
Andries van Dam © 2023 9/26/23 1/92

Lecture 6
Interfaces and Polymorphism

Andries van Dam © 2023 9/26/23 2/92

Outline
● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2023 9/26/23 3/92

Review: Containment and Association

● Containment and association are two key ways of
establishing relationships between instances of a class

● In containment, one class creates an instance of another (its
component) and can call methods on it

● In association, one instance of a class knows about an
instance of another class (that is not its component) and can
call methods on it

● Containment and association are consequences of
delegating responsibilities to other classes
o they are design choices, not Java constructs and require no new

syntax

Andries van Dam © 2023 9/26/23 4/92

Outline
● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2023 9/26/23 5/92

Using What You Know
● Imagine this program:

o Lexi and Anastasio are racing from their dorms to the CIT
▪ whoever gets there first, wins!
▪ catch: they don’t get to choose their method of transportation

● Design a program that
o assigns mode of transportation to each racer
o starts the race

● For now, assume transportation options are Car and Bike

Andries van Dam © 2023 9/26/23 6/92

Goal 1: Assign transportation to each
racer
● Need transportation classes

o App needs to give one to each racer

● Let’s use Car and Bike classes

● Both classes will need to describe how the
transportation moves
o Car needs drive method

o Bike needs pedal method

Andries van Dam © 2023 9/26/23 7/92

Coding the project (1/4)
● Let’s build transportation classes

public class Bike {

 public Bike() { //constructor
 //code elided
 }
 public void pedal() {
 //code elided
 }
 //more methods elided
}

public class Car {

 public Car() { //constructor
 //code elided
 }
 public void drive() {
 //code elided
 }
 //more methods elided
}

Andries van Dam © 2023 9/26/23 8/92

Goal 1: Assign transportation to each racer
● Need racer classes that will tell Lexi and Anastasio to use their type of

transportation
o CarRacer

o BikeRacer

● What methods will we need? What capabilities should each -Racer class
have?

● CarRacer needs to know how to use the car
o write useCar() method: uses Drive(), shields caller from knowing what all

useCar might need to do

● BikeRacer needs to know how to use the bike
o write useBike() method: uses Pedal(), shields caller from knowing what all

useBike might need to do

Andries van Dam © 2023 9/26/23 9/92

Coding the project (2/4)
● Let’s build the racer classes

public class CarRacer {
 private Car car;

 public CarRacer() {
 this.car = new Car();
 }

 public void useCar(){
 this.car.drive();
 //other methods as needed
 }
 //more methods elided
}

public class BikeRacer {
 private Bike bike;

 public BikeRacer() {
 this.bike = new Bike();
 }

 public void useBike(){
 this.bike.pedal();
 //other methods as needed
 }
 //more methods elided
}

Andries van Dam © 2023 9/26/23 10/92

Goal 2: Tell racers to start the race
● Race class contains Racers

o App contains Race

● Race class will have
startRace() method
o startRace() tells each Racer to

use their transportation

● startRace() gets called in App

startRace:
Tell this.lexi to useCar
Tell this.anastasio to useBike

Andries van Dam © 2023 9/26/23 11/92

Coding the project (3/4)
● Given our CarRacer class, let’s

build the Race class public class Race {
 private CarRacer lexi;
 private BikeRacer anastasio;

 public Race() {
 this.lexi = new CarRacer();
 this.anastasio = new BikeRacer();
 }

 public void startRace() {
 this.lexi.useCar();
 this.anastasio.useBike();
 }
}

public class CarRacer {
 private Car car;

 public CarRacer() {
 this.car = new Car();
 }

 public void useCar(){
 this.car.drive();
 }
 //more methods elided
}

//BikeRacer class elided

Old code

Andries van Dam © 2023 9/26/23 12/92

Coding the project (4/4)

● Now build the App class

● Program starts with main()

● main() calls startRace() on
cs15Race

public class App {

 public static void main(String[] args) {
 Race cs15Race = new Race();
 cs15Race.startRace();
 }

}

//from the Race class on slide 11

public void startRace() {
 this.lexi.useCar();
 this.anastasio.useBike();
}

Andries van Dam © 2023 9/26/23 13/92

The Program

public class Race {
 private CarRacer lexi;
 private BikeRacer anastasio;

 public Race() {
 this.lexi = new CarRacer();
 this.anastasio = new BikeRacer();
 }

 public void startRace() {
 this.lexi.useCar();
 this.anastasio.useBike();
 }
}

public class App {
 public static void main(String[] args) {
 Race cs15Race = new Race();
 cs15Race.startRace();
 }
}

public class CarRacer {
 private Car car;

 public CarRacer() {
 this.car = new Car();
 }

 public void useCar(){
 this.car.drive();
 }

}

public class BikeRacer {
 private Bike bike;

 public BikeRacer() {
 this.bike = new Bike();
 }

 public void useBike(){
 this.bike.pedal();
 }
}

Andries van Dam © 2023 9/26/23 14/92

Flow of control (1/2)

