• In a new method, manageBooks(), print
result

• “Printing” in this case means displaying
a value to the user of the program

• To print to terminal, we use
System.out.println(<expression to
print>)

• println() method prints out value of
expression you provide within the
parentheses

public class BookstoreAccountant {

/* Some code elided */

public int priceTenDollarBook() {
return 10;

}

public void manageBooks() {

System.out.println(

this.priceTenDollarBook());

}

}

Andries van Dam © 2023 9/14/23 25/96

Accountant (5/6)

● We have provided the expression
this.priceTenDollarBook() to be
printed to the console

● This information given to the
println() method is called an
argument; more on this in a few
slides

● Putting one method call inside
another is called nesting of method
calls; more examples later

public class BookstoreAccountant {

/* Some code elided */

public int priceTenDollarBook() {
return 10;

}

public void manageBooks() {

System.out.println(

this.priceTenDollarBook());

}

}

Andries van Dam © 2023 9/14/23 26/96

public class BookstoreAccountant {

/* Some code elided */

public int priceTenDollarBook() {
return 10;

}

public void manageBooks() {

System.out.println(

this.priceTenDollarBook());

}

}

Accountant (6/6)

argument of println

● When this line of code is evaluated:

○ println() is called with argument

of this.priceTenDollarBook()

○ priceTenDollarBook() is called on

this instance of the
BookstoreAccountant, returning 10

○ Println() gets 10 as an argument,

10 is printed to terminal

Andries van Dam © 2023 9/14/23 27/96

Accountant: A More Generic Price Calculator (1/4)
● Now your accountant can get the

price of a ten-dollar book – but
that’s completely obvious

● For a functional bookstore, we’d

need a separate method for
each possible book price!

● Instead, how about a generic

method that finds the price of

any number of copies of a book,

given its price?

o useful when the bookstore needs

to order new books

public class BookstoreAccountant {

public int priceTenDollarBook() {

return 10;

}

}
number of copies

you’re buying
price per copy

cost of the

purchase

public int priceBooks(int numCps, int price) {
// let’s fill this in!

}

Andries van Dam © 2023 9/14/23 28/96

Accountant: A More Generic Price Calculator (2/4)

● Method answers the question:
given a number of copies and a

price per copy, how much do all

of the copies cost together?

● To put this in algebraic terms, we

want a method that will
correspond to the function:

f(x, y) = x * y

● “x” represents the number of

copies; “y” is the price per copy

public class BookstoreAccountant {

public int priceTenDollarBook() {

return 10;

}

public int priceBooks(int numCps, int price) {

// let’s fill this in!

}

}

Andries van Dam © 2023 9/14/23 29/96

Mathematical function:

f(x, y) = x * y

Equivalent Java method:

public int priceBooks(int numCps, int price) {
return (numCps * price);

}

Accountant: A More Generic Price Calculator (3/4)

name
inputs output

name inputs

output

Andries van Dam © 2023 9/14/23 30/96

Accountant: A More Generic Price Calculator (4/4)

● Method takes in two integers from

caller and gives appropriate answers

depending on those integers

public class BookstoreAccountant {

/* Some code elided */

public int priceBooks(int numCps, int price) {
return (numCps * price);

}

}

● When defining a method, extra

pieces of information that the method

needs to take in (specified inside the

parentheses of the declaration) are

called parameters

● priceBooks() is declared to take in

two parameters, “numCps” and

“price” – these, like variable names,

are arbitrary, i.e., your choice

parameters

Andries van Dam © 2023 9/14/23 31/96

Outline

● Mathematical functions in Java

● Defining more complicated methods with inputs and outputs

● The constructor

● Creating instances of a class

● Understanding Java flow of control

Andries van Dam © 2023 9/14/23 32/96

● General form of method you are defining that takes in parameters:

<visibility> <returnType> <methodName>(<type1> <name1>, <type2> <name2>...) {

<body of method>
}

● Parameters are specified as comma-separated lists of type-name pairs

o for each parameter, specify type (for example, int or double), and then name (“x”, “y”,

“banana”... whatever you want!)

