
1 / 81
Andries van Dam © 2023 9/21/23

Lecture 5
Working with Objects: Part 2

2 / 81
Andries van Dam © 2023 9/21/23

Review Topics at the end of the deck

Please make sure you understand what we have covered so far

● Variables

● Local vs. Instance Variables

● Variable Reassignment

● Instances as Parameters

● Delegation Pattern

● NullPointer Exceptions

● Encapsulation

● Containment

3 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Join Code: 504547

Which of the following most
accurately describes the
containment relationships in
this program?

App contains a Farm
App contains a House, a Pig,
and multiple Cows
Farm contains a House, a Pig,
and multiple Cows
A and C
A, B, and C

public class App {
 public static void main(String[] args) {
 new Farm();
 }
}

public class Farm {
 private House farmHouse;
 private Pig wilbur;
 private Cow bessy;
 private Cow betty;

 public Farm() {
 this.farmHouse = new House();
 this.wilbur = new Pig();
 this.bessy = new Cow();
 this.betty = new Cow();
 }
}

A.

B.

C.

D.

E.

4 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Join Code: 504547

What visualization most
accurately describes the
containment relationships
in this program?

Take a minute to sketch on
your own, then we’ll show
options on the next slide.

public class App {
 public static void main(String[] args) {
 new Farm();
 }
}

public class Farm {
 private House farmHouse;
 private Pig wilbur;
 private Cow bessy;
 private Cow betty;

 public Farm() {
 this.farmHouse = new House();
 this.wilbur = new Pig();
 this.bessy = new Cow();
 this.betty = new Cow();
 }
}

5 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Join Code: 504547

What visualization most accurately describes the containment relationships
in the program?

App

Farm

House Pig Cow

App

Farm

House Pig Cow

A B

App

House

Pig

Cow

C

Farm

6 / 81
Andries van Dam © 2023 9/21/23

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

7 / 81
Andries van Dam © 2023 9/21/23

Accessors / Mutators

● All instances of a class have the same instance variables (properties) but their
own values

● Instance variables hold the instance’s private properties: encapsulation

● But a class may choose to allow other classes to have selective access to
designated properties

o e.g., Dog can allow DogGroomer to access its furlength property

● To do this, the class can make the value of an instance variable publicly
available via an accessor method

● These accessor methods typically have the name convention get<Property>
and have a non-void return type

● The return type specified and value returned must also match!

● Let’s see an example

8 / 81
Andries van Dam © 2023 9/21/23

Accessors / Mutators: Example

● Let’s make Dog’s furLength
property publicly available

● getFurLength is an accessor

method for furLength

● Can call getFurLength on an

instance of Dog to return its current

furLength value

● DogGroomer can now access this

value. We will see why this is useful

in a few slides

public class Dog {

private int furLength;

public Dog() {

this.furLength = 3;

}

public int getFurLength() {

return this.furLength;

}

/* bark, eat, and wagtail elided */

}

9 / 81
Andries van Dam © 2023 9/21/23

Accessors / Mutators

• A class can give other classes even greater permission by allowing

them to change the value of its properties/instance variables

o e.g., Dog can allow DogGroomer to change the value of its

furLength property

• To do this, the class can define a mutator method which modifies

the value of an instance variable

• These methods typically have the name convention set<Property>

and have void return types

• They also take in a parameter that is used to modify the value of

the instance variable

10 / 81
Andries van Dam © 2023 9/21/23

Accessors / Mutators: Example (1/6)

• Let’s define a mutator method,
setFurLength, in Dog that sets

furLength to the value passed in

• DogGroomer can call setFurLength
on an instance of Dog to change its

furLength value

• In fact, DogGroomer can use both

getFurLength and setFurLength
to modify furLength based on its

previous value. Stay tuned for an
example

public class Dog {

private int furLength;

public Dog() {

this.furLength = 3;
}

public int getFurLength() {

return this.furLength;

}

public void setFurLength(int myFurLength)

{

this.furLength = myFurLength;

}

/* bark, eat, and wagTail elided */

}

11 / 81
Andries van Dam © 2023 9/21/23

Accessors / Mutators: Example (2/6)

• Fill in DogGroomer’s trimFur

method to modify the furLength of

the Dog whose fur is being trimmed

• When a DogGroomer trims the fur

of a dog, it calls the mutator

setFurLength on the Dog and

passes in 1 as an argument. This

will be the new value of furLength

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

12 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog effie = new Dog();

System.out.println(effie.getFurLength());

this.groomer.trimFur(effie);

System.out.println(effie.getFurLength());

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

Check that trimFurworks by printing out the Dog’s furLength before and

after we send it to the groomer

Accessors / Mutators: Example (3/6)

We use the accessor getFurLength to

retrieve the value effie stores in its

furLength instance variable

13 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog effie = new Dog();

System.out.println(effie.getFurLength());

this.groomer.trimFur(effie);

System.out.println(effie.getFurLength());

}

}

public class DogGroomer {

public DogGroomer() {

// this is the constructor!

}

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(1);

}

}

● What values print out to the console?

o first, 3 is printed because that is the initial value we assigned to furLength

in the Dog constructor (slide 10)

o next, 1 prints out because groomer just set effie’s furLength to 1

Code from previous

slide!

Accessors / Mutators: Example (4/6)

14 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

// Constructor elided

public void testGroomer() {

Dog effie = new Dog();

this.groomer.trimFur(effie,);

}

}

public class DogGroomer {

/* Constructor and other code elided */

public void trimFur(Dog shaggyDog) {

shaggyDog.setFurLength(furLength);

}

}

● What if we don’t always want to trim a Dog’s fur to a value of 1?

