<30 PM
¢IT RoOoM 36% "

passionate about

computer science
education? Join
us for our kickoff
meeting to learn
more!

P

1/96

Lecture 3

Introduction to Parameters / Math

Andries van Dam © 2023 9/14/23 2/ 96

Review of Inter-Object Communication

Note: Objectis used

* Aclass provides a blueprint for instances of that class | loosely for both class
and instance. We try

* Instances send each other messages to minimize our use of
* Instances respond to a message via a method this overloaded term

* Format of messages Is <instance>.<method>();
o e.g., samBot.moveForward(3);

e Sometimes an instance want to send a message to itself, using a
method defined In its own class: this.<method>();

* this means “me, myself” AND the method is defined in this class
o Choreographer tells dancer: dancer3.pirouette(2);
o Dancer tells themself: this.pirouette(2);
o Note: we've not yet learned how to create new instances of any class

Andries van Dam © 2023 9/14/23 3/96

This Lecture:

Mathematical functions in Java

Defining more complicated methods with inputs and outputs

The constructor

Creating instances of a class

Understanding Java flow of control

Andries van Dam © 2023 9/14/23 4/96

Defining Methods

e We know how to define simple methods

e Today, we will define more complicated methods that have
both inputs and outputs

e Along the way, we will learn the basics of manipulating
numbers in Java

5/96

BookstoreAccountant

o We

will define a

BookstoreAccountant class that
models an employee In a

bookstore, calculating certain costs

o finding the price of a purchase,
calculating change needed, etc.

will

Each of the accountant’'s methods

nave inputs (numbers) and a

single output (number)

Andries van Dam © 2023 9/14/23

6/96

Basic Math In Java

e First, we'll talk about
numbers and
mathematical
expressions in Java

V =IXwXh

7/96

Andries van Dam © 2023 9/14/23

Integers

e An integeris a whole number, positive or negative,
including O

AN T N |
ST T 111 |

I I I I I I N I N N I
I [N N I N B I B
10 9 87 6 54 3241 01 2 3 4 5 6 7 8 9 10

N
>

e Depending on size (number of digits) of the integer,
you can use one of four numerical base types
(primitive Java data types): byte, short, int, and
long, In Increasing order of number of bits of precision

e Bit: binary digit, 0 or 1

8/96

Integers

Base Type Size Minimum Value Maximum Value
byte 8 bits -128 (-27) 127 (27 - 1)
short 16 bits -32,768 (-21°) 32,767 (2 - 1)
int 32 bits -2,147,483,648 (-231) 2,147,483,647 (231 - 1)
long 64 bits -9,223,372,...,808 (-2%%) | 9,223,372,...,807 (2%3 - 1)

In CS15, almost always use int - good range and we're not
as memory-starved as we used to be so don't need byte

Andries van Dam © 2023 9/14/23 9/96

Floating Point Numbers

e Sometimes, need rational and irrational numbers, I.e.,
numbers with decimal points

e How to represent pi = 3.14159...?
e Floating point numbers

o called “floating point” because decimal point can “float”— no fixed
number of digits before and after it — historical nomenclature

o used for representing numbers in “scientific notation,” with decimal
point and exponent, e.g., 4.3 x 10

e Two numerical base types in Java represent floating point
numbers: float and double

Andries van Dam © 2023 9/14/23 10/96

Floating Point Numbers

Base Type Size
float 32 bits
double 64 bits

Feel free to use both in CS15. Use of doubleis
more common in modern Java code

Andries van Dam © 2023 9/14/23

11/96

Operators and Math Expressions (1/2)

Operator

Meaning

+

addition

subtraction

multiplication

division

%

remainder

Example expressions:

4 + 5
3.33 * 3
11°/4

.0/ 2.0
2

3.0
3/

12/96

Operators and Math Expressions (2/2)

e Example expressions:

4 + 559
3.33 * 3—59.99
e \Whatdoes each of 11 % 4 _, 3
these expressions \yhy 277
evaluate to? \ .0 / 2 —>1 50
3/ 2>

Andries van Dam © 2023 9/14/23 13/96

Be careful with integer division!

When dividing two integer types,
result is “rounded down” to an int

after remainder Is dropped
3/ 2evaluates to 1
If either number Involved Is

floating point, result is floating
point: allows greater “precision,”

l.e., fractional portion.
o 10 / 3 » 3

o 10 / 3.0 » 3.3333.. (more precise)
o called mixed-mode arithmetic

Andries van Dam © 2023 9/14/23

3/ 2 —1

3.0 / 2 —1.50
3/ 2.0 —1.50
3.0/ 2.0 —1.50

14/96

Evaluating Math Expressions

e Java follows the same evaluation
rules that you learned in math class
years ago — PEMDAS (Parentheses,

Exponents, Multiplication/Division, 2 +4 *3 -7 7
Addition/Subtraction)

e Evaluation takes place left to right, (2 +3) + (11 / 12) -5
except:

3+ (2-(6/3) —3

o expressions in parentheses
evaluated first, starting at the
Innermost level

o operators evaluated in order of
precedence/priority (* has priority

over +
) Andries van Dam © 2023 9/14/23 15/96

TopHat Question

What does x evaluate to?
INntx=(((5/2)*3) +5),

A.12.5
B. 11
C. 13
D. 10
E. 12

Andries van Dam © 2023 9/14/23

BookstoreAccountant

e BookstoreAccountants should be able to find the price
of a set of books

e \When we tell a BookstoreAccountant to calculate a

price, we want it to perform the calculation and then tell
us the answer

e To do this, we need to learn how to write a method that
returns a value — In this case, a number

17/96

Return Type (1/2)
public class Robot {

e Thereturn type of a method is the public void turnRight() {
kind of data it gives back to

whomever called it }

e So far. we have onIy seen return public void moveForward(int numberOfSteps) {

type void }

e A method with a return type of public void turnLeft() {
void doesn’t give back anything this.turnRight();
when it's done executing this.turnRight();

this.turnRight();

e void just means “this method does
not return anything”