● In basic algebra, we only deal with numbers and freely mix their types. In

programming, we use many different types, not just numbers, but also class names,

and must tell Java explicitly what we intend

o Java is a “strictly typed” language, i.e., it makes sure the user of a method passes the right

number of parameters of the specified type, in the right order – if not, compiler error! In

short, the compiler checks for a strict one-to-one correspondence

Parameters (1/3)

Andries van Dam © 2023 9/14/23 33/96

● Dummy name of each parameter is

completely up to you, but…

o Java naming restriction: needs to start

with a letter

o refer to CS15 style guide for naming

conventions

● It is the name by which you will refer

to the parameter throughout method

● Note again that each parameter is a

pair: type and name

The following methods are completely

equivalent:

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

public int priceBooks(int bookNum, int pr) {

return (bookNum * pr);

}

public int priceBooks(int a, int b) {

return (a * b);

}

type type namename

Parameters (2/3)

1st Parameter 2nd Parameter

https://docs.google.com/document/d/1olSJxbrhuIystA_kVbmKu4V8JfN7HE-eDzM5blkoeFw/edit?usp=sharing

Andries van Dam © 2023 9/14/23 34/96

● Remember Robot class from

last lecture?

● Its moveForward method took in

one parameter – an int named

numberOfSteps

● Follows same parameter

format: type, then name

/* within Robot class definition */

public void moveForward(int numberOfSteps) {

// code that moves the robot

// forward goes here!

}

type name

Parameters (3/3)

Andries van Dam © 2023 9/14/23 35/96

We Want Human-readable Code

● Try to come up with descriptive names for parameters that make
their purpose clear to anyone reading your code

● Robot’s moveForward method calls its parameter “numberOfSteps”,
not “x” or “thingy”

● We used “numCps” and “price”

● Try to avoid single-letter names for anything that is not strictly
mathematical; be more descriptive

Andries van Dam © 2023 9/14/23 36/96

Accountant (1/2)

● Give BookstoreAccountant
class more functionality by
defining more methods!

● Methods to calculate change
needed or how many books a
customer can afford

● Each method will take in
parameters, perform operations
on them, and return an answer

● We choose arbitrary but helpful
parameter names

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

// calculate a customer’s change

public int calcChange(int amtPaid, int price) {

return (amtPaid – price);

}

// calculate max # of books (same price) u can buy

public int calcMaxBks(int price, int myMoney) {

return (myMoney / price);

}

}

Andries van Dam © 2023 9/14/23 37/96

● calcMaxBks takes in price of a
book (price) and an amount of
money you have to spend
(myMoney), tells you how many
books you can buy

● calcMaxBks works because when
we divide 2 ints, Java rounds the
result down to an int!

o Java always rounds down

● $25 / $10 per book = 2 books

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

// calculates a customer’s change

public int calcChange(int amtPaid, int price) {

return (amtPaid – price);

}

// calculates max # of books customer can buy

public int calcMaxBks(int price, int myMoney) {

return (myMoney / price);

}

}

Accountant (2/2)

Andries van Dam © 2023 9/14/23 38/96

TopHat Question: Declaring Methods

We want a new method getSalePrice that returns an integer and
takes in two parameters, one integer that represents the original
price of a purchase and one integer that represents the percent
discount offered. Which method declaration is correct?

A. public void getSalePrice() {

// code elided

}

B. public int getSalePrice(int price, int discount) {

// code elided

}

C. public int getSalePrice(price, discount) {

// code elided

}

D. public void getSalePrice(int price, int

discount) {

// code elided

}

Andries van Dam © 2023 9/14/23 39/96

Calling (i.e., using) Methods with Parameters (1/3)

● Now that we defined priceBooks(), calcChange(),
and calcMaxBks() methods, we can call them on any
BookstoreAccountant instance

● When we call calcChange()method, we must tell it the
amount paid for the books and how much the books cost

● How do we call a method that takes in parameters?

Andries van Dam © 2023 9/14/23 40/96

Calling Methods with Parameters (2/3)

● You already know how to call a method that takes in one
parameter!

● Remember moveForward()?

//within Robot class definition

public void moveForward(int numberOfSteps) {

// code that moves the robot

// forward goes here!

}

Andries van Dam © 2023 9/14/23 41/96

Calling Methods with Parameters (3/3)

● When we call a method, we pass
it any extra piece of information it
needs as an argument within
parentheses

public class RobotMover {

/* additional code elided */

public void moveRobot(Robot samBot) {

samBot.moveForward(4);

samBot.turnRight();

samBot.moveForward(1);

samBot.turnRight();

samBot.moveForward(3);

}

}

arguments

● When we call moveForward we
must supply one int as argument

o samBot.moveForward(int 4);
is NOT correct

o samBot.moveForward();
is NOT correct

● Do NOT specify type of argument
when calling a method

Andries van Dam © 2023 9/14/23 42/96

Arguments vs. Parameters

// within the Robot class

public void moveForward(int numberOfSteps) {

// code that moves the robot

// forward goes here!