● When we tell groomer to trimFur, let’s also tell groomer the length to trim the Dog’s fur

● trimFur will take in a second parameter, and set Dog’s fur length to the passed-in

value of furLength (note for simplicity Dog doesn’t error check to make sure that

furLength passed in is less than current value of furLength)

● Now pass in two arguments when calling trimFur so groomer knows how much

furLength should be after trimming fur

The groomer will trim the fur to

a furLength of 2!

2

, int furLength

Accessors / Mutators: Example (5/6)

15 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

// Constructor elided

public void testGroomer() {

Dog effie = new Dog();

int newLen = effie.getFurLength() - 2;

this.groomer.trimFur(effie, newLen);

}

}

public class DogGroomer {

/* Constructor and other code elided */

public void trimFur(Dog shaggyDog, int furLength) {

shaggyDog.setFurLength(furLength);

}

}

● What if we wanted to make sure the value of furLength after trimming is always less than the

value before?
● When we tell groomer the length to trim the Dog’s fur, let’s specify a length less than the

current value of furLength

● We could eliminate the local variable newLen by nesting a call to getFurLength as the

second parameter:

this.groomer.trimFur(effie, effie.getFurLength() - 2);

decrease furLengthby 2

Accessors / Mutators: Example (6/6)

16 / 81
Andries van Dam © 2023 9/21/23

Summary of Accessors/Mutators
● Instance variables should always be declared private for safety

reasons

● If we made these instance variables public, any method could
change them, i.e., with the caller in control of the inquiry or change –
this is unsafe

● Instead, the class can provide accessors/mutators (often in pairs, but
not always) which give the class control over how the variable is
queried or altered. For example, a mutator could do error-checking on
the new value to make sure it is in range

● Also, an accessor needn’t be as simple as returning the value of a
stored instance variable – it is just a method and can do arbitrary
computation on one or more variables

● Use them sparingly – only when other classes need them

17 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Join Code: 504547

Which of the following signatures is
correct for an accessor method in
Farm?

public void getFarmHouse() {
 return this.farmhouse;
}

public class Farm {
 private House farmHouse;

 // Farm constructor
 public Farm() {

 this.farmhouse = new House();
 }
}

public House getFarmHouse(FarmHouse myFarmHouse) {
 this.farmhouse = myFarmhouse;
}

public House getFarmHouse() {
 return this.farmhouse;
}

public House getFarmHouse(FarmHouse myFarmHouse) {
 return this.myFarmHouse;
}

A

B

C

D

18 / 81
Andries van Dam © 2023 9/21/23

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

19 / 81
Andries van Dam © 2023 9/21/23

• We’ve seen how a container instance can call methods on any contained instances
it “newed”, but this relationship is not symmetric: the contained instance cannot
communicate with its container!

o Orchestra creates a new instance of a Conductor

o The Conductor instance is a component of the Orchestra

o The Orchestra can now call methods on the Conductor

o But what if the Conductor needs to communicate with the
Orchestra?

o We need additional code to allow this symmetry

• We will tell the Conductor about the instance that created it, in this case, an
Orchestra instance. We want to associate the Conductor with the Orchestra

o The easiest way is to pass the Orchestra instance as a parameter
to the Conductor’s constructor

o How?!?

Association

20 / 81
Andries van Dam © 2023 9/21/23

Example: Setting up Association (1/4)
● Let’s write a program that models an

orchestra

o define an Orchestra class which can
contain different instrumentalists and
the conductor

● The play method will be used to start and
direct the musical performance

● The Conductor has the capabilities to do this
so an instance of Conductor is contained in
Orchestra. We say Conductor is a
component of Orchestra

● The Orchestra can tell the Conductor to
start performance because it created it as a
component

o This is another example of delegation:
from the Orchestra to the Conductor

public class Orchestra {

private Conductor conductor;

public Orchestra() {
//this is the constructor
this.conductor = new Conductor();
this.play();

}

public void play() {
this.conductor.startPerformance();

}

}

21 / 81
Andries van Dam © 2023 9/21/23

Example: Motivation for Association (2/4)
● But what if the Conductor needs to call

methods on the Orchestra?

o the conductor probably needs to know
several things about the orchestra. E.g., how
many instrumentalists are there? Which ones
are present? When is the next rehearsal?...

● We can set up an associationso the

Conductor can communicate with the

Orchestra

● We modify the Conductor’s constructor to

take an Orchestra parameter

o and record it in an instance variable

o but where do we get this Orchestra?

public class Conductor {

private Orchestra orchestra;
// other instance variables elided

public Conductor(Orchestra myOrchestra) {
this.orchestra = myOrchestra;

}

public void startPerformance() {
// code elided

}

// other methods elided
}

22 / 81
Andries van Dam © 2023 9/21/23

Example: Using the Association (3/4)

● Back in the Orchestra class,
what argument should
Conductor’s constructor be
passed?

○ the Orchestra instance that
created the Conductor

● How?

