
1/85
Andries van Dam © 2023 9/20/23

Get to know your class!
● Your classmates are concentrating in…

○ CS, APMA, Econ, Math, IAPA, English, Music, History, and
more!

○ And plenty are unsure…that’s ok too!

● This course is roughly 45% female and 54%
male

● 97% Brown students, 3% RISD students
● Why are you all taking this class?

“It’s a requirement
for my degree

“I want to learn the basics of coding” “For fun!”

“The skits :)”“The most exciting intro course”

2/85
Andries van Dam © 2023 9/20/23

Lecture 4
Working with Objects: Part 1

3/85
Andries van Dam © 2023 9/20/23

Review Slides at End
of Deck ☺

4/85
Andries van Dam © 2023 9/20/23

Outline
● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern and containment

● Local variables vs. instance variables

5/85
Andries van Dam © 2023 9/20/23

Variables
● Once we create a Dog instance, we want to be able to give it

commands by calling methods on it!
● To do this, we need to name our Dog
● Can name an instance by storing it in a variable

Dog effie = new Dog();

● In this case, effie is the variable, and it stores a newly created
instance of Dog
o the variable name effie is also known as an “identifier”

● Now we can call methods on effie, a specific instance of Dog
o i.e., effie.wagTail();

6/85
Andries van Dam © 2023 9/20/23

Syntax: Variable Declaration and Assignment
● We can both declare and assign (i.e., initialize) a variable in a single

statement, like: Dog effie = new Dog();

<type> <name> = <value>;

● The “=” operator assigns the instance of Dog that we created to the
variable effie. We say “effie gets a new Dog”

● Note: type of value must match declared type on left

● We can reassign a variable as many times as we like (example soon)

declaration Instantiation, followed by assignment using =

7/85
Andries van Dam © 2023 9/20/23

Assignment vs. Equality
In Java:

price = price + 1;

• Means “add 1 to the
current value of price
and assign that to price”

In Algebra:

• price = price + 1 is a
logical contradiction

8/85
Andries van Dam © 2023 9/20/23

● A variable stores information as either:
o a value of a primitive (aka base) type (like int or float)

o a reference to an instance (like an instance of Dog) of an
arbitrary type stored elsewhere in memory
▪ we symbolize a reference with an arrow

● Think of the variable like a box; storing a value or
reference is like putting something into the box

● Primitives have a predictable memory size, while
instances of classes vary in size. Thus, Java simplifies
memory management by having a fixed size reference to
an instance elsewhere in memory
o “one level of indirection”

int favNumber = 9;

Dog effie = new Dog();

favNumber

9

effie

(somewhere else in memory)

Values vs. References

9/85
Andries van Dam © 2023 9/20/23

TopHat Question Join Code: 504547
Given this code, fill in the blanks:

Variable x stores a _____, and myCalc stores a _______.

A. value, value
B. value, reference
C. reference, value
D. reference, reference

int x = 5;
Calculator myCalc = new Calculator();

10/85
Andries van Dam © 2023 9/20/23

Example: Instantiation (1/2)
● Let’s define a new class PetShop

which has a testEffie() method
o don’t worry if the example seems a

bit contrived…

● Whenever someone instantiates a
PetShop, its constructor is called,
which calls testEffie()

● Then testEffie() instantiates a
Dog and tells it to bark, eat, and
wag its tail (see definition of Dog
for what these methods do)

public class PetShop {

//constructor

public PetShop() {

 this.testEffie();
}

public void testEffie() {

 Dog effie = new Dog();

 effie.bark(5);

 effie.eat();

 effie.wagTail();

}

}

11/85
Andries van Dam © 2023 9/20/23

Another Example: Instantiation (2/2)
● Another example: can instantiate a

MathStudent and then call that instance
to perform a simple, fixed, calculation,
called performCalculation()

● First, instantiate a new Calculator and
store its reference in variable named
myCalc

● Next, tell myCalc to add 2 to 6 and store
result in variable named answer

● Finally, use System.out.println to print
value of answer to the console!

public class MathStudent {

 /* constructor elided */

 public void performCalculation() {
 Calculator myCalc = new Calculator();
 int answer = myCalc.add(2, 6);
 System.out.println(answer);
 }

 /* add() method elided */
...