}

// within the RobotMover class

public void moveRobot(Robot samBot) {

samBot.moveForward(4);

samBot.turnRight();

samBot.moveForward(1);

samBot.turnRight();

samBot.moveForward(3);

}

argument

argument

argument

parameter

● In defining a method, the parameter is a
dummy name picked by the author used
by a method to refer to a piece of
information passed into it, e.g. “x” and “y”
in the function f(x, y) = x + y

● In calling a method, an argument is the
actual value passed in, e.g. 2 and 3 in
f(2, 3) -> 5

Andries van Dam © 2023 9/14/23 43/96

Calling Methods That Have Parameters (1/9)

// in some other class...

samBot.moveForward(3);

__

// in the Robot class...

public void moveForward(int numberOfSteps) {

// code that moves the robot

// forward goes here!

}

● When we call
samBot.moveForward(3), we
are passing 3 as an argument

● When moveForward() executes,
its parameter is assigned the
value of argument that was
passed in

● Thus moveForward() here
executes with numberOfSteps= 3

Andries van Dam © 2023 9/14/23 44/96

● When calling a method that takes in
parameters, must provide a valid argument
for each parameter

o analogy: When each district selects 2 tributes to

compete in the Hunger Games, they must be one

male and one female, and from that district.

● Means that number and type of arguments
must match number and type of parameters

● One-to-one correspondence: same number
of arguments, given in the same order, of the
same matching type

Calling Methods That Have Parameters (2/9)

Andries van Dam © 2023 9/14/23 45/96

● Each of our accountant’s methods
takes in two ints, which it refers to
by different names (also called
identifiers)

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {

return numCps * price;

}

// calculates a customer’s change

public int calcChange(int amtPaid, int price) {

return amtPaid - price;

}

// calculates max # of books you can buy

public int calcMaxBks(int bookPr, int myMoney) {

return myMoney / bookPr;

}

}

● Whenever we call these methods,

must provide two ints – first, desired

value for first parameter, then desired

value for second

Calling Methods That Have Parameters (3/9)

Andries van Dam © 2023 9/14/23 46/96

● Let’s go back to our instance of
BookstoreAccountant named
myAccountant

● When we call a method on
myAccountant, we provide a
comma-separated list of arguments
(in this case, ints) in parentheses

● These arguments are values we
want the method to use for the first
and second parameters when it runs

/* somewhere else in our code… */

myAccountant.priceBooks(2, 16);

myAccountant.calcChange(18, 12);

myAccountant.calcMaxBks(6, 33);

arguments

Calling Methods That Have Parameters (4/9)

Andries van Dam © 2023 9/14/23 47/96

● Note: calcChange(8, 4) isn’t
calcChange(4, 8) – order matters!

o calcChange(8, 4) → 4

o calcChange(4, 8) → - 4

/* in the BookstoreAccountant class… */

public int calcChange(int amtPaid, int price) {

return amtPaid - price;

}

Calling Methods That Have Parameters (5/9)

Andries van Dam © 2023 9/14/23 48/96

/* somewhere else in our code

(e.g., the Bookstore class) */

myAccountant.priceBooks(2, 16);

● Java does “parameter passing” by:

o first checking that one-to-one
correspondence is honored (this
includes type checking!),

o then substituting arguments for
parameters,

o and finally executing the method
body using the arguments

/* in the BookstoreAccountant class… */

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

Calling Methods That Have Parameters (6/9)

Andries van Dam © 2023 9/14/23 49/96

/* somewhere else in our code

(e.g., the Bookstore class) */

myAccountant.priceBooks(2, 16);

● Java does “parameter passing” by:

o first checking that one-to-one
correspondence is honored (this
includes type checking!),

o then substituting arguments for
parameters,

o and finally executing the method
body using the arguments

/* in the BookstoreAccountant class… */

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

Calling Methods That Have Parameters (7/9)

Andries van Dam © 2023 9/14/23 50/96

/* somewhere else in our code

(e.g., the Bookstore class) */

myAccountant.priceBooks(2, 16);