App

Race

CarRacer BikeRacer

Car Bike

How would this program run?
● Java initializes an instance of App,

calling main
● main initializes an instance of Race
● Race’s constructor initializes lexi, a

CarRacer and anastasio, a BikeRacer
o CarRacer’s constructor initializes

car, a Car
o BikeRacer’s constructor initializes

bike, a Bike

Andries van Dam © 2023 9/26/23 15/92

Flow of control (2/2)

● After Race constructs lexi and
anastasio, App calls
cs15Race.startRace()

● lexi calls useCar() and anastasio
calls useBike()

● useCar() calls this.car.drive()
● useBike() calls this.bike.pedal()

public class App {

 public static void main(String[] args) {
 Race cs15Race = new Race();
 cs15Race.startRace();
 }
}

public class CarRacer {
 // constructor elided, creates car

 public void useCar(){
 this.car.drive();
 }
}

public class Race {
 // constructor elided; creates lexi and anastasio

 public void startRace() {
 this.lexi.useCar();
 this.anastasio.useBike();
 }
}

public class BikeRacer {
 // constructor elided, creates bike

 public void useBike(){
 this.bike.pedal();
 }
}

Andries van Dam © 2023 9/26/23 16/92

Can we do better?

Andries van Dam © 2023 9/26/23 17/92

Things to think about
● Do we need two different Racer classes?

o we want multiple instances of Racers that use different modes of transportation

▪ both classes are very similar, they just use their own mode of transportation
(useCar and useBike)

▪ do we need 2 different classes that serve essentially the same purpose?

o how can we simplify?

Andries van Dam © 2023 9/26/23 18/92

Solution 1: Create one Racer class with
multiple “useX” methods!

● Create one Racer class
o define different use methods for

each type of transportation

● lexi would be an instance of Racer
and in startRace we would call:

 this.lexi.useCar(new Car());

o Car’s drive() method will be
invoked

● Good: only one Racer class
● But: Racer has to aggregate a

use…() method to accommodate
every kind of transportation!

public class Racer {
 public Racer(){
 //constructor
 }

 public void useCar(Car myCar){
 myCar.drive();
 }

 public void useBike(Bike myBike){
 myBike.pedal();
 }
}

Andries van Dam © 2023 9/26/23 19/92

Solution 1 Drawbacks
● Now imagine all the

CS15 TAs join the race
and there are 10
different modes of
transportation

● Writing these similar
useX() methods is a
lot of work for you, as
the developer, and it is
an inefficient coding
style

public class Racer {

 public Racer() {
 //constructor
 }
 public void useCar(Car myCar){//code elided}
 public void useBike(Bike myBike){//code elided}
 public void useHoverboard(Hoverboard myHb){//code elided}
 public void useHorse(Horse myHorse){//code elided}
 public void useScooter(Scooter myScooter){//code elided}
 public void useMotorcycle(Motorcycle myMc) {//code elided}
 public void usePogoStick(PogoStick myPogo){//code elided}
 // And more…
}

Andries van Dam © 2023 9/26/23 20/92

Is there another solution?

● Can we go from left to right?

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Racer

useTransportation(…)

Andries van Dam © 2023 9/26/23 21/92

Outline
● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2023 9/26/23 22/92

Interfaces and Polymorphism

public class Car implements Transporter {

 public Car() {
 //code elided
 }
 public void drive(){
 //code elided
 }

 @Override
 public void move(){
 this.drive();
 }
 //more methods elided
}

public class Racer {

 //previous code elided
 public void useTransportation(
Transporter transport) {
 transport.move();
 }
}

public interface Transporter {
 public void move();
}

● In order to simplify code, we need to learn:
o Interfaces
o Polymorphism
o we’ll see how this new code works shortly:

Andries van Dam © 2023 9/26/23 23/92

Interfaces: Spot the Similarities

● What do cars and bikes have in common?
● What do cars and bikes not have in common?

Andries van Dam © 2023 9/26/23 24/92

Cars vs. Bikes

● Drop kickstand
● Change gears
● …

Cars Bikes

● Play radio
● Turn off/on headlights
● Turn off/on turn signal
● Lock/unlock doors
● …

● Move
● Brake
● Steer
● …

Andries van Dam © 2023 9/26/23 25/92

Digging deeper into the similarities

● How similar are they when they move?
o do they move in same way?

