
Andries van Dam © 2023 9/28/23 1/77

Lecture 7
Inheritance and Polymorphism

Andries van Dam © 2023 9/28/23 2/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 3/77

Recall: Interfaces and Polymorphism
public class Conductor {

//previous code elided
public void conduct(Playable instrument) {

instrument.play();
}

}

// in Orchestra class
Conductor conductor = new Conductor();
Playable violin = new Violin();
Playable trumpet = new Trumpet();
conductor.conduct(violin);

● Interfaces are contracts that

classes agree to

o if a class chooses to implement given

interface, it must define all methods
declared in interface; compiler will raise

errors otherwise

● Polymorphism: a way of coding

generically; reference instances of

related classes as one generic type
o Violin, Trumpet, Drums all

implement Playable interface with

single play() method

o how can we make use of the
conduct() method so it can

polymorphically take in any
instrument of type Playable?

Andries van Dam © 2023 9/28/23 4/77

● What are the similarities between a convertible and a sedan?

● What are the differences?

Similarities? Differences?

Andries van Dam © 2023 9/28/23 5/77

● 5 seats

Convertibles vs. Sedans

Convertible Sedan

● Might have only 2 seats

● Top down/up

● Drive

● Brake

● Play radio

● Lock/unlock

doors

● Turn off/on

engine

Andries van Dam © 2023 9/28/23 6/77

● A convertible and a sedan are
extremely similar

● Not only do they share a lot of the
same capabilities, they perform these
actions in the same way

o both cars drive and brake the same way

▪ let’s assume they have the same engine,
doors, brake pedals, fuel systems, etc.

Digging deeper into the similarities

Andries van Dam © 2023 9/28/23 7/77

● In many cases, objects can be very closely
related to each other, in life and in code

o convertibles and sedans drive the same way

o flip phones and smartphones call the same way

o Brown students and Harvard students study the
same way (?!?)

● Imagine we have a Convertible and a Sedan
class

o can we put their similarities in one place?

o how do we portray that relationship with
code?

Can we model this in code?

Convertible

● turnOnEngine()
● turnOffEngine()
● drive()

● putTopDown()
● putTopUp()

Sedan

● turnOnEngine()
● turnOffEngine()
● drive()

● parkInCompactSpace()

Andries van Dam © 2023 9/28/23 8/77

● We could build an interface to model their similarities

o build a Car interface with the following methods:

▪ turnOnEngine()

▪ turnOffEngine()

▪ drive()

▪ etc.

● Remember: interfaces only “declare” methods

o each class that implements Car will need to “define” Car’s methods

o a lot of these method definitions would be the same across classes

▪ Convertible and Sedan would have the same definition, i.e., code, for drive(),

startEngine(), turnOffEngine(), etc.

● Is there a better way that allows us to reuse code, i.e., avoid duplication?

Interfaces

Andries van Dam © 2023 9/28/23 9/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 10/77

● In OOP, inheritance is a way of modeling very

similar classes and facilitating code reuse

● Inheritance models an “is-a” relationship

o a sedan “is a” car

o a poodle “is a” dog

o a dog “is a” mammal

● Remember: Interfaces model an “acts-as”

relationship

● You’ve probably seen inheritance before!

o taxonomy from biology class: any level has all of the

capabilities of the levels above it but is more specialized

than its higher levels

o a dog inherits the capabilities of its “parent,” so it knows

what a mammal knows how to do, plus more

o we will cover exactly what is inherited in Java class

hierarchy shortly…

Inheritance

…

Animalia

Mammalia

Canis

Chordata

Andries van Dam © 2023 9/28/23 11/77

Modeling Inheritance (1/3)

Mammal

Dog

Poodle Labrador

● This is an inheritance diagram
o each box represents a class

● A Poodle “is-a” Dog, a Dog “is-a” Mammal
o transitively, a Poodle is a Mammal

● “Inherits from” = “is-a”
o Poodle inherits from Dog

o Dog inherits from Mammal

▪ for simplicity, we’re simplifying the taxonomy

here a bit

● This relationship is not bidirectional
o a Poodle is a Dog, but not every Dog is a

Poodle (could be a Labrador, a German

Shepherd, etc.)