● Java does “parameter passing” by:

o first checking that one-to-one
correspondence is honored (this
includes type checking!),

o then substituting arguments for
parameters,

o and finally executing the method
body using the arguments

/* in the BookstoreAccountant class… */

public int priceBooks(2, 16) {

return (2 * 16);

}

Calling Methods That Have Parameters (8/9)

32 is returned

Andries van Dam © 2023 9/14/23 51/96

/* somewhere else in our code

(e.g., the Bookstore class) */

System.out.println(myAccountant.priceBooks(2, 16));

Calling Methods That Have Parameters (9/9)

● If we want to check the result

returned from our method call, use
System.out.println to print it to

the console

● We’ll see the number 32 printed out!

/* in the BookstoreAccountant class… */

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

Andries van Dam © 2023 9/14/23 52/96

TopHat Question

Which of the following contains arguments that satisfy the
parameters of the method calcChange() below in the
BookstoreAccountant class?

A. myAccountant.calcChange(20, 14.50)
B. myAccountant.calcChange(10)
C. myAccountant.calcChange(20, 10)
D. None of the above

// calculates a customer’s change

public int calcChange(int amtPaid, int price) {

return amtPaid - price;

}

Andries van Dam © 2023 9/14/23 53/96

But where did myAccountant come from?!?

● We know how to send messages to an instance of a class by
calling methods

● So far, we have called methods on samBot, an instance of
Robot, and myAccountant, an instance of
BookstoreAccountant…

● Where did we get these objects from? How did we make an
instance of BookstoreAccountant?

● Next: how to use a class as a blueprint to actually build
instances!

Andries van Dam © 2023 9/14/23 54/96

Outline

• Mathematical functions in Java

• Defining more complicated methods with inputs and

outputs

• The constructor

• Creating instances of a class

• Understanding Java flow of control

Andries van Dam © 2023 9/14/23 55/96

Constructors (1/3)

● Bookstore Accountants can
priceBooks(), calcChange(), and
calcMaxBks()

● Can call any of these methods on
any instance of
BookstoreAccountant

● But how did these instances get
created in the first place?

● Define a special kind of method in
the BookstoreAccountant class: a
constructor

● Note: every class must have a
constructor

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

public int calcChange(int amtPaid, int price) {

return (amtPaid – price);

}

public int calcMaxBks(int price, int myMoney) {

return (myMoney / price);

}

}

Andries van Dam © 2023 9/14/23 56/96

Constructors (2/3) public class BookstoreAccountant {

public BookstoreAccountant() {

// this is the constructor!

}

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

public int calcChange(int amtPaid, int price) {

return (amtPaid – price);

}

public int calcMaxBks(int price, int myMoney) {

return (myMoney / price);

}

}

● A constructor is a special kind of
method that is called whenever an
instance is to be “born,” i.e., created
– see shortly how it is called

● Constructor’s name is always same
as name of class

● If class is called
“BookstoreAccountant,” its
constructor must be called
“BookstoreAccountant.” If class is
called “Dog,” its constructor had
better be called “Dog”

Andries van Dam © 2023 9/14/23 57/96

Constructors (3/3)

● Constructors are special methods:
used to create an instance stored in
an assigned memory location

● When we create an instance with the
constructor (example in a few slides!),
it provides a reference to the location
in memory, which is “returned”

● We never specify a return value in its
declaration

● Constructor for
BookstoreAccountant does not take
in any parameters (notice empty
parentheses),

o constructors can, and often do, take in
parameters – stay tuned for next lecture

public class BookstoreAccountant {

public BookstoreAccountant() {

// this is the constructor!

// constructor code elided

}

public int priceBooks(int numCps, int price) {

return (numCps * price);

}

public int calcChange(int amtPaid, int price) {

return (amtPaid - price);

}

public int calcMaxBks(int price, int myMoney) {

return (myMoney / price);

}

}

Andries van Dam © 2023 9/14/23 58/96

TopHat Question
Which of the following is not true of constructors?

A. Constructors are methods
B. Constructors always have the same name as their class
C. Constructors should specify a return value
D. Constructors can take in parameters

Andries van Dam © 2023 9/14/23 59/96

Outline

• Mathematical functions in Java

• Defining more complicated methods with inputs and

outputs

• The constructor

• Creating instances of a class

• Understanding Java flow of control

Andries van Dam © 2023 9/14/23 60/96

Creating Instances of Classes (1/2)

● Now that the BookstoreAccountant class has a constructor, we
can create instances of it!