Andries van Dam © 2023 9/14/23 18/96

Return Type (2/2) A silly example:

e |[f we want a method to return
something, replace void with

the type of thing we want to e ype

return public int giveMeTwo() {
e If method should return an) return 2;
Integer, specify int return type return statement

e When return type is not void,
we have promised to end the
method with a return
statement

o any code following the return
statement will not be executed

Return statements always take the form:

return <something of specified return type>;

19/96

Andries van Dam © 2023 9/14/23

Accountant (1/6)

public class BookstoreAccountant {

e Let's write a silly method for
BookstoreAccountant called
priceTenDollarBook () that finds

the cost of a $10 book

e It will return the value “10” to

whoever called it

e We will generalize this example

Soon...

Andries van Dam © 2023 9/14/23

public int priceTenDollarBook() {

return 10;

}

“10” is an integer — it matches
the return type, int!

20/96

Accountant (2/6)

e \Whatdoes it mean for a method to “return a value to whomever
calls it"?

e Another object can call priceTenDollarBook() on a
BookstoreAccountant from somewhere else in our program and
use the result

e [or example, consider a Bookstore class that has an accountant
named myAccountant

e Wewill demonstrate how the Bookstore can call the method and
use the result

Andries van Dam © 2023 9/14/23 2 1/96

Accountant (3/6)

public class BookstoreAccountant {

public int priceTenDollarBook() {

. return 10;
myAccountant.priceTenDollarBook();)

e We started by just calling
priceTenDollarBook()

e This is fine, it will return 10, but we are not
doing anything with that result!

e Let's use the returned value by printing it
to the terminal }

Andries van Dam © 2023 9/14/23 22/96

Aside: System.out.println

e System.out.println() Is an awesome tool for testing and
debugging your code — learn to use it!

e Helps the user see what is happening in your code by printing out
values to the terminal as It executes

e NOT equivalent to return, meaning other methods cannot see/use
what Is printed

e |f Bookstore program is not behaving properly, can test whether
priceTenDollarBook() Is the problem by printing its return value to
verify that it is “10” (yes, obvious in this trivial case, but not in
general!)

23/96

Andries van Dam © 2023 9/14/23

Accountant (4/6)

In a new method, manageBooks (), print
result

“Printing” in this case means displaying
a value to the user of the program

To print to terminal, we use
System.out.println(<expression to
print>)

println() method prints out value of
expression you provide within the
parentheses

Andries van Dam © 2023 9/14/23

public class BookstoreAccountant {

public int priceTenDollarBook() {
return 10;

¥

public void manageBooks() {
System.out.println(
this.priceTenDollarBook());

24/96

Accountant (5/6)

W e have provided the expression
this.priceTenDollarBook() to be
printed to the console

This information given to the
println() method is called an
argument; more on this in a few
slides

Putting one method call inside
another is called nesting of method
calls; more examples later

Andries van Dam © 2023 9/14/23

public class BookstoreAccountant {

public int priceTenDollarBook() {
return 10;

¥

public void manageBooks() {
System.out.println(
this.priceTenDollarBook());

25/96

Accountant (6/6)

public class BookstoreAccountant {

e \When this line of code is evaluated:

o println() Is called with argument

of this. pPiceTenDollarBook() public int priceTenDollarBook() {

return 10;
o priceTenDollarBook() is called on }

this instance of the public void manageBooks() {

BookstoreAccountant, returning 10 System. out . print1n(
o Println() gets 10 as an argument, \ this.priceTenDollarBook());
10 is printed to terminal T
) argument of printin

Andries van Dam © 2023 9/14/23 26/96

Accountant: A More Generic Price Calculator (1/4)

Now your accountant can get the
price Of a ten-dO"ar bOOk — bUt public class BookstoreAccountant {

that's completely obvious public int priceTenDollarBook() {

For a functional bookstore, we'd \ return 10;
need a separate method for
each pOSSible book price! public int p:iceBooks(int numCps, int price) {
Instead, how about a generic } [I
method that finds the price of }

f . f b k nurr]berof.copies price per copy
any number of copies of a book, oot you're buying
given Its price? purchase

o useful when the bookstore needs
to order new books

Andries van Dam © 2023 9/14/23 27/96

Accountant: A More Generic Price Calculator (2/4)

Method answers the guestion:
given a number of copies and a
price per copy, how much do all public class BookstoreAccountant {

of the coplies cost together?
public int priceTenDollarBook() {

return 10;

To put this in algebraic terms, we }
want a method that will
correspond to the function:

f(x,y)=x*y }

public int priceBooks(int numCps, int price) {

“X" represents the number of

copies; "y Is the price per copy

Andries van Dam © 2023 9/14/23 28/96

Accountant: A More Generic Price Calculator (3/4)

Mathematical function: Equivalent Java method:
name ~, x INpUts
B e i A i int on
fox, y)=x*y P corm i oetgapy P AT price) {
AT } \
name :
Inputs output output

Andries van Dam © 2023 9/14/23 29/96

Accountant: A More Generic Price Calculator (4/4)

e Method takes in two integers from public class BookstoreAccountant {
caller and gives appropriate answers
depending on those integers

e When defining a method, extra pUblic,.jEErﬁr(i,fmeg;fsfi;:izz')".c"s’ int price) {
pieces of information that the method } |
needs to take in (specified inside the /
parentheses of the declaration) are)
called parameters parameters

e priceBooks() is declared to take in
two parameters, “numCps” and
“price” — these, like variable names,
are arbitrary, I.e., your choice
Andries van Dam © 2023 914123 30/96