○ by passing this as the
argument

■ i.e., the Orchestra tells the
Conductor about itself

public class Orchestra {
private Conductor conductor;

 // other instance variables elided

public Orchestra() {
//this is the constructor
this.conductor = new Conductor();

}

public void play() {
this.conductor.startPerformance();

}

// other methods elided
}

this

23 / 81
Andries van Dam © 2023 9/21/23

Example: Using the Association (4/4)

● The instance variable, orchestra,
stores the instance of Orchestra of
which the Conductor is a component

● orchestra points to same Orchestra
instance passed to the Conductor’s
constructor

● After constructor has been executed
and can no longer reference parameter
myOrchestra, any Conductormethod
can still access same Orchestra
instance by the name orchestra

o thus can call bow on orchestra in
endPerformance

public class Conductor {
private Orchestra orchestra;

public Conductor(){
this.orchestra = myOrchestra;

}

public void startPerformace() {
// code elided

}

public void endPerformance() {
this.orchestra.bow();

}

}

Orchestra myOrchestra

24 / 81
Andries van Dam © 2023 9/21/23

Containment/Association Diagram

Orchestra

Conductor

“contains one

instance of”

“knows about”/is

associated with

“contains

more than one

instance of”

25 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Join Code: 504547

public class School {
private Teacher teacher;

public School() {
this.teacher = new Teacher(this);

}
//additional methods, some using
//this.teacher

}

public class Teacher {
private School school;

public Teacher(School mySchool) {
this.school = mySchool;

}
//additional methods, some using
//this.school

}

Which of the following statements is correct, given the code below that establishes an association from
Teacher to School?

A. School can send messages to Teacher, but Teacher cannot send messages to School
B. Teacher can send messages to School, but School cannot send messages to Teacher
C. School can send messages to Teacher, and Teacher can send messages to School
D. Neither School nor Teacher can send messages to each other

26 / 81
Andries van Dam © 2023 9/21/23

TopHat Question Review

● Does School contain Teacher?

o yes! School instantiated Teacher, therefore School contains a Teacher.
Teacher is a component of School

● Can School send messages to Teacher?

o yes! School can send messages to all its components that it created

● Does Teacher contain School?

o no! Teacher knows about School that created it, but does not contain it

o but can send messages to School because it “knows about” School

public class School{
private Teacher teacher;

public School() {
this.teacher = new Teacher(this);

}
//additional methods, some using
//this.teacher

}

public class Teacher{
private School school;

public Teacher(School mySchool) {
this.school = mySchool;

}
//additional methods, some using
//this.school

}

27 / 81
Andries van Dam © 2023 9/21/23

Outline

● Accessors and Mutators

● Association

o Component-Container Association

o “Many-to-One” Association

o Two-way Association

28 / 81
Andries van Dam © 2023 9/21/23

“Many-to-One” Association
● Multiple classes, say A and B, may need to communicate with the same instance of another

(peer) class, say C, to accomplish a task. Let’s consider our PetShop example

● Our goal is to set up a system that allows PetShop employees, in this case DogGroomer, to log
in hours worked and the Manager to approve worked hours and make necessary payment

● Manager can keep track of the DogGroomer’s worked hours in its class, in addition to its other
functionalities

● Alternatively, the Manager can delegate these tasks to another class

o doesn’t need to know how employee’s working hours are tracked as long as they are
tracked

● DogGroomer and Manager would need to “know about” this class in order to send messages to
its instance

● We’re adding complexity to our design by adding another class, but making the Manager less
complex – like many things in life, it is a tradeoff!

29 / 81
Andries van Dam © 2023 9/21/23

Log in Hours Worked Get hours worked

DogGroomer Manager

• If we define a TimeKeeper class as this third, peer class, both the DogGroomer and

Manager need to be associated with the same instance of TimeKeeper

• What would happen if they weren’t associated?

“Many-to-One” Association

30 / 81
Andries van Dam © 2023 9/21/23

Example: Motivation for Association (1/9)
● If DogGroomer and Manager were associated with different instances, our

communication would fail!

● Still abstract? Let’s see how this looks like with code!

Log in Hours

Worked

Get hours

worked

Manager

DogGroomer

31 / 81
Andries van Dam © 2023 9/21/23

● Let’s create a simple
TimeKeeper class and define
some of its properties and
capabilities

● setStartTime and setEndTime
record the start and end times of
a working period

● computeHoursWorked
calculates amount of hours
worked

public class TimeKeeper {
private Time start;
private Time end;

public TimeKeeper() {
//initialize start and end to 0

}

public void setStartTime(Time time) {
this.start = time;

}

public void setEndTime(Time time) {
this.end = time;

}

public Time computeHoursWorked() {
return this.end - this.start;

}

}

Example: Motivation for Association (2/9)

32 / 81
Andries van Dam © 2023 9/21/23

● DogGroomer needs to send messages to an instance
of TimeKeeper in order to keep track of their worked
hours

● Thus, set up an association between DogGroomer
and TimeKeeper

● Modify DogGroomer’s constructor to take in a
parameter of type TimeKeeper. The constructor will
refer to it by the name myKeeper

● DogGroomer now needs to track time spent trimming
fur so call TimeKeeper’s setStartTime and
setEndTime methods inside the simple trimFur, the
one that takes in just a Dog

● Even though DogGroomer was passed an instance of
TimeKeeper in its constructor, how can DogGroomer’s
other methods access this instance?

public class DogGroomer {

public DogGroomer() {

// code for constructor

}

}

public DogGroomer(TimeKeeper myKeeper)

{

// code for modified constructor

}

public void trimFur(Dog shaggyDog) {

// code to call setStartTime

shaggyDog.setFurLength(1);

// code to call setEndTime

}

}

Example: Motivation for Association (3/9)

33 / 81
Andries van Dam © 2023 9/21/23

● Modify DogGroomer to store its knowledge
of TimeKeeper in an instance
variable

● Declare an instance variable keeper in
DogGroomer and have constructor initialize
it to the passed parameter

● keeper now records the myKeeper instance
passed to DogGroomer’s constructor, for use
by its other methods

● Inside trimFur, can now tell this.keeper
to record start and end time

○ we use Java’s built-in method
Instant.Now();

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

this.keeper = myKeeper;

}

public void trimFur(Dog shaggyDog) {

this.keeper.setStartTime(Instant.Now());

shaggyDog.setFurLength(1);

this.keeper.setEndTime(Instant.Now());

}

}

Example: Motivation for Association (4/9)

34 / 81
Andries van Dam © 2023 9/21/23

● Back in our PetShop class, we
need to modify how we instantiate
the DogGroomer

● What argument should we pass in
to the constructor of DogGroomer?