● Here is how we create a BookstoreAccountant in Java:

new BookstoreAccountant();

● This means “use the BookstoreAccountant class as a blueprint to
create a new BookstoreAccountant instance”

● BookstoreAccountant() is a call to BookstoreAccountant’s
constructor, so any code in constructor will be executed as soon as
you create a BookstoreAccountant

Andries van Dam © 2023 9/14/23 61/96

● We refer to “creating” an instance as instantiating it

● When we say:

new BookstoreAccountant();

● … We’re creating an instance of the BookstoreAccountant class,

a.k.a. instantiating a new BookstoreAccountant

● Where exactly does this code get executed?

● Stay tuned for the next lecture to see how this constructor is used by

another instance to create a new BookstoreAccountant!

Creating Instances of Classes (2/2)

Andries van Dam © 2023 9/14/23 62/96

Aside: Another Example of Nesting (1/2)

● Our calcChange() method takes in two

ints – the amount the customer paid,

and price of the purchase

● What if we want to use result of priceBooks() as an argument to

calcChange()?

● Our priceBooks() method finds the

price of the purchase

● Say we have got 3 copies of an $11 book. We also have $40 in cash to
pay with. priceBooks() will tell us that purchase costs $33. We want to
use this as “price” parameter for calcChange()

● How do we do this? Nesting!

Andries van Dam © 2023 9/14/23 63/96

● myAccountant.priceBooks(3, 11) returns “33”

o we want to pass this number into calcChange()

● We can nest myAccountant’s priceBooks() method within
myAccountant’s calcChange() method:

myAccountant.calcChange(40, myAccountant.priceBooks(3,11));

● And calcChange() returns 7! Always, evaluate inner parentheses first

returns 33

myAccountant.calcChange(40, 33);

Aside: Another Example of Nesting (2/2)

Andries van Dam © 2023 9/14/23 64/96

TopHat Question

You have an instance of BookstoreAccountant,
accountant, with the methods given from before.

What is the proper way to calculate the change you will
have if you pay with a $50 bill for 5 books at a cost of $8
each?

A. accountant.priceBooks(5, 8);
B. accountant.priceBooks(8, 5);
C. accountant.calcChange(50, accountant.priceBooks(5, 8));
D. accountant.calcChange(accountant.priceBooks(5, 8));

Andries van Dam © 2023 9/14/23 65/96

Important Techniques Covered So Far

● Defining methods that take in parameters as input

● Defining methods that return something as an output

● Defining a constructor for a class

● Creating an instance of a class with the new keyword

● Up next: Flow of Control

Andries van Dam © 2023 9/14/23 66/96

Outline

• Mathematical functions in Java

• Defining more complicated methods with inputs and

outputs

• The constructor

• Creating instances of a class

• Understanding Java flow of control

Andries van Dam © 2023 9/14/23 67/96

What Is Flow of Control?

● We've already seen lots of examples of Java code in lecture

● But how does all of this code actually get executed, and in
what order?

● Flow of control or control flow is the order in which
individual statements in a program (lines of code) are
executed

● Understanding flow of control is essential for hand simulation
and debugging

Andries van Dam © 2023 9/14/23 68/96

Overview: How Programs Are Executed

● Code in Java is executed sequentially, line by line

● Think of an arrow “pointing” to the current line of code

● Where does execution start?

o in Java, first line of code executed is in a special method

called the main method

Andries van Dam © 2023 9/14/23 69/96

The Main Method

● Every Java program begins at first line of code in main method and

ends after last line of code in main is executed – you will see this

shortly!

● You will see this method in every project or lab stencil, typically in
App.java (the App class)

o by CS15 convention, we start our programs in App

● Program starts when you run file that contains main method

● Every other part of application is invoked from main

Andries van Dam © 2023 9/14/23 70/96

Method Calls and Constructors

● When a method is called,
execution steps into the method
o next line to execute will be first

line of method definition

● Entire method is executed
sequentially
o when end is reached (when

method returns), execution returns

to line following the method call

public static void main(String[] args) {

System.out.println(“first line”);

System.out.println(“last line”);
}

Ignore this

parameter for

now, we’ll

discuss it later

this semester

Andries van Dam © 2023 9/14/23 71/96

Example: Baking Cookies

● Some of your TAs are trying to
bake cookies for a grading
meeting

o they’ve decided to make mystery

flavored cookies, to surprise the

HTAs

● Let’s write a program that will
have a baker make a batch of
cookies!