Outline

Defining more complicated methods with inputs and outputs

The constructor

Creating Instances of a class

Understanding Java flow of control

Andries van Dam © 2023 9/14/23 3 1/96

Parameters (1/3)

e General form of method you are defining that takes in parameters:

<visibility> <returnType> <methodName>(<typel> <namel>, <type2> <name2>...) {

<body of method>
}

e Parameters are specified as comma-separated lists of type-name pairs

o for each parameter, specify type (for example, int or double), and then name (“X", “y’,
“banana”... whatever you want!)

e In basic algebra, we only deal with numbers and freely mix their types. In
programming, we use many different types, not just numbers, but also class names,
and must tell Java explicitly what we intend

o Java is a “strictly typed” language, i.e., it makes sure the user of a method passes the right
number of parameters of the specified type, in the right order — if not, compiler error! In
short, the compiler checks for a strict one-to-one correspondence

Andries van Dam © 2023 9/14/23 32/96

Parameters (2/3)

The following methods are completely

Dummy name of each parameter is equivalent:

1st Parameter 2" Parameter
completely up to you, but...

type name” type name

o Java naming restriction: needs to start l l l l
with a letter public int priceBooks(int numCps, int price) {
return (numCps * price);

o referto CS15 style guide for naming }
conventions

public int priceBooks(int bookNum, int pr) {

It is the name by which you will refer return (bookNum * pr):

to the parameter throughout method }

the again that each parameter is a oublic int priceBooks(int a, int b) {

Andries van Dam © 2023 9/14/23 33/96

https://docs.google.com/document/d/1olSJxbrhuIystA_kVbmKu4V8JfN7HE-eDzM5blkoeFw/edit?usp=sharing

Parameters (3/3)

Remember Robot class from

last lecture?
type name

Its moveForward method took In N d

. public void moveForward(int numberOfSteps) {
one parameter —an int named
numberOfSteps

Follows same parameter
format: type, then name

Andries van Dam © 2023 9/14/23 34/96

We Want Human-readable Code

Try to come up with descriptive names for parameters that make
their purpose clear to anyone reading your code

Robot’s moveForward method calls its parameter “numberOfSteps”,

not “x” or “thingy”
We used “numCps” and “price’

Try to avoid single-letter names for anything that is not strictly
mathematical, be more descriptive

Andries van Dam © 2023 9/14/23 35/96

Accountant (1/2)

Give BookstoreAccountant public class BookstoreAccountant {
class more functionality by
deﬁning more methods! public int priceBooks(int numCps, int price) {

return (numCps * price);

Methods to calculate change }

needed or how many books a
customer can afford public int calcChange(int amtPaid, int price) {

return (amtPaid - price);

Each method will take in J

parameters, perform operations

on them, and return an answer public int calcMaxBks(int price, int myMoney) {
return (myMoney / price);

W e choose arbitrary but helpful }

parameter names

Andries van Dam © 2023 9/14/23 36/96

Accountant (2/2)

public class BookstoreAccountant {

® calcMaxBks takes In price of a public int priceBooks(int numCps, int price) {
book (price) and an amount of return (numCps * price);
money you have to spend J
(myMoney), tells you how many
books you Can buy public int calcChange(int amtPaid, int price) {
e calcMaxBks works because when return (amtPaid - price);

we divide 2 ints, Java rounds the
result down to an int!

o Java always rounds down public int calcMaxBks(int price, int myMoney) {

o $25/%$10 per book = 2 books } return (myMoney / price);

Andries van Dam © 2023 9/14/23 37/96

TopHat Question: Declaring Methods

We want a new method getSalePrice that returns an integer and
takes in two parameters, one integer that represents the original

price of a purchase and one integer that represents the percent
discount offered. Which method declaration Is correct?

A. public void getSalePrice() { B. public int getSalePrice(int price, int discount) {
// code elided // code elided
} }
C. public int getSalePrice(price, discount) { D:publlc void getSalePrice(int price, int
. discount) {
// code elided .
// code elided
} }

Andries van Dam © 2023 9/14/23 38/96

Calling (i.e., using) Methods with Parameters (1/3)

Now that we defined priceBooks(), calcChange(),
and calcMaxBks () methods, we can call them on any
BookstoreAccountant instance

When we call calcChange() method, we must tell it the
amount paid for the books and how much the books cost

How do we call a method that takes in parameters?

39/96

Calling Methods with Parameters (2/3)

e You already know how to call a method that takes in one
parameter!

e Remember moveForward()?

public void moveForward(int numberOfSteps) {

Andries van Dam © 2023 9/14/23 40/96

Calling Methods with Parameters (3/3)

e \When we call a method, we pass
it any extra piece of information it
needs as an argument within

parentheses
e When we call moveForward we
must supply one int as argument samBot .moveForward(4) ;
o samBot.moveForward(); samBot.turnRight();
is NOT correct samBot . moveForward (1 arguments
samBot.turnRight();
e Do NOT specify type of argument samBot . moveForward(3);

when calling a method

o samBot.moveForward(int 4);
IS NOT correct

Andries van Dam © 2023 9/14/23 41/96

Arguments vs. Parameters

parameter

public void moveForward(int numberOfSteps) {

samBot.moveForward (4% argument

} samBot.turnRight();
samBot.moveForward(1Y—— argument

e In defining a method, the parameteris a samBot.turnRight();
dummy name picked by the author used samBot.moveForward(3% argument

by a method to refer to a piece of
information passed into it, e.g. “x” and “y”
In the function f(x, y) = x +vy

e In calling a method, an argument is the

actual value passed in,e.g. 2and 3 in
(2, 3) -> 5

42/96

Andries van Dam © 2023 9/14/23

Calling Methods That Have Parameters (1/9)

e \When we call
samBot.moveForward(3), we

are passing 3 as an argument samBot.moveForward(3);
e When moveForward() executes, \
its parameter is assigned the
value of argument that was
passed Ta public void moveForward(int numberOfSteps) {

e Thus moveForward() here
executes with numberOfSteps=3

Andries van Dam © 2023 9/14/23 43/96

Calling Methods That Have Parameters (2/9)

e When calling a method that takes in
parameters, must provide a valid argument
for each parameter ;!