}

12/85
Andries van Dam © 2023 9/20/23

Outline
● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern and containment

● Local variables vs. instance variables

13/85
Andries van Dam © 2023 9/20/23

Instances as Parameters (1/3)
● Methods can take in not just

numbers but also instances as
parameters

● The PetShop class has a
method trimFur()

● trimFur method needs to know
which Dog instance to trim the
fur of

public class PetShop {

public PetShop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

● Method calling trimFur will have to supply a specific instance of
a Dog, called shaggyDog in trimFur

● Analogous to void moveForward(int numberOfSteps);

name of
specific
instance

type/class

14/85
Andries van Dam © 2023 9/20/23

● Where to call the PetShop’s
trimFur method?

● Do this in the PetShopFranchise
method testGrooming(), a “helper”
method

● Call to testGrooming()
instantiates a PetShop and a Dog,
then calls the PetShop to trimFur
of the Dog

● First two lines could be in either
order, since both are instantiated
adjacently

public class PetShopFranchise {

public PetShopFranchise() {

 this.testGrooming();

}

public void testGrooming() {

 PetShop sarahsPetShop = new PetShop();

 Dog effie = new Dog();

 sarahsPetShop.trimFur(effie);

}

}

Instances as Parameters (2/3)
Dog PetShop App

15/85
Andries van Dam © 2023 9/20/23

1. In App’s main method, call to
testGrooming() helper method.

2. A PetShop is instantiated (thereby
calling PetShop’s constructor) and a
reference to it is stored in the variable
andysPetShop

3. Next, a Dog is instantiated (thereby
calling Dog’s constructor) and a reference
to it is stored in the variable effie

4. The trimFur method is called on
andysPetShop, passing in effie as
an argument

5. andysPetShop trims effie’s fur;
trimFur in andysPetShop will think of
effie as shaggyDog, a synonym

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

//exit method, effie and groomer disappear

}

}

public class PetShop {

/* constructor elided */

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

Code
from
slide
19

Instances as Parameters (3/3): Flow of Control

1.

2.

4.
3.

5.

Code
from
slide
18

16/85
Andries van Dam © 2023 9/20/23

What is Memory?
● Memory (“system memory” aka

RAM, not disk or other peripheral
devices) is the hardware in which
computers store information during
computation

● Think of memory as a list of slots;
each slot holds information (e.g., an
int variable, or a reference to an
instance of a class)

● Here, two references are stored in
memory: one to a Dog instance,
and one to a PetShop instance

public class App

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop sarahsPetShop = new PetShop();

Dog effie = new Dog();

sarahsPetShop.trimFur(effie);

}

}

Dog
PetShop

App

17/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (1/6)

Somewhere in memory...

Note: Recall that in Java, each class is stored in its own file. Thus, when creating a program with multiple classes, the
program will work as long as all classes are written before the program is run. Order doesn’t matter.

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

18/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (2/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

When we instantiate a PetShop, it’s stored somewhere in memory. Our App will use the name
andysPetShop to refer to this particular PetShop, at this particular location in memory.

19/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (3/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

Same goes for the Dog—we store a particular Dog somewhere in memory. Our App knows this
Dog by the name effie.

…
Usually not
adjacent in
memory!

20/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (4/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

We call the trimFur method on our PetShop, andysPetShop. We need to tell it which Dog to
trimFur (since the trimFur method takes in a parameter of type Dog). We tell it to trim effie.

…
Usually not
adjacent in
memory!

21/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (5/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

When we pass in effie as an argument to the trimFur method, we’re telling the trimFur
method about him. When trimFur executes, it sees that it has been passed that particular Dog.

…
Usually not
adjacent in
memory!