Andries van Dam © 2023 9/14/23 72/96

The makeCookies() Method

● First, let’s define a method to make cookies, in the Baker class
o public void makeCookies()

● What are the steps of making cookies?
o combine wet ingredients (and sugars) in one bowl

▪ mix this

o combine dry ingredients in another bowl, and mix

o combine wet and dry ingredient bowls

o form balls of dough

o bake for 10 minutes

o sometime before baking, preheat oven to 400º

● Order is not fixed, but some steps must be done before others
● Let’s write methods for these steps and call them in order in

makeCookies()

Andries van Dam © 2023 9/14/23 73/96

Defining the Baker Class

● First, here are more methods of the Baker class – method definitions are
elided. Method definitions can occur in any order in the class

public class Baker {

public Baker() {
// constructor code elided for now

}

public void makeCookies() {
// code on next slide

}

public void combineWetIngredients() {
// code to mix eggs, sugar, butter, vanilla

}

public void combineDryIngredients() {
// code to mix flour, salt, baking soda

}

public void combineAllIngredients() {
// code to combine wet and dry ingredients

}

public void formDoughBalls(int numBalls) {
// code to form balls of dough

}

public void bake(int cookTime) {
//code to bake cookies and remove from
//oven

}

public void preheatOven(int temp) {
// code to preheat oven to a temp

}

} // end of Baker class

Andries van Dam © 2023 9/14/23 74/96

The makeCookies() Method

public void makeCookies() {
this.preheatOven(400);
this.combineWetIngredients();
this.combineDryIngredients();
this.combineAllIngredients();
this.formDoughBalls(24);
this.bake(10);

}

Andries van Dam © 2023 9/14/23 75/96

TopHat Question
Using the Baker class from before, is the following method correct for creating cookie dough?

Why or why not?

public class Baker {
//constructor elided
public void createDough() {

this.combineWetIngredients();
this.combineAllIngredients();
this.combineDryIngredients();

}
//other methods elided

}

A. Yes, it has all the necessary methods in proper order
B. No, it uses this instead of Baker
C. No, it has the methods in the wrong order
D. No, it is inefficient

Andries van Dam © 2023 9/14/23 76/96

Flow of Control Illustrated

● Each of the methods we call in makeCookies() has various
sub-steps involved
o combineWetIngredients() involves adding sugar, butter, vanilla, eggs, and

mixing them together

o bake(int cookTime) involves putting cookies in oven, waiting, taking them out

● In current code, every sub-step of combineWetIngredients()
is completed before combineDryIngredients() is called
o execution steps into a called method, executes everything within method

o both sets of baking steps must be complete before combining bowls, so these

methods are both called before combineAllIngredients()
o could easily switch order in which those two methods are called

Andries van Dam © 2023 9/14/23 77/96

Putting it Together (1/2)

● Now that Bakers have a
method to bake cookies,
let’s put an app together
to make them do so

● Java launches our app
App in its main method

● Generally, use App class to
start our program and have it
do nothing else

public class App {

public static void main(String[] args) {

}
}

Andries van Dam © 2023 9/14/23 78/96

Putting it Together (2/2)

● First, we need a Baker
public class App {

public static void main(String[] args) {

}
}

new Baker();

instantiates a Baker

// in Baker class

public Baker() {

}

this.makeCookies();

● How do we get our Baker to

bake cookies?

○ call the makeCookies()

method from its constructor!

○ this is not the only way – stay

tuned for next lecture

● Calling new Baker() will

execute Baker’s constructor

Baker’s constructor

Andries van Dam © 2023 9/14/23 79/96

Following Flow of Control

public class App {

public static void main(String[] args) {

new Baker();

}

}

public class Baker {

public Baker() {

this.makeCookies();

}

public void makeCookies() {

this.preheatOven(400);

this.combineWetIngredients();

this.combineDryIngredients();

this.combineAllIngredients();

this.formDoughBalls(24);

this.bake(10);

}

public void preheatOven(int temp) {
// code to preheat oven to a temp

}

public void combineWetIngredients() {
// code to mix eggs, sugar, butter, vanilla