o analogy: When each district selects 2 tributes to I|‘
compete in the Hunger Games, they must be one
male and one female, and from that district.

e Means that number and type of arguments
must match number and type of parameters

e One-to-one correspondence: same number
of arguments, given in the same order, of the
same matching type

Andries van Dam © 2023 9/14/23 44/96

Calling Methods That Have Parameters (3/9)

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {
return numCps * price;

Each of our accountant’s methods
takes in two ints, which it refers to
by different names (also called

identifiers) public int calcChange(int amtPaid, int price) {
return amtPaid - price;

¥

Whenever we call these methods, J

must provide two ints — first, desired
value for first parameter, then desired public int calcMaxBks(int bookPr, int myMoney) {

Value for Second return myMoney / bookPr;
}

}

Andries van Dam © 2023 9/14/23

45/96

Calling Methods That Have Parameters (4/9)

e Let's go back to our instance of
BookstoreAccountant named
myAccountant

e \When we call a method on
myAccountant, we provide a
comma-separated list of arguments

(in this case, ints) in parentheses myAccountant.priceBooks(2, 16);

myAccountant.calcChange(18, 12);
e These arguments are values we y u ge (18,)

want the method to use for the first myAccountant.calcMaxBks(6, 33);

and second parameters when it runs X
arguments

46/96

Andries van Dam © 2023 9/14/23

Calling Methods That Have Parameters (5/9)

e Note: calcChange(8, 4) isn't
calcChange(4, 8) — order matters!
o calcChange(8,4) —» 4
o calcChange(4,8) —» -4

public int calcChange(int amtPaid, int price) {
return amtPaid - price;

}

Andries van Dam © 2023 9/14/23 47/96

Calling Methods That Have Parameters (6/9)

myAccountant.priceBooks(2, 16);

e Java does “parameter passing” by:

o first checkingthat one-to-one
correspondence is honored (this
Includes type checking!),
public int priceBooks(int numCps, int price) {

o then substituting arguments for return (numCps * price);

parameters,)
o and finally executing the method

body using the arguments

Andries van Dam © 2023 9/14/23 48/96

Calling Methods That Have Parameters (//9)

myAccountant.priceBooks(2, 16);

e Java does “parameter passing” by:

o first checkingthat one-to-one
correspondence is honored (this
Includes type checking!),
public int priceBooks(int numCps, int price) {

o then substituting arguments for return (numCps * price);

parameters,)
o and finally executing the method

body using the arguments

Andries van Dam © 2023 9/14/23 49/96

Calling Methods That Have Parameters (8/9)

myAccountant.priceBooks(2, 16);

e Java does “parameter passing” by:

O

first checking that one-to-one
correspondence is honored (this
Includes type checking!),

then substituting arguments for public int priceBooks(2, 16) {
parameters, return (% * 16);

and finally executing the method) \
body using the arguments .
Y J J 32 1S returned

Andries van Dam © 2023 9/14/23 50/96

Calling Methods That Have Parameters (9/9)

System.out.println(myAccountant.priceBooks(2, 16));

e |f we want to check the result

returned from our method call, use public int priceBooks(int numCps, int price) {
System.out.printlnto printitto return (numCps * price);
the console }

e We'll see the number 32 printed out!

51/96

Andries van Dam © 2023 9/14/23

TopHat Question

Which of the following contains arguments that satisfy the
parameters of the method calcChange() below in the
BookstoreAccountant class?

myAccountant.calcChange(20, 14.50)
myAccountant.calcChange(10)
myAccountant.calcChange(20, 10)
None of the above

CoOwx

public int calcChange(int amtPaid, int price) {
return amtPaid - price;

}

Andries van Dam © 2023 9/14/23 52/96

But where did myAccountant come from?!?

e \We know how to send messages to an instance of a class by
calling methods

e So far, we have called methods on samBot, an instance of
Robot, and myAccountant, an instance of
BookstoreAccountant...

e Where did we get these objects from? How did we make an
Instance of BookstoreAccountant?

e Next: how to use a class as a blueprint to actually build
Instances!

53/96

Outline

¢ Mathematical functions in Java

« Defining more complicated methods with inputs and
outputs

e The constructor

« Creating instances of a class

 Understanding Java flow of control

Andries van Dam © 2023 9/14/23 54/96

Constructors (1/3)

Bookstore Accountants can
priceBooks(), calcChange(),and
calcMaxBks()

Can call any of these methods on
any instance of
BookstoreAccountant

But how did these instances get
created in the first place?

Define a special kind of method in
the BookstoreAccountant class: a
constructor

Note: every class must have a
constructor

public class BookstoreAccountant {

public int
return

¥

public int
return

¥

public int
return

}

Andries van Dam © 2023 9/14/23

priceBooks(int numCps, int price) {
(numCps * price);

calcChange(int amtPaid, int price) {
(amtPaid - price);

calcMaxBks(int price, int myMoney) {
(myMoney / price);

55/96

ConStrUCtorS (2/3) public class BookstoreAccountant {

_ _ _ public BookstoreAccountant() {
A constructor is a special kind of

method that is called whenever an }

instance is to be “born,” i.e., created

— see ShOFtly how it is called public int priceBooks(int numCps, int price) {
return (numCps * price);

Constructor’'s name is always same }

as name of class
public int calcChange(int amtPaid, int price) {

If class Is called return (amtPaid - price);

“BookstoreAccountant,”its }
constructor must be called
“BookstoreAccountant.” If class Is public int calcMaxBks(int price, int myMoney) {
called “Dog,” its constructor had return (myMoney / price);
better be called “Dog” }
}