Andries van Dam © 2023 9/28/23 12/77

Dog

Poodle

Dog

Mammal

Labrador

Modeling Inheritance (2/3)

● Superclass/parent/base: A class that is
inherited from

● Subclass/child/derived: A class that inherits
from another

● A Poodle “is a” Dog
o Poodle is the subclass
o Dog is the superclass

Andries van Dam © 2023 9/28/23 13/77

Modeling Inheritance (3/3)

Dog

LabradorPoodle

● Superclass/parent/base: A class that is
inherited from

● Subclass/child/derived: A class that inherits
from another

● A Poodle “is a” Dog
o Poodle is the subclass
o Dog is the superclass

● A class can be both a superclass and a
subclass
o e.g., Dog

● You can only inherit from one superclass

o no Labradoodle as it would inherit from Poodle

and Labrador

o other languages, like C++, allow for multiple

inheritance, but too easy to mess up

Labrador

Mammal

Andries van Dam © 2023 9/28/23 14/77

● A subclass inherits all its parent’s public capabilities

o Car defines drive() and Convertible inherits drive() from Car, driving the

same way and using Car’s code. This holds true for all of Convertible’s

subclasses as well

● Inheritance and interfaces both legislate class’ behavior, although in

very different ways

o interface: does not define methods, so all implementing classes must specify

all capabilities outlined in interface

o inheritance: assures that all subclasses of a superclass will have the

superclass’ public capabilities (i.e., code) automatically – no need to re-

specify

▪ a Convertible knows how to drive and drives the same way as Car because of

inherited code

Motivations for Inheritance

Andries van Dam © 2023 9/28/23 15/77

● Code reuse!

o if drive() is defined in Car,

Convertible doesn’t need to

redefine it! Code is inherited

● Only need to implement what is

different, i.e., what makes

Convertible special – do this

by adding methods (or modifying

inherited methods – stay tuned)

Benefits of Inheritance
Car

private Engine myEngine
public void turnOnEngine()
public void turnOffEngine()

public void drive()

Convertible

Note that we don’t list the parent’s

methods again here – they are

implicitly inherited!

public void putTopDown()

Andries van Dam © 2023 9/28/23 16/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 17/77

● A superclass factors out commonalities among its subclasses

o describes everything that all subclasses have in common

▪ Dog defines things common to all Dogs

● A subclass extends its superclass by:

o adding new methods:

▪ the subclass should define specialized methods. Not all Animals can swim, but

Fish can

o overriding inherited methods:

▪ a Bear class might override its inherited sleep method so that it hibernates

rather than sleeping as most other Animals do

o defining “abstract” methods:

▪ the superclass declares but does not define all methods (more on this later!)

Superclasses vs. Subclasses

Andries van Dam © 2023 9/28/23 18/77

● Let’s model a Van, a CS15Mobile (Sedan), and a Convertible
class with inheritance!

Modeling Inheritance Example (1/3)

superclassCar

Van CS15Mobile Convertible

subclasses

Andries van Dam © 2023 9/28/23 19/77

● You can create any number of subclasses

o CS15Mobile, Van, Convertible, SUV...could all inherit from Car

o these classes will inherit public capabilities (i.e., code) from Car

● Each subclass can only inherit from one superclass

o Convertible cannot inherit from Car, FourWheeledTransportation,

and GasFueledTransportation

Modeling Inheritance Reminders

Andries van Dam © 2023 9/28/23 20/77

TopHat Question 1

Which of these is an invalid superclass/subclass model?:

A. C.

B.