}

public void combineDryIngredients() {
// code to mix flour, salt, baking soda

}

public void combineAllIngredients() {
// code to combine wet and dry ingredients

}

public void formDoughBalls(int numBalls) {
// code to form balls of dough

}

public void bake(int cookTime) {
//code to bake cookies and remove from oven

}
} // end of Baker class

Andries van Dam © 2023 9/14/23 80/96

Modifying Flow of Control

● In Java, various control flow statements modify
sequence of execution
o these cause some lines of code to be executed multiple times, or

skipped over entirely

● We’ll learn more about these statements in Making
Decisions and Loops lectures later on

Andries van Dam © 2023 9/14/23 81/96

Important Concepts Covered

● Numbers represented as integers (e.g., int type) or floating-
point (e.g., double type)

● Defining methods that take in parameters as input

● Defining methods that return something as an output

● Using System.out.println to test and debug code

● Defining a constructor for a class

● Creating an instance of a class with the new keyword

● Following Java’s sequential flow of control

Andries van Dam © 2023 9/14/23 82/96

Announcements (1/2)

• Get lab0 checked off by Saturday

o if you’re having issues with IntelliJ setup or running code or

want to get lab checked off come to Conceptual Hours!

• Rattytouille due Saturday, 9/16 @ 11:59pm

• Code-Alongs to cover Java syntax

o hands-on opportunity to code along with a TA in a group

o Tomorrow and Sunday at 7pm in Macmillan 117!

o check Ed post / email for all the specific dates and times

Andries van Dam © 2023 9/14/23 83/96

Announcements (2/2)

• Fill out Mentorship form by tonight at 11:59: mandatory for all
freshmen, fill out during lab/section (or using the link on Ed)

• Permanent Lab/Section Swap form up on Ed.

• Temporary Swaps will be dealt with by emailing your
lab/section TAs and the TAs of the lab/section you are
switching into, at least the Monday of the week.

https://docs.google.com/forms/d/e/1FAIpQLScHNDpfWkLvpONBYwG9eHmX6Edc8V6yVxaLXN-agarohNmGhQ/viewform?usp=sf_link

Andries van Dam © 2023 9/14/23 84/96

Socially Responsible

Computing: Intro to AI

Artificial Intelligence I

Photo credit: Unsplash

CS15 Fall 2023

Andries van Dam © 2023 9/14/23 85/96

Artificial

Intelligence

Image sources: Netflix, Apple, the Conversation, Deep Mind, Boston Dynamics, blenderbot.ai, Lifewire, ChatGPT, Dall -E

Andries van Dam © 2023 9/14/23 86/96

What is Artificial Intelligence? (approximately!)
Artificial Intelligence

The ability of a machine to perform ‘intelligent’
tasks (predicting outcomes, classifying inputs,
learning, planning, perception, robotics…)

Machine Learning

The ability of a machine to ”learn”/ gain
takeaways from data using statistical/
mathematical methods (pattern recognition,
image discrimination, query analysis)

Andries van Dam © 2023 9/14/23 87/96

Current Final Project: Othello, uses mini-max algorithm!

Andries van Dam © 2023 9/14/23 88/96

History of AI

Image source: actuaries.digital, DeepMind, Forbes

•1997: Deep Blue beats Gary
Kasparov

•2006: University of Toronto
develops Deep Learning

•2011: IBM’s Watson wins
Jeopardy

•2016: Go software based on
Deep Learning beats world’s
champions

Increased explosive
growth due to GAI

2023

Andries van Dam © 2023 9/14/23 89/96

2023

GAI

Andries van Dam © 2023 9/14/23 90/96

Prompt: Write a funny

limerick about a Brown

CS TA who dies in the

Hunger Games

More on large language models next lecture!

Andries van Dam © 2023 9/14/23 91/96

• Text-to-image generator developed by OpenAI

• Recognizes concepts, attributes and styles

• More on this in lab next week!

Andries van Dam © 2023 9/14/23 92/96

Projected Generative AI Revenue Growth

Andries van Dam © 2023 9/14/23 93/96Image source: CB Insights

AI Startups in Different Market Sectors

Andries van Dam © 2023 9/14/23 94/96

Positive Use Cases of AI

Image sources: Nature, NSF

Andries van Dam © 2023 9/14/23 95/96

Concerning Use Cases

Image sources: Scientific American, NYTimes, Futurism, Forbes

Andries van Dam © 2023 9/14/23 96/96

Courses at Brown:

CSCI 1410: Artificial Intelligence

CSCI 1420: Machine Learning

CSCI 1430: Computer Vision

CSCI 1460: Computational Linguistics

CSCI 1470: Deep Learning

CSCI 1951R: Intro to Robotics

How can I get involved?