Andries van Dam © 2023 9/14/23 56/96

COnStrUCtOrS (3/3) public class BookstoreAccountant {

Constructors are special methods: public BookstoreAccountant() {
used to create an instance stored In
an assigned memory location

When we create an instance with the I

_constr_uctor (example in a few S“d?S!)’ public int priceBooks(int numCps, int price) {

!t provides a refere_nce to the location return (numCps * price);

In memory, which is “returned” }

We never specify a return value In its o . o .

declaration public int calcChz.ange(ln’F amtPaid, int price) {
¢ return (amtPaid - price);

Constructor for }

BookstoreAccountant does not take

In any parameters (notice empty public int calcMaxBks(int price, int myMoney) ({

parentheses), return (myMoney / price);

O constructors can, and often do, takein t

parameters — stay tuned for next lecture
}

Andries van Dam © 2023 9/14/23 57/96

TopHat Question

Which of the following is not true of constructors?

A. Constructors are methods
B. Constructors always have the same name as their class
C. Constructors should specify a return value
D. Constructors can take in parameters

E— R

|

y
-
v _ 5 RS
. g 7, 73
by P -y
b o .
3 ot vy
. 4 & ¥ o "
3
Al 3

Andries van Dam © 2023 9/14/23

58/96

Outline

¢ Mathematical functions in Java

« Defining more complicated methods with inputs and
outputs

e The constructor

« Creating instances of a class

 Understanding Java flow of control

Andries van Dam © 2023 9/14/23 59/ 96

Creating Instances of Classes (1/2)

Now that the BookstoreAccountant class has a constructor, we
can create instances of it!

Here Is how we create a BookstoreAccountant in Java:
new BookstoreAccountant();

This means “use the BookstoreAccountant class as a blueprint to
create a new BookstoreAccountant instance”

BookstoreAccountant() Is a call to BookstoreAccountant’s
constructor, so any code in constructor will be executed as soon as
you create a BookstoreAccountant

60/96

Andries van Dam © 2023 9/14/23

Creating Instances of Classes (2/2)

We refer to “creating” an instance as instantiating it
When we say:.
new BookstoreAccountant();

... We're creating an instance of the BookstoreAccountant class,
a.k.a. instantiating a new BookstoreAccountant

W here exactly does this code get executed?

Stay tuned for the next lecture to see how this constructor is used by
another instance to create a new BookstoreAccountant!

Andries van Dam © 2023 9/14/23 6 1/96

Aside: Another Example of Nesting (1/2)

e Our calcChange() method takes in two
ints — the amount the customer paid,
and price of the purchase

e OQOur priceBooks() method finds the
price of the purchase

e \What if we want to use result of priceBooks() as an argument to
calcChange()?

e Say we have got 3 copies of an $11 book. We also have $40 in cash to
pay with. priceBooks () will tell us that purchase costs $33. We want to
use this as “price” parameter for calcChange()

e How do we do this? Nesting!

Andries van Dam © 2023 9/14/23

62/96

Aside: Another Example of Nesting (2/2)

e myAccountant.priceBooks(3, 11) returns “33"
o we want to pass this number into calcChange()

e \We can nest myAccountant’s priceBooks() method within
myAccountant’'s calcChange() method:

myAccountant.calcChange(40, myAccountant.priceBooks(3,11));

:

Ir‘etur‘ns 3%

v
myAccountant.calcChange(40, 33);

e And calcChange() returns 7! Always, evaluate inner parentheses first

Andries van Dam © 2023 9/14/23 63/96

TopHat Question

You have an instance of BookstoreAccountant,
accountant, with the methods given from before.

What is the proper way to calculate the change you will

have if you pay with a $50 bill for 5 books at a cost of $8
each?

A. accountant.priceBooks(5, 8);

B. accountant.priceBooks(8, 5);

C. accountant.calcChange(50, accountant.priceBooks(5, 8));
D. accountant.calcChange(accountant.priceBooks(5, 8));

Andries van Dam © 2023 9/14/23 64/96

Important Techniques Covered So Far

e Defining met

e Defining met

N10C

N10C

St

St

nat take in parameters as input

nat return something as an output

e Defining a constructor for a class

e Creating an instance of a class with the new keyword

e Up next: Flow of Control

65/96

Outline

¢ Mathematical functions in Java

« Defining more complicated methods with inputs and
outputs

e The constructor

« Creating instances of a class

 Understanding Java flow of control

Andries van Dam © 2023 9/14/23 66/ 96

What Is Flow of Control?

e \We've already seen lots of examples of Java code in lecture

e But how does all of this code actually get executed, and In
what order?

e Flow of control or control flow Is the order in which
Individual statements in a program (lines of code) are
executed

e Understanding flow of control is essential for hand simulation
and debugging

Andries van Dam © 2023 9/14/23 67/96

Overview: How Programs Are Executed

e Code In Javalis executed sequentially, line by line
e Think of an arrow “pointing” to the current line of code

e \Where does execution start?

o In Java, first line of code executed Is in a special method
called the main method

68/96

The Main Method

e Every Java program begins at first line of code in main method and
ends after last line of code in main Is executed — you will see this

shortly!

e You will see this method Iin every project or lab stencil, typically In
App.java (the App class)

o by CS15 convention, we start our programs in App
e Program starts when you run file that contains main method

e Every other part of application is invoked from main

69/96

Andries van Dam © 2023 9/14/23

Method Calls and Constructors anore this

parameter for
now, we'll

® When a methOd IS Ca.”ed, discuss it later
execution steps into the method this semester
o hext line to execute will be first &,

line of method definition public static void main(String[] args) {

mmmm) System.out.println(“first line”);

e Entire method is executed —}> System.out.println(“last line”);

sequentially
o when end is reached (when
method returns), execution returns
to line following the method calll

70/96

Andries van Dam © 2023 9/14/23

Example: Baking Cookies

e Some of your TAs are trying to
bake cookies for a grading
meeting

o they've decided to make mystery
flavored cookies, to surprise the
HTAS

e Let's write a program that will
have a baker make a batch of
cookies!