○ a new instance of TimeKeeper

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

this.keeper = myKeeper; // store the assoc.

}

}

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGroomer();

}

public void testGroomer() {

Dog effie = new Dog(); // local var

this.groomer.trimFur(effie);

}

}

new TimeKeeper()

Example: Motivation for Association (5/9)

35 / 81
Andries van Dam © 2023 9/21/23

Example Cont.: Setting up Association (6/9)

● Remember that the Manager, who deals
with payments, and the DogGroomer
use the TimeKeeper as an intermediary

● The Manager’s makePayment()needs
to know the hours worked by the
DogGroomer

○ the TimeKeeper keeps track of
such information with its properties
(See slide 31)

public class Manager {

public Manager() {
// this is the constructor!

}

public void makePayment() {
// code elided!

}

}

Log in Hours Worked Get hours worked

DogGroomer
Manager

36 / 81
Andries van Dam © 2023 9/21/23

Example Cont.: Setting up Association (7/9)

● We can set up a second
association so the Manager can
retrieve information from the
TimeKeeper as needed

● Following the same pattern as
with DogGroomer, modify the
Manager’s constructor to take in
an instance of the TimeKeeper
class and record it in an
instance variable

public class Manager {

public Manager() {

// this is the constructor!

}

public void makePayment() {

// code elided!

}

}

private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper)

{

// this is the constructor!

this.keeper = myKeeper;

}

37 / 81
Andries van Dam © 2023 9/21/23

Example Cont.: Setting up Association (8/9)

● Call TimeKeeper’s
computeHoursWorkedmethod
inside makePayment to
compute the total number of
hours worked by an employee
and use that to calculate their
total wages

public class Manager {

private TimeKeeper keeper;

private int rate;

public Manager(TimeKeeper myKeeper) {

// initialize keeper and rate

}

public int makePayment() {

int hrs = this.keeper.computeHoursWorked();

int wages = hrs * this.rate;

return wages;

}

}

38 / 81
Andries van Dam © 2023 9/21/23

Example Cont.: Using the Association (9/9)

● Back in PetShop class, add
a new instance of Manager
and associate it with
TimeKeeper

● Managermakes payment
after groomer trims fur

● Note: groomer and manager
refer to the same
TimeKeeper instance

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

this.groomer = new DogGroomer(keeper);

Manager manager = new Manager(keeper);

this.testGroomer();

manager.makePayment();

}

public void testGroomer() {

Dog effie = new Dog();//local var

this.groomer.trimFur(effie);

}

}

39 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

Manager manager = new Manager(keeper);

this.groomer = new DogGroomer(keeper);

this.testGroomer();

manager.makePayment();

}

// testGroomer elided

}

Somewhere in memory...

Association: Under the Hood (1/5)
public class Manager {

private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

PetShop's naming local variable keeper is

completely arbitrary and independent of

formal parameter names myKeeper in

Manager and DogGroomer - pure

coincidence!

40 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

Manager manager = new Manager(keeper);

this.groomer = new DogGroomer(keeper);

this.testGroomer();

manager.makePayment();

}

// testGroomer elided

}

Somewhere in memory...

Association: Under the Hood (2/5)

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in
memory and PetShop’s constructor initializes all its instance and local variables

public class Manager {

private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

41 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

Manager manager = new Manager(keeper);

this.groomer = new DogGroomer(keeper);

this.testGroomer();

manager.makePayment();

}

// testGroomer elided

}
Somewhere in memory...

Association: Under the Hood (3/5)

The PetShop instantiates a new TimeKeeper, Manager and DogGroomer, passing the same TimeKeeper
instance in as an argument to the Manager’s and DogGroomer’s constructors

…

public class Manager {

private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

// this is the constructor!

this.keeper = myKeeper;

}

}

42 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

Manager manager = new Manager(keeper);

this.groomer = new DogGroomer(keeper);

this.testGroomer();

manager.makePayment();

}

// methods elided

}

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {

// this is the constructor!
this.keeper = myKeeper;

}
}

Somewhere in memory...

Association: Under the Hood (4/5)

When the DogGroomer’s and Manager’s constructors are called, their parameter, myKeeper, points to the same
TimeKeeper that was passed in as an argument by the caller, i.e., the PetShop

…

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

this.keeper = myKeeper;

}

}

43 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer groomer;

public PetShop() {

TimeKeeper keeper = new TimeKeeper();

Manager manager = new Manager(keeper);

this.groomer = new DogGroomer(keeper);

this.testGroomer();

manager.makePayment();

}

// methods elided

}

public class Manager {
private TimeKeeper keeper;

public Manager(TimeKeeper myKeeper) {

// this is the constructor!
this.keeper = myKeeper;

}
}

Somewhere in memory...