● Not very similar
o cars drive
o bikes pedal

● Both can move, but in different ways
● We prefer the more general move to

the previous useCar, useBike

Andries van Dam © 2023 9/26/23 26/92

Can we model this in code?
● Many real-world objects have several broad

functional similarities
o cars and bikes can move
o cars and laptops can play radio
o phones and Teslas can be charged

● Take Car and Bike classes
o how can their similar functionalities get

enumerated in one place?
o how can their broad relationship get modeled

through code?

● Note: cars and bikes serve a similar
purpose while phones and Teslas don’t –
we only care that they share some similar
functionality (but potentially quite different
implementations)

Car
● move()
● brake()
● steer()

● playRadio()
● lockDoors()
● unlockDoors()

Bike
● move()
● brake()
● steer()

● dropKickstand()
● changeGears()

Andries van Dam © 2023 9/26/23 27/92

Introducing Interfaces (1/2)
● Interface groups declarations of similar capabilities of

different classes together

● Looks like a totally stripped-down class declaration, with
just method declarations:

● public interface Transporter {
 public void move();
 //other common methods (brake, steer…)
 }

● Cars and Bikes can “implement” a Transporter interface
o they can transport people from one place to another
o they “act as” transporters

▪ can move (and brake, steer…)
o for this lecture, interfaces are green and classes that

implement them are pink

Andries van Dam © 2023 9/26/23 28/92

Introducing Interfaces (2/2)
● Interfaces are contracts that classes agree to
● If classes choose to implement given interface, it must define all

methods declared in interface
o if classes don’t implement one of interface’s methods, the compiler raises

errors
▪ later we’ll discuss strong motivations for this “contract enforcement”

● Interfaces only declare, don’t define their methods – classes that
implement the interfaces provide definitions/implementations
o interfaces only care about the fact that the methods get defined – not how

they are defined
● Models similarities while ensuring consistency

o what does this mean?

Andries van Dam © 2023 9/26/23 29/92

Models Similarities while Ensuring
Consistency (1/3)

Let’s break that down into two parts:

 1) Model Similarities

 2) Ensure Consistency

Andries van Dam © 2023 9/26/23 30/92

Models Similarities while Ensuring
Consistency (2/3)
● How does this help our program?
● We know Cars and Bikes both need to move

o i.e., should both have some move() method
o let compiler know that too!

● Make the Transporter interface
o what methods should the Transporter interface declare? Similarities!

▪ move() (plus brake, steer…)
o compiler ensures consistency--doesn’t care how method is defined,

just that it has been defined
o general tip: methods that interface declares should model functionality

all implementing classes share

Andries van Dam © 2023 9/26/23 31/92

Declaring an Interface (1/3)

public interface Transporter {

 public void move();

}

● Declare it as interface rather
than class

● Declare methods – the contract

● In this case, we show only one
required method : move()

● All classes that sign contract
(implement this interface) must
define actual implementation of
any declared methods

What does this look like?

Andries van Dam © 2023 9/26/23 32/92

Declaring an Interface (2/3)

● Interfaces are only contracts,
not classes that can be
instantiated

● Interfaces can only declare
methods – not define them

● Notice: method declaration
end with semicolons, not
curly braces!

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2023 9/26/23 33/92

Declaring an Interface (3/3)

● That’s all there is to it!

● Interfaces, just like
classes, have their own
.java file. This file
would be
Transporter.java

What does this look like?

public interface Transporter {

 public void move();

}

Andries van Dam © 2023 9/26/23 34/92

Outline
● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2023 9/26/23 35/92

Implementing an Interface (1/6)
public class Car
Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 // code for
driving // the car
 }

}

● Let’s modify Car to implement
Transporter

o declare that Car “acts-as”
Transporter

● Add implements Transporter
to class declaration

● Promises compiler that Car will
define all methods in
Transporter interface
o i.e., move()

implements
Transporter

Andries van Dam © 2023 9/26/23 36/92

Implementing an Interface (2/6)
public class Car
implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 // code for
driving // the car
 }

}

● Will this code compile?
o nope :(

● Never implemented move() –
drive() doesn’t suffice.
Compiler will complain
accordingly

“Error: Car does not override
method move() in Transporter” *

*Note: the full error message is “Car is not abstract and does not override abstract
method move() in Transporter.” We’ll get more into the meaning of abstract in a later lecture.