Andries van Dam © 2023 9/14/23

71/96

The makeCookies() Method

e First, let's define a method to make cookies, in the Baker class
o public void makeCookies()
e What are the steps of making cookies?
o combine wet ingredients (and sugars) in one bowl
= mix this
o combine dry ingredients in another bowl, and mix
o combine wet and dry ingredient bowls
o form balls of dough
o bake for 10 minutes
o sometime before baking, preheat oven to 400°

e Order is not fixed, but some steps must be done before others
e Let's write methods for these steps and call them in order in
makeCookies ()

Andries van Dam © 2023 9/14/23 72/96

Defining the Baker Class

e First, here are more methods of the Baker class — method definitions are

elided. Method definitions can occur in any order in the class

. public void combineAllIngredients() {
public class Baker {

public Baker() { }

} public void formDoughBalls(int numBalls) {
public void makeCookies() { }

} public void bake(int cookTime) {

public void combineWetIngredients() {

}
}

public void preheatOven(int temp) {
public void combineDryIngredients() {

}
}

Andries van Dam © 2023 9/14/23 73/96

The makeCookies() Method

public void makeCookies() {
preheatOven(400);

+c+ct &+ &+

nis.
nis.
nis.
nis.
nis.

nis.

com
com
com

pineWetIngredients();
pineDryIngredients();

pineAllIngredients();

formDoughBalls(24);
bake(10) ;

74/96

TopHat Question

Using the Baker class from before, is the following method correct for creating cookie dough?
Why or why not?

public class Baker {

public void createDough() {
this.combinelWetIngredients();
this.combineAllIngredients();
this.combineDryIngredients();

A. Yes, it has all the necessary methods in proper order
B. No, it uses this instead of Baker

C. No, it has the methods in the wrong order

D. No, it is inefficient

Andries van Dam © 2023 9/14/23 75/96

Flow of Control lllustrated

e Each of the methods we call in makeCookies() has various

sub-steps involved

o combineWetIngredients() involves adding sugar, butter, vanilla, eggs, and
mixing them together
o bake(int cookTime) involves putting cookies in oven, waiting, taking them out

e In current code, every sub-step of combineWetIngredients()

IS completed before combineDryIngredients() Is called

o execution steps into a called method, executes everything within method

o both sets of baking steps must be complete before combining bowls, so these
methods are both called before combineAllIngredients()

o could easily switch order in which those two methods are called

Andries van Dam © 2023 9/14/23 76/96

Putting it Together (1/2)

e Now that Bakershavea Puiic ctass A o
method {o bake COOkieS, public static void main(String[] args) {

let’s put an app together }
to make them do so }

e Javalaunches our app
App In its main method

® Generally, use App class to
start our program and have it
do nothing else

77/96

Putting it Together (2/2)

. bli 1 A
e First, we need a Baker public class App {

public static void main(String[] args) {

e Calling new Baker () will new Baker();
}

execute Baker’s constructor

-

e How do we get our Baker to

bake cookies? Instantiates a Baker

o call the makeCookies() Baker’s constructor
method from its constructor! public Baker() { /
o this is not the only way — stay this.makeCookies();

tuned for next lecture

Andries van Dam © 2023 9/14/23 78/96

Following Flow of Control

public class App {
mmmmm) public static void main(String[] args) {

mmmm) new Baker();
} C—

public class Baker {
public Baker() {

mmmm) this.makeCookies();
}

public void makeCookies() {
this.preheatOven(400);
this.combineWetIngredients();
this.combineDryIngredients();
this.combineAllIngredients();
this.formDoughBalls|(24);
this.bakg(10);

-

public void preheatOven(int temp|) {
mmmm) // code to preheat oven to a temp

¥

public void combineWetIngredients() f{
mmmm) // code to mix eggs, sugar, butter, vanilla

}

public void combineDryIngredients() {
mmmm) // code to mix flour, salt, baking soda

}

public void combineAllIngredients() {
// code to combine wet and dry ingredients

¥

public void formDoughBalls(int numBalls) {
mmmm) // code to form balls of dough

¥

public void bake(int cookTime) {
mmmm) //code to bake cookies and remove from oven

}

} // end of Baker class

Andries van Dam © 2023 9/14/23 79/96

Modifying Flow of Control

e In Java, various control flow statements modify

seguence of execution

o these cause some lines of code to be executed multiple times, or
skipped over entirely

e \We'lllearn more about these statements in Making
Decisions and Loops lectures later on

Andries van Dam © 2023 9/14/23 80/96

Important Concepts Covered

Numbers represented as integers (e.g., int type) or floating-
point (e.qg., double type)

Defining methods that take in parameters as input
Defining methods that return something as an output
Using System.out.println to test and debug code
Defining a constructor for a class

Creating an instance of a class with the new keyword
Following Java’'s sequential flow of control

Andries van Dam © 2023 9/14/23 8 1/96

Announcements (1/2)

* GetlabO checked off by Saturday

o if you're having issues with IntelliJ setup or running code or
want to get lab checked off come to Conceptual Hours!

» Rattytouille due Saturday, 9/16 @ 11:59pm

 Code-Alongsto cover Java syntax
o hands-on opportunity to code along with a TA in a group
o Tomorrow and Sunday at 7pm in Macmillan 117!

o check Ed post / email for all the specific dates and times
Andries van Dam © 2023 9/14/2 82/96

Announcements (2/2)

* Fill out Mentorship form by tonight at 11:59: mandatory for all
freshmen, fill out during lab/section (or using the link on Ed)

* Permanent Lab/Section Swap form up on Ed.