22/85
Andries van Dam © 2023 9/20/23

Instances as Parameters: Under the Hood (6/6)

Somewhere in memory...

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

public class PetShop {

public Petshop() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

}

The trimFur method doesn’t really care which Dog it’s told to trimFur—no matter what another
instance’s name for the Dog is, trimFur is going to know it by the name shaggyDog.

…
Usually not
adjacent in
memory!

23/85
Andries van Dam © 2023 9/20/23

Outline
● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern and containment

● Local variables vs. instance variables

24/85
Andries van Dam © 2023 9/20/23

Variable Reassignment (1/3)
● After giving a variable an initial

value or reference, we can
reassign it (make it refer to a
different instance)

● What if we wanted our PetShop to
trimFur two different Dogs?

● Could create another variable, or
re-use the variable effie to first
point to one Dog, then another!

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

}

}

25/85
Andries van Dam © 2023 9/20/23

Variable Reassignment (2/3)
● First, instantiate another Dog, and

reassign variable effie to point
to it

● Now effie no longer refers to the
first Dog instance we created,
which was already groomed

● Then tell PetShop to trimFur the
new Dog. It will also be known as
shaggyDog inside the trimFur
method

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog(); // reassign effie

andysPetShop.trimFur(effie);

}

}

26/85
Andries van Dam © 2023 9/20/23

Variable Reassignment (3/3)
● When we reassign a variable, we do not declare its type again, Java

remembers from first time

● Can reassign to a brand new instance (like in PetShop) or to an already
existing instance by using its identifier

● Now effie and scooby refer to the same Dog, specifically the one that
was originally referenced by scooby

Dog effie = new Dog();
Dog scooby = new Dog();
effie = scooby; // reassigns effie to refer to the same Dog as scooby

27/85
Andries van Dam © 2023 9/20/23

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog();

andysPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (1/5)

28/85
Andries van Dam © 2023 9/20/23

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog();

andysPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (2/5)

29/85
Andries van Dam © 2023 9/20/23

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog();

andysPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (3/5)

30/85
Andries van Dam © 2023 9/20/23

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog();

andysPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (4/5)

//old ref garbage collected – stay tuned!

31/85
Andries van Dam © 2023 9/20/23

public class App {

public static void main(String[] args) {

this.testGrooming();

}

public void testGrooming() {

PetShop andysPetShop = new PetShop();

Dog effie = new Dog();

andysPetShop.trimFur(effie);

effie = new Dog();

andysPetShop.trimFur(effie);

}

}

}

Variable Reassignment: Under the Hood (5/5)

//old ref garbage collected – stay tuned!

32/85
Andries van Dam © 2023 9/20/23

Outline
● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern and containment

● Local variables vs. instance variables

33/85
Andries van Dam © 2023 9/20/23

Adding PetShop Capabilities
• The PetShop only has the

capability (method) to trimFur

• What if we want the PetShop to
expand with more functionality?

• PetShop class would be long!

• trimFur
• shampooFur
• dryFur
• teachSit
• teachBark
• teachFetch
• sellDogToy
• and more…

34/85
Andries van Dam © 2023 9/20/23

Delegation Pattern (1/3)
• Just like a real-life pet shop would hire employees to

delegate work, we should create new classes to
delegate code

• Pass responsibility to something / someone else to
manage parts of a task

• PetShop doesn’t need to care how the dog gets trimmed,
if it gets done properly

35/85
Andries van Dam © 2023 9/20/23

Delegation Pattern (2/3)
• Delegation results in a chain of abstraction, where each

level deals with more specifics to complete an action

Please groom my
dog!

Wash this dog with
shampoo, then trim its

hair and dry!

Fill the bath with warm
water until it’s two-thirds

full…

DogOwner PetShop DogGroomer

Bath

HairDryer

Clippers

36/85
Andries van Dam © 2023 9/20/23

Delegation Pattern (3/3)
• We delegate

responsibilities to
DogGroomer!