Andries van Dam © 2023 9/26/23 37/92

Implementing an Interface (3/6)
public class Car implements
Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 //code for driving car
 }

 @Override
 public void move() {
 this.drive();
 }

}

● Next: honor contract by
defining a move()
method

● Method signature
(name and number/type
of parameters) and
return type must match
how it’s declared in
interface

Andries van Dam © 2023 9/26/23 38/92

Implementing an Interface (4/6)

public class Car implements Transporter {

 public Car() {
 // constructor
 }

 public void drive() {
 //code for driving car
 }

 @Override
 public void move() {
 this.drive();
 }

}

● Include @Override right above
the method signature

● @Override is an annotation – a
signal to the compiler (and to
anyone reading your code)
o allows compiler to enforce that

interface actually has method
declared

o more explanation of @Override
in next lecture

● Annotations, like comments,
have no effect on how code
behaves at runtime

What does @Override mean?

Andries van Dam © 2023 9/26/23 39/92

Implementing an Interface (5/6)
public class Car implements Transporter {

 //previous code elided

 public void drive() {
 //code for driving car
 }

 @Override
 public void move() {
 this.drive();
 this.brake();
 this.drive();
 }
 public void brake() { //code elided}
}

● Defining interface method is
like defining any other
method

● Definition can be as simple
or complex as it needs to be

● Ex.: Let’s modify Car’s move
method to include braking

● What will instance of Car do
if move() gets called on it?

Andries van Dam © 2023 9/26/23 40/92

Implementing an Interface (6/6)
● As with signing multiple contracts,

classes can implement multiple
interfaces
o “I signed my rent agreement, so I'm

a renter, but I also signed my
employment contract, so I'm an
employee. I'm the same person.”

o what if I wanted Car to be able to
change color as well?

o create a Colorable interface
o add that interface to Car’s class

declaration
● Class implementing interfaces must

define every single method from
each interface

public class Car implements Transporter,
Colorable {

 public Car(){ //body elided }
 //@Override annotation elided
 public void drive(){ //body elided }
 public void move(){ //body elided }
 public void setColor(Color c){ //body elided
}
 public Color getColor(){ //body elided }
}

public interface Colorable {

 public void setColor(Color c);
 public Color getColor();

}

Andries van Dam © 2023 9/26/23 41/92

Modeling Similarities While Ensuring
Consistency (3/3)
● Interfaces are formal contracts and ensure consistency

o compiler will check to ensure all methods declared in interface
are defined

● Can trust that any instance of class that implements
Transporter can move()

● Will know how 2 classes are related if both implement
Transporter

Andries van Dam © 2023 9/26/23 42/92

TopHat Question

Can you instantiate an interface as you can a class?

A. Yes

B. No

Andries van Dam © 2023 9/26/23 43/92

TopHat Question

Can an interface define code for its methods?

A. Yes

B. No

Andries van Dam © 2023 9/26/23 44/92

TopHat Question
Which statement of this program is incorrect?
A. public interface Colorable {
 public Color getColor() {
B. return Color.WHITE;
 }
 }

C. public class Rectangle implements Colorable {
 //constructor elided
D. @Override
 public Color getColor() {
E. return Color.PURPLE;
 }
 }

Andries van Dam © 2023 9/26/23 45/92

TopHat Question
Given the following interface:

public interface Clickable {
 public void click();
}

Which of the following would work as an implementation of the Clickable
interface? (don’t worry about what changeXPosition does)
A.

@Override
public void click(double xPosition) {
 this.changeXPosition(xPosition);
}

B.

C. @Override
public void clickIt() {
 this.changeXPosition(100.0);
}

@Override
public double click() {
 return this.changeXPosition(100.0);
}

D.
@Override
public void click() {
 this.changeXPosition(100.0);
}

Andries van Dam © 2023 9/26/23 46/92

Back to the CIT Race

public class Car implements Transporter {

 public Car() {
 //code elided
 }
 public void drive() {
 //code elided
 }

 @Override
 public void move() {
 this.drive();
 }

 //more methods elided
}

public class Bike implements Transporter {

 public Bike() {
 //code elided
 }
 public void pedal() {
 //code elided
 }

 @Override
 public void move() {
 this.pedal();
 }

 //more methods elided
}

● Let’s make transportation classes use an interface

Andries van Dam © 2023 9/26/23 47/92

Leveraging Interfaces
● Given that there’s a guarantee that anything that

implements Transporter knows how to move, how can
it be leveraged to create single
useTransportation(…) method?