Association: Under the Hood (5/5)

DogGroomer and Manager set their keeper instance variable to point to the same TimeKeeper they received as
an argument. Now they “know about” the same TimeKeeper and share the same properties.

…

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

this.keeper = myKeeper;

}

}

44 / 81
Andries van Dam © 2023 9/21/23

Wrong Association

• If different instances of TimeKeeper are passed to the
constructors of Manager and DogGroomer, the DogGroomer
will still log their hours, but the Manager will not see any
hours worked when computeHoursWorked is called

• This is because Manager and DogGroomer would be
sending messages to different TimeKeepers

• And each of those TimeKeepers could have different hours

• Let’s see what this looks like under the hood

45 / 81
Andries van Dam © 2023 9/21/23

public class PetShop {

private DogGroomer _groomer;

public PetShop() {

Manager manager = new Manager(new TimeKeeper());

this.groomer = new DogGroomer(new TimeKeeper());

this.testGroomer();

manager.makePayment();

}

// methods elided

}

public class Manager {
private TimeKeper keeper;

public Manager(TimeKeeper myKeeper) {
// this is the constructor!

this.keeper = myKeeper;
}

}

Somewhere in memory...

Wrong Association: Under the Hood

DogGroomer and Manager set their keeper instance variable to point to different instances of TimeKeeper. A

change in one instance (e.g., when an instance variable changes) is not reflected in the other instance.

…

public class DogGroomer {

private TimeKeeper keeper;

public DogGroomer(TimeKeeper myKeeper) {

this.keeper = myKeeper;

}

}

46 / 81
Andries van Dam © 2023 9/21/23

Visualizing Association

TimeKeeperDogGroomer Manager

“contains one

instance of”

“knows about”/is

associated with

PetShop

“contains

more than one

instance of”

• The diagram above illustrates class relationships in our program. In CS15, we

refer to this diagram as a Containment/Association diagram

47 / 81
Andries van Dam © 2023 9/21/23

Association as a Design Choice
● How we associate classes in our program is a design choice

○ if we had multiple employees in the PetShop, it would not make
sense to pass the same instance of TimeKeeper to all employees.
Why?

■ they would all modify the same start and end instance variables

■ the Manager would need to know which employee they are
paying

o in such a case, we may choose to associate the Manager with the
employees (each employee instance would have its own start and
end variables that they can modify)

• In later assignments, you will have to justify your design choices and how
you decide to associate your classes, if at all, would be one of them

48 / 81
Andries van Dam © 2023 9/21/23

TopHat Question

Which of the following lines of code
would NOT produce a compiler error,
assuming it’s written in the App class?

public class Farmer {
 private Distributor dist;

 public Farmer(Distributor myDist) {
 this.dist = myDist;
 }

}

public class Distributor {

 public Distributor() {

 }
 }

Farmer farmer = new Farmer(this);

Distributor dist = new Distributor(new Farmer());

Farmer farmer = new Farmer();

Farmer farmer = new Farmer(new Distributor());

A

B

C

D

49 / 81
Andries van Dam © 2023 9/21/23

Outline

● Accessors and Mutators

● Association

o Association with intermediary

o Component-Container Association

o Two-way Association

50 / 81
Andries van Dam © 2023 9/21/23

Two-way Association
● In the previous example, we showed how two classes can communicate

with each other
o class A contains an instance of class B, thus can send messages to it
o class B knows about its container, class A, thus can send messages to

it too

● Sometimes, we may want to model peer classes, say, A and B, where
neither is a component of the other and we want the communication to be
bidirectional

● If we want these classes to communicate with each other (no intermediate
class necessary), we can set up a two-way association where class A
knows about B and vice versa

● Let’s see an example

51 / 81
Andries van Dam © 2023 9/21/23

public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● Here we have the class

CS15Professor

● We want CS15Professor to

know about his Head TAs ─

he didn’t create them or vice

versa, they are peers (i.e., no

containment)

● And we also want Head TAs

to know about

CS15Professor

● Let’s set up associations!

Example: Motivation for Association (1/10)

52 / 81
Andries van Dam © 2023 9/21/23

Example: Motivation for Association (2/10)
public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {
// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● The CS15Professor needs

to know about 5 Head TAs,

all of whom will be instances
of the class HeadTA

● Once he knows about them,

he can call methods of the
class HeadTA on them:

remindHeadTA,

setUpLecture, etc.

● Take a minute and try to fill

in this class

53 / 81
Andries van Dam © 2023 9/21/23

Example: Setting up Association (3/10)
public class CS15Professor {

private HTA hta1;
private HTA hta2;
private HTA hta3;
private HTA hta4;
private HTA hta5;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA,
HTA fourthTA, HTA fifthTA) {

this.hta1 = firstTA;
this.hta2 = secondTA;
this.hta3 = thirdTA;
this.hta4 = fourthTA;
this.hta5 = fifthTA;

}

/* additional methods elided */
}

● Our solution: we record passed-in

HTAs created by whatever object

creates CS15Professor and

HTAs, e.g., CS15App

● Remember, you can choose your

own names for the instance

variables and parameters

● The CS15Professor can now

send a message to one of his
HTAs like this:

this.hta2.setUpLecture();

54 / 81
Andries van Dam © 2023 9/21/23

public class CS15App {

// declare CS15Professor instance var
// declare five HTA instance vars
// …
// …
// …

public CS15App() {
// instantiate the professor!
// …
// …
// instantiate the five HTAs