• trimFur becomes a
capability of DogGroomer
instead of PetShop

• teachSit and
teachBark can be
delegated to DogTrainer

public class DogGroomer {
/* constructor elided */

public void trimFur(Dog shaggyDog) {
 //code that trims the fur of shaggyDog
}

public void shampooFur(Dog dirtyDog) {
 //code that shampoos the fur of dirtyDog
}

public void dryFur(Dog wetDog) {
 //code that dries the fur of wetDog
}

}

37/85
Andries van Dam © 2023 9/20/23

Aside: Design Patterns and Principles
• Delegation is the first design pattern we’re learning
• We’ll learn many throughout the course – these are crucial to OOP
• OOP is about much more than functionality of programs

o PetShop could operate fine without DogGroomer or DogTrainer;
delegating is our design choice to make code easier to read,
more modular and extensible

• Later, assignment grades will be based as much on your design
choices as functionality

• In future projects, YOU will have to decide how to delegate your
program to different classes!
o (not quite yet though)

38/85
Andries van Dam © 2023 9/20/23

Consequence of Delegation
• With delegation, we’ll use multiple classes to

accomplish one task
o PetShop, DogGroomer, Bath, HairDyer, and Clippers all

involved with dog grooming

• Must ask ourselves - How are different classes
related to each other so their instances can
communicate to collaborate?

• Two key concepts to establish these relationships are
containment and association

39/85
Andries van Dam © 2023 9/20/23

Containment
• Often a class A will need as a component an instance of class

B, so A will create the instance of B by using the new keyword

• Any time class A creates a new instance of class B, we say A
contains that instance of class B

• A knows about B and can call B’s methods on that instance

• Note this is not symmetrical: B can’t call methods on A!

o thus, a Car can call methods on a contained instance of
Engine, but the Engine instance can’t call methods on the Car
instance – it doesn’t know about the Car instance that it is
contained in

Car

Engine

40/85
Andries van Dam © 2023 9/20/23

Visualizing Containment

“contains one
instance of”

“contains more than
one instance of”

Car

Engine • Notation comes from UML (Unified
Modeling Language) standard used
to model software systems

https://www.uml.org/what-is-uml.htm

41/85
Andries van Dam © 2023 9/20/23

Example: Containment
• Now that we’ve delegated

responsibilities to the DogGroomer,
the PetShop can contain an
instance of DogGroomer

• In the testGrooming method,
PetShop can call DogGroomer’s
methods on groomer

• It may seem unnatural to have a
PetShop contain a DogGroomer,
but it works in the kind of modeling
that OOP makes possible

public class PetShop {

 public PetShop() {

 this.testGrooming();

 }

 public void testGrooming() {

 DogGroomer groomer = new DogGroomer();

 Dog effie = new Dog();

 groomer.shampooFur(effie);

 groomer.trimFur(effie);

 groomer.dryFur(effie);

 }
}

(Notice the methods being called on groomer
are defined in DogGroomer)

42/85
Andries van Dam © 2023 9/20/23

Delegating to Top-Level Class (1/2)
• App class should

never have more than
a few lines of code

public class App {

public static void main(String[] args) {

 this.testGrooming();

}

public void testGrooming() {

 DogGroomer groomer = new DogGroomer();

 Dog effie = new Dog();

 groomer.shampooFur(effie);

 groomer.trimFur(effie);

 groomer.dryFur(effie);

}

}

43/85
Andries van Dam © 2023 9/20/23

Delegating to Top-Level Class (2/2)
• Top-level class is class that contains

high-level logic of program

• App delegates to top-level class (here,
PetShop) to simplify App as much as
possible

• Same functionality of the program, with
a different code design

o easier to visually follow program’s
high-level control flow

• As CS15 programs increase in
complexity, purpose of separating
top-level class from App will become
clearer

public class App {
public static void main(String[] args) {
 new PetShop();
}

}

public class PetShop {

public PetShop() {
 this.testGrooming();
}

public void testGrooming() {
 DogGroomer groomer = new DogGroomer();
 Dog effie = new Dog();
 groomer.shampooFur(effie);
 groomer.trimFur(effie);
 groomer.dryFur(effie);
}

}

44/85
Andries van Dam © 2023 9/20/23

TopHat Question Join Code: 504547
Which of the following is NOT true?