Racer

useTransportation(…)

Racer

useCar(Car car)
useBike(Bike bike)
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse)
useScooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogoStick(PogoStick pogo)

Andries van Dam © 2023 9/26/23 48/92

Outline
● Transportation Example

● Intro to Interfaces

● Implementing Interfaces

● Polymorphism

Andries van Dam © 2023 9/26/23 49/92

Introducing Polymorphism
● Poly = many, morph = forms

● A way of coding generically

o way of referencing multiple classes sharing abstract functionality as acting as one
generic type

▪ cars and bikes can both move() → refer to them as classes of type Transporter

▪ phones and Teslas can both getCharged() → refer to them as class of type
Chargeable, i.e., classes that implement Chargeable interface

▪ cars and boomboxes can both playRadio() → refer to them as class of type
RadioPlayer

● How do we write one generic useTransportation(…) method?

Andries van Dam © 2023 9/26/23 50/92

What would this look like in code?

public class Racer {

 //previous code elided
 public void useTransportation(Transporter transportation) {
 transportation.move();
 }

}
This is polymorphism!
transportation instance
passed in could be instance of
Car, Bike, etc., i.e., of any class
that implements the interface

Andries van Dam © 2023 9/26/23 51/92

Let’s break this down
There are two parts to implementing polymorphism:

1. Actual vs. Declared Type

2. Method resolution

public class Racer {

 //previous code elided
 public void useTransportation(Transporter transportation) {
 transportation.move();
 }

}

what’s the actual vs. declared
type of any transportation
instance passed in?

which move() is executed?

Andries van Dam © 2023 9/26/23 52/92

Actual vs. Declared Type (1/2)
● We first show polymorphic assignment (typically not useful by

itself) and then polymorphic parameter passing

● Consider following polymorphic assignment statement:
Transporter lexisCar = new Car();

● We say “lexisCar” is of type Transporter,” but we instantiate
a new Car and assign it to lexisCar... is that legal?
o doesn’t Java do “strict type checking”? (type on LHS = type on RHS)
o how can instances of Car get stored in variable of type Transporter?

Andries van Dam © 2023 9/26/23 53/92

Actual vs. Declared Type (2/2)
● Can treat Car/Bike instances as

instances of type Transporter
● Car is the actual type

o Java compiler will look in this class for the
definition of any method called on
transportation

Transporter transportation = new Car();

Nope. The playRadio() method is
not declared in Transporter
interface, therefore compiler does not
recognize it as a valid method call

transportation.playRadio();

● Transporter is the declared type
o compiler will limit any caller so it can only

call methods on instances that are declared
as instances of type Transporter AND are
defined in that interface

● If Car defines playRadio() method,
is this correct?
transportation.playRadio()

Andries van Dam © 2023 9/26/23 54/92

Is this legal?
Transporter anastasiosBike = new Bike();

Radio wouldn’t implement Transporter. Since
Radio cannot “act as” type Transporter, you cannot
treat it as of type Transporter

Transporter lexisCar = new Car();

Transporter lexisRadio = new Radio();

Andries van Dam © 2023 9/26/23 55/92

Only Declared Type’s Methods Can be
Used

● What methods must Car and Bike have in
common?
o move()

● How do we know that?
o they implement Transporter

▪ guarantees that they have move(), plus
whatever else is appropriate to that class

● Think of Transporter like the “lowest
common denominator”
o it’s what all classes of type Transporter

will have in common
o only move() may be called if an instance is

passed as the declared interface type

class Car implements Transporter {
 public void move();
 public void playRadio();
 //etc.
}

class Bike implements Transporter {
 public void move();
 public void dropKickstand();
 //etc.
}

Andries van Dam © 2023 9/26/23 56/92

Motivations for Polymorphism
● Many different kinds of transportation but only care about

their shared capability
o i.e., how they move

● Polymorphism lets programmers sacrifice specificity for
generality
o treat any number of classes as their lowest common denominator
o limited to methods declared in that denominator

▪ can only use methods declared in Transporter

● For this program, that sacrifice is ok!
o Racer doesn’t care if an instance of Car can playRadio() or if an instance of

Bike can dropKickstand()
o only method Racer wants to call is move()

Andries van Dam © 2023 9/26/23 57/92

Polymorphism in Parameters
● What are implications of this method declaration?

public void useTransportation(Transporter transportation) {
 //code elided
}

o useTransportation will accept any class that implements Transporter
o we say that Transporter is the (declared) type of the parameter
o we can pass in an instance of any class that implements the Transporter interface
o useTransportation can only call methods declared in Transporter

Andries van Dam © 2023 9/26/23 58/92

Is this legal?

Transporter anastasiosBike = new Bike();
this.anastasio.useTransportation(anastasiosBike);

Car lexisCar = new Car();
this.lexi.useTransportation(lexisCar);

Radio lexisRadio = new Radio();
this.lexi.useTransportation(lexisRadio);

A Radio wouldn’t implement Transporter. Therefore,
useTransportation() cannot treat it as a type of
Transporter

Even though
lexisCar is

declared as a Car,
the compiler can still

verify that it
implements
Transporter

public void useTransportation(Transporter transportation) {
 //code elided
}

Andries van Dam © 2023 9/26/23 59/92

Let’s look at move() (1/2)
● Why call move()?
● What move() method gets executed?