* Temporary Swaps will be dealt with by emailing your
lab/section TAs and the TAs of the lab/section you are
switching Into, at least the Monday of the week.

83/96

https://docs.google.com/forms/d/e/1FAIpQLScHNDpfWkLvpONBYwG9eHmX6Edc8V6yVxaLXN-agarohNmGhQ/viewform?usp=sf_link

HEstat Socially Responsible i

Computing: Intro to Al

CS15 Fall 2023

ARTIFICIAL INTELLIGENCE

84/96

Not Sure What to Watch?

ChatGPT .
Artificial

DALL-E Intelligence

‘Deadbots’ can speak for you after your
death Is that ethical?

Image sources: Netflix, Apple, the Conversation, Deep Mind, Boston Dynamics, blettéebwtndian & eWir &/ @RatGPT, Dall-E 85/96

What is Artificial Intelligence? (approximately!)

Artificial Intelligence

The ability of a machine to perform ‘intelligent’
tasks (predicting outcomes, classifying inputs,
learning, planning, perception, robotics...)

Machine Learning

The ability of a machine to ”learn”/ gain
takeaways from data using statistical/
mathematical methods (pattern recognition,
image discrimination, query analysis)

Deep Learning

a subset of ML based on a simplified model of
the human brain (artificial neural networks)

Andries van Dam © 2023 9/14/23 86/ 96

Current Final Project: Othello, uses mini-max algorithm!

othello

Select options, then press Apply Settings

White: 2 Black: 2

White Black
Human Human
® Computer Computer 1
Computer 2 Computer 2
Computer 3 0 Computer 3
v Deterministic v ' Deterministic
»
Apply Settings
Reset
Quit

87/96

Andries van Dam © 2023 9/14/23

History of Al

Increased explosive

Popularity growth due to GAI
Explosive
Growth
@G chatGPT
New Hopes
i
Inflated E
Hype :
; 1 Al winter I
) ' |
| ' |
Birth Al wlinter] | |
. 1]
5 BEE R
: | ' | |
1950 1956 1974 1980 1987 1993 2023

88/96

Image source: actuaries.digital, DeepMind, Forbes Andries van Dam © 2023 9/14/23

Language and image recognition capabilities of Al systems have improved rapidly

Test scores of the Al relative to human performance
+20

0<-Human performance, as the benchmark, is set to zero.

=

Handwriting recognition
Speech recognition

T T T T T T N

BE: T 1 1
A\ 2000 2005

The capability of each Al system is normalized
to aninitial performance of -100.

Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP
OurWorldinData.org - Research and data to make progress against the world’s largest problems.

Andries van Dam © 2023 9/14/23

Image recognition

Our World

in Data

3 4 |
/x I Al SYSTEMS perygrm better than

the humans whddid these tests

Reading
compre-
hension

4 T

¥ I
2015

I Al systems perfffrm worse

4

GAl

Language understanding

2023

Licensed under CC-BY by the author Max Roser

89/96

@ ChatG PT More on large language models next lecture!

Prompt: Write a funny

P InBrown's CS class, a TA so witty,
llmerle d bOUt a Brown Tackled bugs and code with a spirit so gritty,

CS TA who dies in the But off to the Games, he ventured one day,
With algorithms and syntax in play,

Hunger Games

Sadly, he met his demise, not quite pretty.

90/96

Andries van Dam © 2023 9/14/23

- a L
S — Ao

DALL-E 2

-
VA

Andries van Dam © 2023 9/14/23 9 1/96

o~
0
U
Nt
)
=
=
:
+ 4

Projected Generative Al Revenue Growth

$1,400 i}
mm Generative AL Revenue

$1,200
$1,000
$800
$600

$400

$217
$200 $137

14 $23 %40 767 3%

$399
$304

a5 5%

— Generative Al as a % of Total Technology Spend

$548

$728

$1,304

$1,079

$897

0%

S0
2020 2022 2024

Source: Bloomberg Intelligence, IDC

2026

2028

2030 2032

Bloomberg @

% of Total Technology Spend

Image source: CB Insights

Al Startups in Different Market Sectors

Al development tools

E: CBINSIGHTS

Al chips & M Synthetic NLP

Computer vision

Federated learning Version control &

AI processors data hazu annotation visualization platforms experiment tracking
-'._',‘ i"a";;;""‘"" {}Q‘ AT MOSBTLY-Al & Argilla @ i DAFPHERIS «J DynamaF| Weights & Hiases
Vector database tech ML development & Model validation Al auditing & Foundational models
i deployment & monitoring governance & APIs Al cbs
e Langthan gy, Weasiabs B .
)) Lightning™ PP el A Arize LotticeFlow Coe crede ai = cohare senbextuclal
2“23 A Tiliz Wy mosaic™ [Feplicate WHYLABS Halistic &1 = eggivgFace -@quul.l
Cross-industry applications
Synthetic voice Image Privacy & security Code generation Sales & customer Al ADEPT ANTHROPAC
Il b & text — support assistants A
ElevenLabs generation & LR () Opague giffhue %= replit ge warp PP £ HMIs Inflection |kl Wispr
S\ BssemblyBl - Polydl

Emotion analytics (=) Jasper Prosecs AL

i talka tovus™

=+ hume Digital twins - blackshan Design tools & Galilea Al T8 Pely
Praductivity tools Warehouse /?5,. Content Logically: Smell tech Translation Climate tech Quantum _,':‘
™ mem & logistics covariant moderation wnitary Os5mo a Deepl muir.ai Al software SR DBOE

General-purpose humanoids FIGURE # sascrusay

Industry-specific

Image processing .0 .. visesareal

Search @ Perplosity

3 Twahe Labs v vectara L)

Mnt&r{i:lsﬁ_ Gaming Fashion & retail Energy Healthcare MQEMIE & Momic a1 - srscecaisn
manufacturing . . - _ .
= memelly Makirallock =" CONVAL wopuate refiberd ‘j seel phaidra @L\'\c:ml:ﬂrm [q (375 113 [PP, turbsine. 3% xralpi
Defense W VANNEVAR Lok Finance arteriag % soosiccal Agriculture - o Physical infrastructure Wexodigo
Education Media & L= . = Legal Auto & o Construction

) entertainment choracterai == descript @ wm B runway @ wonder Harvey) mobility helm.ai @ o Augmenta

Mote: Companies are private as of 6/20/23.