A. App should delegate to the top-level class
B. The top-level class should never have more than a few
 lines of code
C. App should contain the top-level class
D. The relationship between App and the top-level class
 can be visualized as: App

Top-Level Class

45/85
Andries van Dam © 2023 9/20/23

Outline
● Storing values in variables

● Instances as parameters

● Variable reassignment

● Delegation pattern and containment

● Local variables vs. instance variables

46/85
Andries van Dam © 2023 9/20/23

Local Variables (1/2)
● All variables we’ve seen so

far have been local
variables: variables declared
inside a method

● Problem: the scope of a
local variable (where it is
known and can be accessed)
is limited to its own
method—it cannot be
accessed from anywhere
else
o same is true of method’s

parameters

public class PetShop {

public PetShop() {

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}

}

local variables

47/85
Andries van Dam © 2023 9/20/23

Local Variables (2/2)
● We created groomer and

effie in our PetShop’s
testGrooming method, but as
far as the rest of the class is
concerned, they don’t exist and
cannot be used

● Once the method is completely
executed, they’re gone :(
o this is known as “Garbage

Collection”

public class PetShop {

public PetShop() {

this.testGrooming();

}

public void testGrooming() {

Dog effie = new Dog();

DogGroomer groomer = new DogGroomer();

groomer.shampooFur(effie);

groomer.trimFur(effie);

groomer.dryFur(effie);

}

}

local variables

48/85
Andries van Dam © 2023 9/20/23

Garbage Collection
● If an instance referred to by a variable goes

out of scope, we can no longer access it.
Because we can’t access the instance, it
gets garbage collected
o in garbage collection, the space that the instance

took up in memory is freed and the instance no
longer exists

● Lose access to an instance when:
o at the end of method execution, local variables

created within that method go out of scope
o variables lose their reference to an instance

during variable reassignment (effie, slide 35)

49/85
Andries van Dam © 2023 9/20/23

Accessing Local Variables

● If you try to access a local
variable outside of its
method, you’ll receive a
“cannot find symbol”
compilation error

public class PetShop {

public PetShop() {

 DogGroomer groomer = new DogGroomer();

 this.cleanShop();

}

 public void cleanShop() {

 //assume we’ve added a sweep method

 //to DogGroomer

 groomer.sweep();

}

}

In Terminal after javac *.java:
PetShop.java:13: error: cannot find symbol
 groomer.sweep();
 ^
 symbol: variable groomer
 location: class PetShop

scope of groomer

50/85
Andries van Dam © 2023 9/20/23

Introducing… Instance Variables!

● Local variables aren’t always what we want. We’d like
every PetShop to come with a DogGroomer who exists
for as long as the PetShop exists

● That way, as long as the PetShop is in business, we’ll
have our DogGroomer on hand

● We accomplish this by storing the DogGroomer in an
instance variable

51/85
Andries van Dam © 2023 9/20/23

What’s an Instance Variable?
● An instance variable models a property that all instances of

a class have
o its value can differ from instance to instance

● Instance variables are declared within a class, not within a
single method, and therefore are accessible from anywhere
within the class, unlike local variables – their scope is the
entire class

● Instance variables and local variables are identical in terms of
what they can store—either can store a base type (like an
int) or a reference to an instance of some other class

52/85
Andries van Dam © 2023 9/20/23

Modeling Properties with Instance Variables (1/2)
● Methods model capabilities of a

class (e.g., move, dance)
● All instances of same class have

exact same methods (capabilities)
and the same properties

● BUT: the values of those properties
can be different and can differentiate
one instance from other instances of
the same class