● Since the only method declared in Transporter is move(), all
we will ever ask objects of type Transporter to do is move()

public class Racer {

 //previous code elided
 public void useTransportation(Transporter transportation) {
 transportation.move();
 }

}

Andries van Dam © 2023 9/26/23 60/92

Let’s look at move() (2/2)

● Only have access to instance of type Transporter

o cannot call transportation.drive() or

transportation.pedal()

▪ that’s okay, because all that’s needed is move()

o limited to the methods declared in Transporter

Andries van Dam © 2023 9/26/23 61/92

Method Resolution: Which move() is
executed?

● Consider this line of code in Race class:

this.anastasio.useTransportation(new Bike());

● Remember what useTransportation method looks like:

public void useTransportation(Transporter transportation) {
 transportation.move();
}

What is “actual type” of transportation in
this.anastasio.useTransportation(new Bike()); ?

Andries van Dam © 2023 9/26/23 62/92

Method Resolution (1/4)
● Bike is actual type

o anastasio was handed a new
Bike() instance as argument

● Transporter is declared type
o Bike instance is treated as type

of Transporter

● So… what happens in
transportation.move()?
o What move() method gets used?

public class Racer {
 //previous code elided

 public void useTransportation(Transporter transportation) {
 transportation.move();
 }
}

public class Race {

 private Racer anastasio;
 //previous code elided

 public void startRace() {
 this.anastasio.useTransportation(new Bike());
 }
}

Andries van Dam © 2023 9/26/23 63/92

Method Resolution (2/4)
● anastasio is a Racer

● Bike’s move() method gets used

● Why?

o Bike is the actual type of this
Transporter

▪ compiler will execute methods
defined in Bike class

o Transporter is the declared
type

▪ compiler limits methods that can
be called to those declared in
Transporter interface

public class Bike implements Transporter {
 //previous code elided
 public void move() {
 this.pedal();
 }
}

public class Race {
 //previous code elided
 public void startRace() {
 this.anastasio.useTransportation(new Bike());
 }
}

public class Racer {
 //previous code elided
 public void useTransportation(Transporter
 transportation) {
 transportation.move();
 }
}

Andries van Dam © 2023 9/26/23 64/92

Method Resolution (3/4)
● What if anastasio

received an instance of
Car?
o What move() method

would get called then?
▪ Car’s!

public class Race {
 //previous code elided
 public void startRace() {
 this.anastasio.useTransportation(new Car());
 }
}

public class Car implements Transporter {
 //previous code elided
 public void move() {
 this.drive();
 }
}

public class Racer {
 //previous code elided
 public void useTransportation(Transporter
 transportation) {
 transportation.move();
 }
}

Andries van Dam © 2023 9/26/23 65/92

Method Resolution (4/4)
● move() method is bound dynamically – the compiler does

not know which move() method to use until program runs
o same “transport.move()” line of code could be executed indefinite

number of times with different method resolution each time

o This method resolution is an example of dynamic binding, which
directly contrasts the normal static binding, in which method gets
resolved at compile time

Andries van Dam © 2023 9/26/23 66/92

TopHat Question
Given the following class:

Given that Typeable has declared the type() method and Clickable has
declared the click() method, which of the following calls is valid?
A.

B.

Typeable macBook = new Typeable();
macBook.type();

B.

Typeable macBook = new Laptop();
macBook.click();

D.

C.

Clickable macBook = new Laptop();
macBook.click();

Clickable macBook = new Clickable();
macBook.type();

public class Laptop implements Typeable, Clickable { //two interfaces
 public void type() {
 // code elided
 }
 public void click() {
 //code elided
}

Andries van Dam © 2023 9/26/23 67/92

Why does polymorphism work when
calling methods?

● Declared type and actual type work together
o declared type keeps things generic

• can reference many classes using one generic type
o actual type ensures specificity

• when calling declared type’s method on an instance, the actual code that
is called is the code defined in the actual type’s class (dynamic binding)

Declared Actual

Every district do their
job!

District 12’s job is
specifically mining

coal

Andries van Dam © 2023 9/26/23 68/92

When to use polymorphism?