}
}

● We’ve got the CS15Professor
class down

● Now let’s create a professor
and head TAs from a class that
contains all of them: CS15App

● Try and fill in this class!

o you can assume that the HTA
class takes no parameters in its
constructor

Example: Using the Association (4/10)

55 / 81
Andries van Dam © 2023 9/21/23

public class CS15App {
private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.allie,
this.anastasio, this.cannon,

this.lexi, this.sarah);
}

}

● We declare andy, allie,

anastasio, cannon, lexi,

and sarah as instance

variables - they are peers

● In the constructor, we

instantiate them

● Since the constructor of

CS15Professor takes in 5

HTAs, we pass in allie,

anastasio, cannon, lexi,

and sarah

Example: Using the Association (5/10)

56 / 81
Andries van Dam © 2023 9/21/23

Example: Using the Association (6/10)
public class CS15App {

private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.allie,
this.anastasio, this.cannon,

this.lexi, this.sarah);
}

}

public class CS15Professor {

private HTA hta1;
private HTA hta2;
private HTA hta3;
private HTA hta4;
private HTA hta5;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA
HTA fourthTA, HTA fifthTA) {

this.hta1 = firstTA;
this.hta2 = secondTA;
this.hta3 = thirdTA;
this.hta4 = fourthTA;
this.hta5 = fifthTA;

}

/* additional methods elided */
}

57 / 81
Andries van Dam © 2023 9/21/23

More Associations (7/10)

● Now the CS15Professor

can call on the HTAs but can

the HTAs call on the

CS15Professor too?

● No! Need to set up another

association

● Can we just do the same

thing and pass this.andy

as a parameter into each

HTAs constructor?

public class CS15App {

private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.allie,
this.anastasio, this.cannon,
this.lexi, this.sarah);

}
}

Code

from

previous

slide

58 / 81
Andries van Dam © 2023 9/21/23

● When we instantiate allie,

anastasio, cannon, lexi, and

sarah, we would like to use a

modified HTA constructor that

takes an argument, this.andy

● But this.andy hasn’t been

instantiated yet (will get a

NullPointerException)! And we

can’t initialize andy first because

the HTAs haven’t been created

yet…

● How to break this deadlock?

More Associations (8/10)

Code

from

previous

slide

public class CS15App {

private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new

CS15Professor(this.allie,
this.anastasio, this.cannon,
this.lexi, this.sarah);

}
}

59 / 81
Andries van Dam © 2023 9/21/23

● To break this deadlock, we

need to have a new mutator

● First, instantiate allie,

anastasio, cannon, lexi, and

sarah, then instantiate andy

● Use a new mutator, setProf,

and pass andy to each HeadTA
to record the association

public class CS15App {

private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new CS15Professor(this.allie,

this.anastasio, this.cannon, this.lexi,
this.sarah);

this.allie.setProf(this.andy);
this.anastasio.setProf(this.andy);
this.cannon.setProf(this.andy);
this.lexi.setProf(this.andy);
this.sarah.setProf(this.andy); }

}

More Associations (9/10)

60 / 81
Andries van Dam © 2023 9/21/23

public class HTA {

private CS15Professor professor;

public HTA() {

//other code elided

}

public void setProf(CS15Professor myProf)
{

this.professor = myProf;
}

}

● Now each HTA will know
about andy!

More Associations (10/10)
public class CS15App {

private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public CS15App() {
this.allie = new HTA();
this.anastasio = new HTA();
this.cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA();
this.andy = new CS15Professor(this.allie,

this.anastasio, this.cannon, this.lexi,
this.sarah);

this.allie.setProf(this.andy);
this.anastasio.setProf(this.andy);
this.cannon.setProf(this.andy);
this.lexi.setProf(this.andy);
this.sarah.setProf(this.andy); }

}

61 / 81
Andries van Dam © 2023 9/21/23

More Associations

● But what happens if setProf is never called?

● Will the HTAs be able to call methods on the

CS15Professor?

● No! We would get a NullPointerException!

o remember: NullPointerExceptions occur at
runtime when a variable’s value is null, and you try
to give it a command

62 / 81
Andries van Dam © 2023 9/21/23

Containment/Association Diagram

CS15App

CS15Professor HTA

“contains one

instance of”

“contains more than

one instance of”

“knows about”/is

associated with

63 / 81
Andries van Dam © 2023 9/21/23

Summary
Important Concepts:

• In OOP, it’s necessary for classes to interact with each other to accomplish

specific tasks
• Delegation allows us to have multiple classes and specify how their

instances can relate with each other. We’ve seen two ways to establish these

relationships:

o containment, where one class creates an instance of another (its

component) and can therefore send messages to it
o association, where one class knows about an instance of another

class (that is not its component) and call methods on it

• Delegation is the first “design pattern” we’ve learned in CS15. Stay tuned for

a second design pattern coming up in the next lecture and more discussions

about design later in the course.

64 / 81
Andries van Dam © 2023 9/21/23

Announcements
• Pong comes out today!

o Due Monday 9/25 at 11:59 PM EST

o No early or late hand in!