● We use instance variables to model
these properties and their values
(e.g., the robot’s size, position,
orientation, color, …)

53/85
Andries van Dam © 2023 9/20/23

● All instances of a class have same set of
properties, but values of these properties will differ

● E.g., CS15Students might have property “height”
o for one student, the value of “height” is 5’2”. For

another, it’s 6’4”

● CS15Student class would have an instance
variable to represent height
o all CS15Students have a “height”, but the value

stored in instance variable would differ from instance
to instance

Modeling Properties with Instance Variables (2/2)

54/85
Andries van Dam © 2023 9/20/23

Instance Variables (1/4)
● We’ve modified PetShop example to make

our DogGroomer an instance variable for the
benefit of multiple methods

● Split up declaration and assignment of
instance variable:
o declare instance variable at the top of the class

above the constructor, to notify Java compiler

o initialize the instance variable by assigning a value
to it in the constructor

o primary purpose of constructor is to initialize all
instance variables so each instance has a valid
initial “state” at its “birth”; it typically should do
no other work

o state is the set of all values for all properties—local
variables don’t hold properties; they are
“temporaries”. State typically varies over time

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 this.groomer = new DogGroomer();

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog();//local var

 this.groomer.trimFur(effie);

}

public void payGroomer () {

 this.groomer.getPaidDollars(5);

}

}

declaration

initialization

55/85
Andries van Dam © 2023 9/20/23

● Like we use this when an instance
calls a method on itself, we also use
this when an instance references one
of its instance variables after declaration
o Java compiler will work without it, but

required in CS15 to easily distinguish
instance variables from local variables

● Thus, we use this to refer to
capabilities (methods) and properties
(instance variables) of an instance

Instance Variables (2/4)

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 this.groomer = new DogGroomer();

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog();//local var

 this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

56/85
Andries van Dam © 2023 9/20/23

● Note we include the keyword
private in declaration of our
instance variable

● private is an access modifier,
just like public, which we’ve been
using in our method declarations

Instance Variables (3/4)
access modifier

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 this.groomer = new DogGroomer();

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog();//local var

 this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

57/85
Andries van Dam © 2023 9/20/23

● If declared as private, the method or
instance variable can only be accessed
inside the class – their scope is the
entire class

● If declared as public, can be accessed
from anywhere – their scope can
include multiple classes – very unsafe!

● In CS15, you’ll declare instance
variables as private, with rare
exception!

● Note that local variables don’t have
access modifiers – they always have
the same scope (their own method)

Instance Variables (4/4)
access modifier

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 this.groomer = new DogGroomer();

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog();//local var

 this.groomer.trimFur(effie);

}

//payGroomer() method elided

}

58/85
Andries van Dam © 2023 9/20/23

Encapsulation Design Pattern
• Why private instance variables?
• Encapsulation for safety… your properties are your private business
• Allows for chain of abstraction so classes don’t need to worry about

the inner workings of contained classes
o we will also show you safe ways of allowing other classes to have

selective access to designated properties… stay tuned

DogOwner PetShop DogGroomer

Bath

HairDryer

Clippers

59/85
Andries van Dam © 2023 9/20/23

Always Remember to Initialize!
● What if you declare an instance

variable, but forget to initialize it?
What if you don’t supply a constructor
and your instance variables are not
initialized?

● The instance variable will assume a
“default value”

o if it’s an int, it will be 0

o if it’s an instance, it will be null— a
special value that means your
variable is not referencing any
instance at the moment

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 //oops! Forgot to initialize groomer

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog();//local var

 this.groomer.trimFur(effie);

}

}

60/85
Andries van Dam © 2023 9/20/23

NullPointerExceptions
● If a variable’s value is null and

you try to give it a command,
you’ll be rewarded with a
runtime error—you can’t call a
method on “nothing”!