● Do you use only functionality declared in interface OR do you
need specialized functionality from implementing class?
o if only using functionality from the interface → polymorphism!
o if need specialized methods from implementing class, don’t use

polymorphism

● If defining goOnScenicDrive()…
o want to put topDown() on Convertible, but not every Car can put top

down
▪ don’t use polymorphism, not every Car can goOnScenicDrive() i.e.,

can’t code generically

Andries van Dam © 2023 9/26/23 69/92

Why use interfaces?
● Contractual enforcement

o will guarantee that class has certain capabilities
▪ Car implements Transporter, therefore it must know how to move()

● Polymorphism
o can have implementation-agnostic classes and methods

▪ know that these capabilities exist, don’t care how they’re implemented
▪ allows for more generic programming

o useTransportation can take in any instance of type Transporter
o can easily extend this program to use any form of transportation, with minimal

changes to existing code
▪ a tool for extensible programming

▪ How?

Andries van Dam © 2023 9/26/23 70/92

Why is this important?
● Using more than 2 methods of transportation?
● Old Design:

o need more classes → more specialized methods (useCar(),
useBike(), useRollerblades(), etc.)

● New Design:
o as long as the new classes implement Transporter, Racer

doesn’t care what transportation it has been given
o don’t need to change Racer!

▪ less work for you!
▪ just add more transportation classes that implement Transporter
▪ “need to know” principle, aka “separation of concerns”

Andries van Dam © 2023 9/26/23 71/92

What does our new design look like?
How would this program run?
● An instance of App gets initialized by main
● App’s constructor initializes cs15Race, an instance of Race
● Race’s constructor initializes lexi, a Racer and anastasio,

a Racer
● App calls cs15Race.startRace()
● cs15Race calls:

o this.lexi.useTransportation(new Car())
o this.anastasio.useTransportation(new Bike())

● useTransportation(new Car()) initializes a Car and
calls Car’s move() method which calls this.drive()

● useTransportation(new Bike()) initializes a Bike and
calls Bike’s move() method which calls this.pedal()

App

Race

Racer

Car Bike

Andries van Dam © 2023 9/26/23 72/92

The Program

public class Race {
 private Racer lexi, anastasio;

 public Race() {
 this.lexi = new Racer();
 this.anastasio = new Racer();
 }

 public void startRace() {
 this.lexi.useTransportation(new Car());
 this.anastasio.useTransportation(new Bike());
 }
}

public class App {
 public static void main(String[] args) {
 Race cs15Race = new Race();
 cs15Race.startRace();
 }
}

public class Racer {
 public Racer() {}

 public void useTransportation(Transporter transport){
 transport.move();
 }
}

public class Car implements Transporter {
 public Car() {}
 public void drive() {
 //code elided
 }
 public void move() { // @Override elided
 this.drive();
 }
}

public class Bike implements Transporter {
 public Bike() {}
 public void pedal() {
 //code elided
 }
 public void move() { // @Override elided
 this.pedal();
 }
}

public interface Transporter {
 public void move();
}

Andries van Dam © 2023 9/26/23 73/92

In Summary
● Interfaces are contracts, can’t be instantiated

o force classes that implement them to define specified methods

● Polymorphism allows for generic code
o treats multiple classes as their “generic type” while still allowing

specific method implementations to be executed

● Polymorphism + Interfaces
o generic coding

● Why is it helpful?
o you want to be the laziest (but cleanest) programmer you can be

Andries van Dam © 2023 9/26/23 74/92

Announcements
● TicTacToe released today (9/26)

o Early hand-in: 9/28
o On-time hand in: 9/30
o Late hand-in: 10/2

● Class Relationships Section
o Mini Assignment due before section
o Email answers to your section TA

● CS15 Mentorship
o Officially begun!

● T-Shirt Contest!!!!!
o Designs due Thursday before Lecture!! (looking at you RISD students :D)

Topics in Socially
Responsible Computing

Artificial Intelligence I

Photo credit: Unsplash

CS15 Fall 2023

From Stochastic Parrot to Coherent Language
Coined by American Linguist Emily Bender in her paper: On
the Dangers of Stochastic Parrots: Can Language Models Be
Too Big? 🦜

Input
Node 2

Input
Node 3

Input
Node 4

Input
Node

X)

Input
Node 1

Numbe
r 0

Numbe
r 1

Numbe
r 2

Hidden Layers

How to Train Your Dragon LLM

Source: (Brown et al. 2020)

(1)

•As discussed in last lecture we
need to feed our model data to
train the weights

• In our last example this data was
images of numbers

•To train a LLM we require,
instead, massive amounts of
textual data

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Word Embeddings

•An embedding is a sequence of numbers that
represents each token, and each token has a
unique sequence

• It can be difficult to visualize word embeddings
since they exist in a high dimensional space (100+
dimensions)

•Consider instead the following 2D example:
• king and queen are semantically similar

• But are we talking about Medieval History or Chess?