E: CBINSIGHTS

93/96

Positive Use Cases of Al

rticle | Open Access | Published: 29 August 2019

Deep Learning to Improve Breast Cancer
Detection on Screening Mammography

Li Shen &2, Laurie R. Margolies, Joseph H. Rothstein, Eugene Fluder, Russell McBride &

Weiva Sieh

Scientific Reports 9, Article number: 12495 (2019) | Cite this article

Researchers speed up analysis of
Arctic ice and snow data through
artificial intelligence

Al technique enables researchers to study data trends more quickly, improving
prediction ability

94/96

Image sources: Nature, NSF Andries van Dam © 2023 9/14/23

"""""""" How China’s Police Used Phones and

Racial Bias Found in a Major
Health Care Risk Algorithm Faces to Track Protesters

BuzzFeed Is Quietly Publishing Whole Educators Battle Plagiarism

- As 89% Of Students Admit
Al-Generated Articles, Not Just To Using OpenAl’s ChatGPT

Quizzes For Homework

Andries van Dam © 2023 9/14/23 95/96

HUMANITY CENTERED
ROBOTICS INITIATIVE

Aboutv Researchv Community Engagementv Blog

Learn about DuckieSky

Andries van Dam © 2023 9/14/23 96/ 96

	Slide 1
	Slide 2: Lecture 3
	Slide 3: Review of Inter-Object Communication
	Slide 4: This Lecture:
	Slide 5: Defining Methods
	Slide 6: BookstoreAccountant
	Slide 7: Basic Math in Java
	Slide 8: Integers
	Slide 9: Integers
	Slide 10: Floating Point Numbers
	Slide 11: Floating Point Numbers
	Slide 12: Operators and Math Expressions (1/2)
	Slide 13: Operators and Math Expressions (2/2)
	Slide 14: Be careful with integer division!
	Slide 15: Evaluating Math Expressions
	Slide 16: TopHat Question
	Slide 17: BookstoreAccountant
	Slide 18: Return Type (1/2)
	Slide 19: Return Type (2/2)
	Slide 20: Accountant (1/6)
	Slide 21: Accountant (2/6)
	Slide 22: Accountant (3/6)
	Slide 23: Aside: System.out.println
	Slide 24: Accountant (4/6)
	Slide 25: Accountant (5/6)
	Slide 26: Accountant (6/6)
	Slide 27: Accountant: A More Generic Price Calculator (1/4)
	Slide 28: Accountant: A More Generic Price Calculator (2/4)
	Slide 29: Accountant: A More Generic Price Calculator (3/4)
	Slide 30: Accountant: A More Generic Price Calculator (4/4)
	Slide 31: Outline
	Slide 32: Parameters (1/3)
	Slide 33: Parameters (2/3)
	Slide 34: Parameters (3/3)
	Slide 35: We Want Human-readable Code
	Slide 36: Accountant (1/2)
	Slide 37: Accountant (2/2)
	Slide 38: TopHat Question: Declaring Methods
	Slide 39: Calling (i.e., using) Methods with Parameters (1/3)
	Slide 40: Calling Methods with Parameters (2/3)
	Slide 41: Calling Methods with Parameters (3/3)
	Slide 42: Arguments vs. Parameters
	Slide 43: Calling Methods That Have Parameters (1/9)
	Slide 44: Calling Methods That Have Parameters (2/9)
	Slide 45: Calling Methods That Have Parameters (3/9)
	Slide 46: Calling Methods That Have Parameters (4/9)
	Slide 47: Calling Methods That Have Parameters (5/9)
	Slide 48: Calling Methods That Have Parameters (6/9)
	Slide 49: Calling Methods That Have Parameters (7/9)
	Slide 50: Calling Methods That Have Parameters (8/9)
	Slide 51: Calling Methods That Have Parameters (9/9)
	Slide 52: TopHat Question
	Slide 53: But where did myAccountant come from?!?
	Slide 54: Outline
	Slide 55: Constructors (1/3)
	Slide 56: Constructors (2/3)
	Slide 57: Constructors (3/3)
	Slide 58: TopHat Question
	Slide 59: Outline
	Slide 60: Creating Instances of Classes (1/2)
	Slide 61: Creating Instances of Classes (2/2)
	Slide 62: Aside: Another Example of Nesting (1/2)
	Slide 63: Aside: Another Example of Nesting (2/2)
	Slide 64: TopHat Question
	Slide 65: Important Techniques Covered So Far
	Slide 66: Outline
	Slide 67: What Is Flow of Control?
	Slide 68: Overview: How Programs Are Executed
	Slide 69: The Main Method
	Slide 70: Method Calls and Constructors
	Slide 71: Example: Baking Cookies
	Slide 72: The makeCookies() Method
	Slide 73: Defining the Baker Class
	Slide 74: The makeCookies() Method
	Slide 75: TopHat Question
	Slide 76: Flow of Control Illustrated
	Slide 77: Putting it Together (1/2)
	Slide 78: Putting it Together (2/2)
	Slide 79: Following Flow of Control
	Slide 80: Modifying Flow of Control
	Slide 81: Important Concepts Covered
	Slide 82: Announcements (1/2)
	Slide 83: Announcements (2/2)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