● groomer’s default value is null,
so this particular error yields a
NullPointerException

● When you run into one of these
(we promise, you will), make
sure all instance variables have
been explicitly initialized,
preferably in the constructor, and
no variables are initialized as null

public class PetShop {

private DogGroomer groomer;

public PetShop() {

 //oops! Forgot to initialize groomer

 this.testGrooming();

}

public void testGrooming() {

 Dog effie = new Dog(); //local var

 this.groomer.trimFur(effie);

}

} NullPointerExcepti
on

61/85
Andries van Dam © 2023 9/20/23

Our PetShop Program
public class PetShop {

private DogGroomer groomer;

public PetShop() {
 this.groomer = new DogGroomer();
 this.testGrooming();
}

public void testGrooming() {
 Dog effie = new Dog(); //local var
 this.groomer.shampooFur(effie);
 this.groomer.trimFur(effie);
 effie = new Dog();
 this.groomer.shampooFur(effie);
 this.groomer.trimFur(effie);
}

}

public class App {
public static void main(String[] args) {
 new PetShop();
}

}

public class DogGroomer {
/* constructor elided */

public void trimFur(Dog shaggyDog) {
 //code that trims the fur of shaggyDog
}

public void shampooFur(Dog dirtyDog) {
 //code that shampoos the fur of dirtyDog
}

 ...
}

62/85
Andries van Dam © 2023 9/20/23

Visualizing Our PetShop Program

PetShop

DogGroomer

App

Dog

63/85
Andries van Dam © 2023 9/20/23

TopHat Question Join Code: 504547
Which of the following most
accurately describes the
containment relationships in
this program?

App contains a Farm
App contains a House, a Pig,
and multiple Cows
Farm contains a House, a Pig,
and multiple Cows
A and C
A, B, and C

public class App {
 public static void main(String[] args) {
 new Farm();
 }
}

public class Farm {
 private House farmHouse;
 private Pig wilbur;
 private Cow bessy;
 private Cow betty;

 public Farm() {
 this.farmHouse = new House();
 this.wilbur = new Pig();
 this.bessy = new Cow();
 this.betty = new Cow();
 }
}

A.
B.

C.

D.
E.

64/85
Andries van Dam © 2023 9/20/23

TopHat Question Join Code: 504547
What visualization most
accurately describes the
containment relationships
in this program?

Take a minute to sketch on
your own, then we’ll show
options on the next slide

public class App {
 public static void main(String[] args) {
 new Farm();
 }
}

public class Farm {
 private House farmHouse;
 private Pig wilbur;
 private Cow bessy;
 private Cow betty;

 public Farm() {
 this.farmHouse = new House();
 this.wilbur = new Pig();
 this.bessy = new Cow();
 this.betty = new Cow();
 }
}

65/85
Andries van Dam © 2023 9/20/23

TopHat Question Join Code: 504547
What visualization most accurately describes the containment relationships in
the program?

App

Farm

House Pig Cow

App

Farm

House Pig Cow

A B

App

House

Pig

Cow

C

Farm

66/85
Andries van Dam © 2023 9/20/23

Summary
● containment: when one instance is a component of another class so the container

can therefore send messages to the component it created

● delegation pattern: passing responsibility of task details to another class to maintain
clean code design

o results in a chain of abstraction

● local variables: scope is limited to a method

● instance variables: store the properties of instances of a class for use by multiple
methods—use them only for that purpose

● A variable that “goes out of scope” is garbage collected

o for a local variable, when the method ends

o for an instance variable, when the last reference to it is deleted

67/85
Andries van Dam © 2023 9/20/23

Announcements
• Lab 1 (Intro to Java) begins today

o Some section rooms assignments have changed, so be sure to
read email from section TAs

• AndyBot due tomorrow 9/20
o No late deadline = no credit for code submitted past the

deadline

• If you feel like you could use extra practice writing code,
attend code-alongs! (This week on Writing Classes!)
o Check website for code-along schedule

68/85
Andries van Dam © 2023 9/20/23

Topics in SRC:
Neural Nets and
Large Language
Models (LLMs)

CS15 Fall 2023

69/85
Andries van Dam © 2023 9/20/23

Neural Network vs. a Human Brain

Source:
ExtremeTech.com

Illustration of neural networks in our brain.