• Likewise, Java could refer to a programming language
or a drink

•Chat GPT maps these relationships so well that it
seems to always know the exact context in which
words are used

ki
ng

Queen

JavaPython

JavaCoffee

Medieval

ki
ng

Queen

Chess

Drink

Programmin
g

Languages

Word Embeddings (Continued)

Source: Towards Data Science

Following Training: King – Man + Woman =
Queen

https://towardsdatascience.com/

Garbage in, Garbage Out (GIGO)

•Flawed inputs creates flawed outputs

•“Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come
out?” - Passages from the Life of a Philosopher
(1864!!)

•Since Chat GPT is trained on false or incorrect
statements, it will (confidently) produce flawed
outputs

• This is why Chat GPT appears to hallucinate
sometimes…

•Chat GPT may also appear politically biased
• Biased training material -> biased outputs

https://www.gutenberg.org/files/57532/57532-h/57532-h.htm

Fine Tuning

Source: Time

• To reduce incorrect and biased outputs and tailor the
model towards specific tasks, the model is fine tuned
after initial training.

• Sama uses gig workers in developing economies to
create training datasets for Silicon Valley clients.

• Sama workers, for example, manually labeled toxic
responses for Chat-GPT to build a mechanism for filtering
them out.

• Other Clients include Google, Meta, and Microsoft

• Fine tuning can also include training the model to
perform better at certain tasks or conform to a
certain writing style!

Algorithmic
Pre-Training
(takes months!)

Human
Fine Tuning
(less-time but takes
human Input)

GPT with 1 Trillion Parameters

GPT with 1 Trillion Fine Tuned Parameters

https://time.com/6247678/openai-chatgpt-kenya-workers/

Further Courses @ Brown post CS15 & CS200

Many courses in the Artificial Intelligence/Machine Learning pathway go in
depth and have you implement what we discussed over the last lectures!

•CS1410 – Artificial Intelligence

•CS1420 -- Machine Learning

•CS1430 – Computer Vision

•CS1460 – Computational Linguistics

•CS1470 – Deep Learning

•CS1951A – Data Science

Introducing GPTA!

• GPTA is CS15’s very own “virtual TA” Chatbot

• Instead of using ChatGPT or other chatbots for questions, you can ask GPTA!

• GPTA is a great resource for those quick questions and misunderstandings
you have about concepts and syntax

• Access will be granted in your section this week

• if you had section this morning, you will be granted access shortly after lecture :)

www.cs15gpta.com

http://www.cs15gpta.com/

Usage Guidelines

• You CAN ask: conceptual questions, for code examples explaining
concepts

• You CANNOT ask: debugging questions, for project code
• Specific examples of these are on the CS15 GenAI Usage Doc

• You’ll see these guidelines every time you sign in to GPTA

• We have a user guide and usage guidelines on the Collab Policy and
the GenAI Usage Doc

https://docs.google.com/document/d/1MFfAXhaKwhJ2PtOsRPZ7sPv_8KOrR4xdgNEL5Jb3IKU/edit
https://docs.google.com/document/d/11AylwWq2KLH1vO5svMxs7eY2qqWGETmzy5AAqAq4b6E/edit
https://docs.google.com/document/d/11oqlPAXNYx9heme3zrhdYnYzgsFFnWa7NknjSStCick/edit#heading=h.eb2iwnj6ambw
https://docs.google.com/document/d/1MFfAXhaKwhJ2PtOsRPZ7sPv_8KOrR4xdgNEL5Jb3IKU/edit

Terms and Conditions

• To make sure that this tool is not being abused, we will be logging all
questions and responses

• we will be reviewing these responses to make sure no disallowed questions
(ie, ‘debug my code’, ‘generate project code’ questions)

• Before you can start using GPTA, you must fill out our Terms and
Conditions form

• acknowledges you understand GPTA’s role in our course, how you must use it,
and that we will be monitoring questions asked

https://forms.gle/i6DaCTFgkdhCzd9t5
https://forms.gle/i6DaCTFgkdhCzd9t5

DISCLAIMERS
• This is a BIG experiment!

• caution advised– issues are expected early on

• feedback form linked on the GPTA website

• Like all GenAI, GPTA will occasionally produce inaccurate and irrelevant information--not
a replacement for real TA help

• Just like with ChatGPT--sometimes issues with generated code

• Explanations are based on general info in the wild, not specific CS15 ways we teach OOP

• may be differences in terminology and concept explanations, as well as style

• Anticipating some server load issues

• You’re guinea pigs; based on our testing we found it useful but your mileage may vary

• bear with us as we figure this out together!