• HTA Hours

o Fridays 3:30 – 4:30 PM at CIT 210

• Section Swaps

o Deadline to make permanent swaps Friday 09/22

• CS15 Mentorship!

o Freshmen: It is mandatory for you to meet with your mentors. Please
respond to their emails and be flexible.

o If you have not gotten an assignment email the HTAs

65 / 81
Andries van Dam © 2023 9/21/23

Review: Variables

● Store information either as a value of a primitive or as a

reference to an instance

int favNumber = 9;

Dog effie = new Dog();

<type> <name> = <value>;

declaration initialization

66 / 81
Andries van Dam © 2023 9/21/23

Review: Local vs. Instance Variables (1/2)

● Local variables are

declared inside a method

and cannot be accessed

from any other method

● Once the method has

finished executing, they

are garbage collected

public class PetShop {

// This is the constructor!
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog effie = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.trimFur(effie);
effie = new Dog();
groomer.trimFur(effie);

}

}

Local Variables

67 / 81
Andries van Dam © 2023 9/21/23

● Instance variables model

properties or components that

all instances of a class have

● Instance variables are

accessible from anywhere

within the class — their scope

is the entire class

● The purpose of a constructor is

to initialize all instance

variables

public class PetShop {

private DogGroomer groomer;

public PetShop() {

this.groomer = new DogGroomer();

this.testGroomer();

}

// testGroomer elided

}

declaration

initialization

Review: Local vs. Instance Variables (2/2)

68 / 81
Andries van Dam © 2023 9/21/23

● After giving a variable an initial value or reference, we can reassign it

(make it store a different instance)

● When reassigning a variable, we do not declare its type again, Java

remembers it from the first assignment

Dog effie = new Dog();
Dog katniss = new Dog();

effie = katniss; // reassign effie
● effie now stores a different dog (another instance of Dog),

specifically the one that was katniss. The initial dog stored by

effie is garbage collected

Review: Variable Reassignment

69 / 81
Andries van Dam © 2023 9/21/23

● Methods can take in class instances as parameters

public void trimFur(Dog shaggyDog) {

// code that trims the fur of shaggyDog

}

● When calling the method above, every dog passed as

an argument, e.g., effie, will be thought of as

shaggyDog, a synonym, in the method

Review: Instances as Parameters

70 / 81
Andries van Dam © 2023 9/21/23

● Delegation allows us to separate different sets of functionalities

and assign them to other classes

● With delegation, we’ll use multiple classes to accomplish one

task. A side effect of this is we need to set up relationships

between classes for their instances to communicate

● Containment is one of two key ways we establish these class

relationships. We’ll learn the second one today. Stay tuned!

Review: Delegation Pattern

71 / 81
Andries van Dam © 2023 9/21/23

Review: NullPointer Exceptions

• What happens if you fail to
initialize an instance
variable in the
constructor?
o instance variable groomer

never initialized so default
value is null

o when a method is called on
groomer we get a
NullPointerException

public class PetShop {

 private DogGroomer groomer;

 public PetShop() {

 //oops! Forgot to initialize groomer

 this.testGrooming();

 }

 public void testGrooming() {

 Dog effie = new Dog(); //local var

 this.groomer.trimFur(effie);

 }

}

NullPointerException

72 / 81
Andries van Dam © 2023 9/21/23

Review: Encapsulation

• In CS15, instance variables should be declared as private

• Why? Encapsulation for safety purposes

o your properties are your private business

• If public, instance variables would be accessible from any class. There

would be no way to restrict other classes from modifying them

• Private instance variables also allow for a chain of abstraction, so

classes don’t need to worry about the inner workings of contained

classes

• We’ll learn safe ways of allowing external classes to access instance
variables

73 / 81
Andries van Dam © 2023 9/21/23

● Often a class A will need an instance of class B as a component,

so A will create an instance of B using the new keyword. We say A

contains an instance of class B

o ex: PetShop creates a new DogGroomer

o ex: Car creates a new Engine

o ex: Body creates a new Head

● This is not symmetrical: B can’t call methods on A!

o ex: a PetShop can call methods of a contained DogGroomer,

but the DogGroomer can’t call methods on the PetShop

▪ a workaround uses assocation pattern

● Containment is one of the ways we delegate responsibilities to

other classes

Review: Containment

74 / 81
Andries van Dam © 2023 9/21/23

Topics in Socially

Responsible Computing

Artificial Intelligence I

CS15 Fall 2023

75 / 81
Andries van Dam © 2023 9/21/23

Task: Image Recognition with Neural Network

• Neural networks are frequently used for

image recognition

• Example: Given the following images,

can our neural network identify which

number is represented

76 / 81
Andries van Dam © 2023 9/21/23

Number 0

Number 1

Input

Node 2

Input

Node 3

Input

Node 4

Input

Node X

(where X

is # of

pixels)

• Nodes (also known as neuron or perceptron)

o A node is a highly simplified neuron

o A node contains a value and stores data used for

later calculations.

o There should be an input node for each feature (in

the case of image recognition, one input for each

pixel)

• Hidden Layer(s)

o Intermediate layer of nodes between the input and

output

o Transforms the input features so that they can be

correctly classified in the output layer

• Weights (also known as parameters)

o Typically between a positive and negative value

Input

Node 1 Hidden
Layer(s)

Output Layer

Input LayerNeural Network Terminology

Number 2

77 / 81
Andries van Dam © 2023 9/21/23

Step 1: Forward Pass

o Receive inputs

o Initial data is passed in through the input

layer

o Ex. Each pixel from an image is an input

for image recognition tasks.

o Perform Computations

o For first pass weights are randomly

initialized

o At simplest level, each hidden layer takes

a weighted sum of each input and their

weights leading directly to it

▪

Input

Node 2

Input

Node 3

Input

Node 4

Input

Node X

(where X

is # of

pixels)