Quadcopter from CSCI 1951R: Intro to Robotics

	Slide 1
	Slide 2: Lecture 3
	Slide 3: Review of Inter-Object Communication
	Slide 4: This Lecture:
	Slide 5: Defining Methods
	Slide 6: BookstoreAccountant
	Slide 7: Basic Math in Java
	Slide 8: Integers
	Slide 9: Integers
	Slide 10: Floating Point Numbers
	Slide 11: Floating Point Numbers
	Slide 12: Operators and Math Expressions (1/2)
	Slide 13: Operators and Math Expressions (2/2)
	Slide 14: Be careful with integer division!
	Slide 15: Evaluating Math Expressions
	Slide 16: TopHat Question
	Slide 17: BookstoreAccountant
	Slide 18: Return Type (1/2)
	Slide 19: Return Type (2/2)
	Slide 20: Accountant (1/6)
	Slide 21: Accountant (2/6)
	Slide 22: Accountant (3/6)
	Slide 23: Aside: System.out.println
	Slide 24: Accountant (4/6)
	Slide 25: Accountant (5/6)
	Slide 26: Accountant (6/6)
	Slide 27: Accountant: A More Generic Price Calculator (1/4)
	Slide 28: Accountant: A More Generic Price Calculator (2/4)
	Slide 29: Accountant: A More Generic Price Calculator (3/4)
	Slide 30: Accountant: A More Generic Price Calculator (4/4)
	Slide 31: Outline
	Slide 32: Parameters (1/3)
	Slide 33: Parameters (2/3)
	Slide 34: Parameters (3/3)
	Slide 35: We Want Human-readable Code
	Slide 36: Accountant (1/2)
	Slide 37: Accountant (2/2)
	Slide 38: TopHat Question: Declaring Methods
	Slide 39: Calling (i.e., using) Methods with Parameters (1/3)
	Slide 40: Calling Methods with Parameters (2/3)
	Slide 41: Calling Methods with Parameters (3/3)
	Slide 42: Arguments vs. Parameters
	Slide 43: Calling Methods That Have Parameters (1/9)
	Slide 44: Calling Methods That Have Parameters (2/9)
	Slide 45: Calling Methods That Have Parameters (3/9)
	Slide 46: Calling Methods That Have Parameters (4/9)
	Slide 47: Calling Methods That Have Parameters (5/9)
	Slide 48: Calling Methods That Have Parameters (6/9)
	Slide 49: Calling Methods That Have Parameters (7/9)
	Slide 50: Calling Methods That Have Parameters (8/9)
	Slide 51: Calling Methods That Have Parameters (9/9)
	Slide 52: TopHat Question
	Slide 53: But where did myAccountant come from?!?
	Slide 54: Outline
	Slide 55: Constructors (1/3)
	Slide 56: Constructors (2/3)
	Slide 57: Constructors (3/3)
	Slide 58: TopHat Question
	Slide 59: Outline
	Slide 60: Creating Instances of Classes (1/2)
	Slide 61: Creating Instances of Classes (2/2)
	Slide 62: Aside: Another Example of Nesting (1/2)
	Slide 63: Aside: Another Example of Nesting (2/2)
	Slide 64: TopHat Question
	Slide 65: Important Techniques Covered So Far
	Slide 66: Outline
	Slide 67: What Is Flow of Control?
	Slide 68: Overview: How Programs Are Executed
	Slide 69: The Main Method
	Slide 70: Method Calls and Constructors
	Slide 71: Example: Baking Cookies
	Slide 72: The makeCookies() Method
	Slide 73: Defining the Baker Class
	Slide 74: The makeCookies() Method
	Slide 75: TopHat Question
	Slide 76: Flow of Control Illustrated
	Slide 77: Putting it Together (1/2)
	Slide 78: Putting it Together (2/2)
	Slide 79: Following Flow of Control
	Slide 80: Modifying Flow of Control
	Slide 81: Important Concepts Covered
	Slide 82: Announcements (1/2)
	Slide 83: Announcements (2/2)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