Hidden Layers

Output Layer

Numb
er 0

Numb
er 1

Input
Node

2

Input
Node

3

Input
Node

4

Input
Node

X)

Input
Node

1

Numb
er 2

. .

.

Input
Layer

0

1
2

https://www.extremetech.com/extreme/179223-the-first-real-time-non-invasive-imaging-of-neurons-forming-a-neural-network

70/85
Andries van Dam © 2023 9/20/23

Large Language Models (LLMS)

• LLMs are autocomplete on steroids

Image source: Towards Data Science

• A LLM is a particular type of Neural Network (more on this next
week!)

71/85
Andries van Dam © 2023 9/20/23

Parrot Chat-GPT

Learns random sentences
from people

Talks like a person but
doesn’t understand what it’s
saying

Occasionally speaks absolute
nonsense

Is a “people pleaser”

Is a cute little bird

Image source: National Geographic, Reuters

LLMs as “Stochastic Parrots”

72/85
Andries van Dam © 2023 9/20/23

Second Training Phase – Reinforcement
Learning

Reward to reinforce
better answer?

Image Source: Time, HuggingFace

73/85
Andries van Dam © 2023 9/20/23

Uncertainty in
AI

Source: AI for radiographic COVID-19 detection selects shortcuts over signal

The concentration of red pigment denotes
the areas in which the AI is searching for

patterns

Identifies COVID
by corner and lung

area

• Explainable AI focuses on understanding neural net activity

Identifies COVID
by corners of

image

Identifies COVID by
solely diaphragm

area

74/85
Andries van Dam © 2023 9/20/23

Review: Methods
● Call methods: used on an instance of a class

 samBot.turnRight();

● Define methods: give a class specific capabilities

public void turnLeft() {

// code to turn Robot left goes here

}

75/85
Andries van Dam © 2023 9/20/23

Review: Parameters and Arguments
● Define methods that take in generic parameters (input) and have return

values (output); e.g., this Calculator’s method:
 public int add(int x, int y) {

 return x + y; // x, y are dummy (symbolic) variables

 }

● Call such methods on instances of a class by providing specific arguments
(actual values for symbolic parameters)

 myCalculator.add(5, 8);

● Remember the one-to-one correspondence rule: list of arguments must
match list of parameters in number, order, and types

o thus, Java can substitute each argument for its corresponding parameters

76/85
Andries van Dam © 2023 9/20/23

Review: Classes
● Recall that classes are just blueprints

● A class gives a basic definition of an object we want to
model (one or more instances of that class)

● It tells the properties and capabilities of that object
● You can create any class you want and invent any

methods and properties you choose for it!

77/85
Andries van Dam © 2023 9/20/23

Review: Instantiation
● Instantiation means building an

instance from its class

o the capabilities of the instance
are defined through the class’s
methods

● Ex: new Robot(); creates an
instance of Robot by calling the
Robot class’ constructor (see
next slide)

The Robot
class

new Robot();

instance

78/85
Andries van Dam © 2023 9/20/23

Review: Constructors (1/2)
● A constructor is a

method that is called to
create a new instance

● Let’s define one for the
Dog class

● Let’s also add methods
for actions all Dogs know
how to do like bark, eat,
and wag their tails

public class Dog {

 public Dog() {

// this is the constructor!

 }

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

79/85
Andries van Dam © 2023 9/20/23

Review: Constructors (2/2)
● Note constructors do not

specify a return type

● Name of constructor
must exactly match
name of class

● Now we can instantiate
a Dog in some method
using the new keyword:

new Dog();

public class Dog {

 public Dog() {

// this is the constructor!

 }

public void bark(int numTimes) {

// code for barking goes here

}

public void eat() {

// code for eating goes here

}

public void wagTail() {

// code for wagging tail goes here

}

}