Input

Node 1

Hidden Layer

Input Layer

Number 0

Number 1

Output Layer

Number 2

How Does a Feed Forward Neural Network Work? (1/2)

78 / 81
Andries van Dam © 2023 9/21/23

Input

Node 2

Input

Node 3

Input

Node 4

Input

Node X

(where X

is # of

pixels)

Input

Node 1

Hidden Layer

Input Layer

Step 2: Backwards Propagation

• Calculate Loss

o Compute the loss (frequently Mean Square

Error) of the predicted output vs. actual output

o A measure of how much the actual output

differs from the predicted output

• Gradient Descent Algorithm

o Use calculus chain rule to work backwards

and calculate which weights will minimize the

loss (MSE) of the predicted output

Step 3: Repeat

o Repeat the first two steps for either a set

number of iterations or until loss drops below

Number 0

Number 1

Output Layer

Number 2

How Does a Feed Forward Neural Network Work? (2/2)

79 / 81
Andries van Dam © 2023 9/21/23

Initial Neural Network

Input

Node 2

Input

Node 3

Input

Node 4

Input

Node X

(where X

is # of

pixels)

Input

Node 1

Hidden Layer
Input Layer

Number 0

Number 1

Output Layer

Number 2

80 / 81
Andries van Dam © 2023 9/21/23

Following Back Propagation

Input

Node 2

Input

Node 3

Input

Node 4

Input

Node X

(where X

is # of

pixels)

Input

Node 1

Hidden Layer
Input Layer

Number 0

Number 1

Output Layer

Number 2

81 / 81
Andries van Dam © 2023 9/21/23

Making the Leap to Generative AI?

Scale of LLMs:

• GPT-3 had 175 billion

weights(1)

• GPT-4 has over 1 trillion

weights!!(2)

Source:

1. Open AI

2. Semaf or

https://arxiv.org/pdf/2005.14165.pdf
https://www.semafor.com/article/03/24/2023/the-secret-history-of-elon-musk-sam-altman-and-openai

	Slide 1: Lecture 5
	Slide 2: Review Topics at the end of the deck
	Slide 3: TopHat Question Join Code: 504547
	Slide 4: TopHat Question Join Code: 504547
	Slide 5: TopHat Question Join Code: 504547
	Slide 6: Outline
	Slide 7: Accessors / Mutators
	Slide 8: Accessors / Mutators: Example
	Slide 9: Accessors / Mutators
	Slide 10: Accessors / Mutators: Example (1/6)
	Slide 11: Accessors / Mutators: Example (2/6)
	Slide 12: Accessors / Mutators: Example (3/6)
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Summary of Accessors/Mutators
	Slide 17: TopHat Question Join Code: 504547
	Slide 18: Outline
	Slide 19
	Slide 20: Example: Setting up Association (1/4)
	Slide 21: Example: Motivation for Association (2/4)
	Slide 22: Example: Using the Association (3/4)
	Slide 23: Example: Using the Association (4/4)
	Slide 24: Containment/Association Diagram
	Slide 25: TopHat Question Join Code: 504547
	Slide 26: TopHat Question Review
	Slide 27: Outline
	Slide 28: “Many-to-One” Association
	Slide 29: “Many-to-One” Association
	Slide 30: Example: Motivation for Association (1/9)
	Slide 31: Example: Motivation for Association (2/9)
	Slide 32: Example: Motivation for Association (3/9)
	Slide 33: Example: Motivation for Association (4/9)
	Slide 34: Example: Motivation for Association (5/9)
	Slide 35: Example Cont.: Setting up Association (6/9)
	Slide 36: Example Cont.: Setting up Association (7/9)
	Slide 37: Example Cont.: Setting up Association (8/9)
	Slide 38: Example Cont.: Using the Association (9/9)
	Slide 39: Association: Under the Hood (1/5)
	Slide 40: Association: Under the Hood (2/5)
	Slide 41: Association: Under the Hood (3/5)
	Slide 42: Association: Under the Hood (4/5)
	Slide 43: Association: Under the Hood (5/5)
	Slide 44: Wrong Association
	Slide 45: Wrong Association: Under the Hood
	Slide 46: Visualizing Association
	Slide 47: Association as a Design Choice
	Slide 48: TopHat Question
	Slide 49: Outline
	Slide 50: Two-way Association
	Slide 51: Example: Motivation for Association (1/10)
	Slide 52: Example: Motivation for Association (2/10)
	Slide 53: Example: Setting up Association (3/10)
	Slide 54: Example: Using the Association (4/10)
	Slide 55: Example: Using the Association (5/10)
	Slide 56: Example: Using the Association (6/10)
	Slide 57: More Associations (7/10)
	Slide 58: More Associations (8/10)
	Slide 59: More Associations (9/10)
	Slide 60: More Associations (10/10)
	Slide 61: More Associations
	Slide 62: Containment/Association Diagram
	Slide 63: Summary
	Slide 64: Announcements
	Slide 65: Review: Variables
	Slide 66: Review: Local vs. Instance Variables (1/2)
	Slide 67: Review: Local vs. Instance Variables (2/2)
	Slide 68: Review: Variable Reassignment
	Slide 69: Review: Instances as Parameters
	Slide 70: Review: Delegation Pattern
	Slide 71: Review: NullPointer Exceptions
	Slide 72: Review: Encapsulation
	Slide 73: Review: Containment
	Slide 74
	Slide 75: Task: Image Recognition with Neural Network
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Initial Neural Network
	Slide 80: Following Back Propagation
	Slide 81: Making the Leap to Generative AI?