D. None of the above

Join Code: 504547

Andries van Dam © 2023 9/28/23 21/77

public class Car {
private Engine engine;
//other variables elided

public Car() {
this.engine = new Engine();

}
public void turnOnEngine() {

this.engine.start();
}
public void turnOffEngine() {

this.engine.shutOff();
}
public void cleanEngine() {

this.engine.steamClean();
}
public void drive() {

//code elided

}
//more methods elided

}

Modeling Inheritance Example (2/3)

● Step 1 – define the superclass

o defining Car is just like defining

any other class

Andries van Dam © 2023 9/28/23 22/77

● Step 2 – define a subclass

● Use the extends keyword

o extendsmeans “is a subclass of”
or “inherits from”

o extends lets the compiler know
that Convertible is inheriting
from Car

o whenever you create a class that
inherits from a superclass, the
class declaration must include:

extends <superclass name>

public class Convertible extends Car {
//code elided for now

}

Modeling Inheritance Example (3/3)

22 / 78

Andries van Dam © 2023 9/28/23 23/77

● We don’t need to (re)declare

any inherited methods

● Our Convertible class does

more than a generic Car class

● Let’s add a putTopDown()
method and an instance

variable top (initialized in

constructor)

Adding new methods (1/3)

public class Convertible extends Car {

public Convertible(){

}

}

public void putTopDown(){
//code using this.top elided

}

private ConvertibleTop top;

this.top = new ConvertibleTop();

Andries van Dam © 2023 9/28/23 24/77

public class Convertible extends Car {
private ConvertibleTop top;

public Convertible(){
this.top = new ConvertibleTop();

}

public void putTopDown(){
//code with this.top elided

}
}

● Can CS15Mobile
putTopDown()?
o nope- that method is defined

in Convertible, so only
Convertible and
Convertible’s subclasses
can use it

Adding new methods (2/3)

public class CS15Mobile extends Car {

public CS15Mobile(){

}

//other methods elided
}

● Now, let’s make a new
CS15Mobile class that
also inherits from Car

Andries van Dam © 2023 9/28/23 25/77

● You can add specialized functionality to a subclass by defining
methods in that subclass

● These methods can only be inherited if a class extends this
subclass

Adding new methods (3/3)

Defines Car’s methods and

doesn’t inherit Convertible’s

new methods

Inherits Car’s methods

and doesn’t inherit
Convertible’s methods

Inherits and adds to

Convertible’s methods,
which includes Car’s methods

Car

Convertible CS15Mobile

Porsche

Inherits Car’s methods

and defines
Convertible’s methods

Andries van Dam © 2023 9/28/23 26/77

● A Convertible may decide

Car’s drive() method just

doesn’t cut it

o a Convertible drives much

faster than a regular car

● Can override a parent class’s

method and redefine it

Overriding methods (1/4)

public class Car {

private Engine engine;
//other variables elided

public Car() {
this.engine = new Engine();

}
public void drive() {

this.goFortyMPH();
}
public void goFortyMPH() {

//code elided
}
//more methods elided

}

Andries van Dam © 2023 9/28/23 27/77

● @Override should look familiar!

o saw it when we implemented an

interface method

● Include @Override right before

declaring method we want to
override

● @Override is an annotation – in a

subclass it signals to compiler (and

to anyone reading your code) that
you’re overriding an inherited

method of the superclass

Overriding methods (2/4)

public class Convertible extends Car {

public Convertible() {

}

@Override
public void drive(){

this.goSixtyMPH();
}

public void goSixtyMPH(){
//code elided

}
}

Andries van Dam © 2023 9/28/23 28/77

● We override methods by re-declaring

and re-defining them

● Be careful – in declaration, the

method signature (name of method

and list of parameters) and return

type must match that of the

superclass’s method exactly*!

o or else Java will create a new, additional

method instead of overriding

● drive() is the method signature,

indicating that name of method is

drive and takes in no parameters;

the return type must also match

Overriding methods (3/4)

public class Convertible extends Car {

public Convertible() {

}

@Override
public void drive() {

this.goSixtyMPH();
}

public void goSixtyMPH() {
//code elided

}
}

*return type also must be the same or be a subtype of superclass’s method’s return type, e.g., if the superclass method
returns a Car, the subclass method should return a Car or a subclass of Car

Andries van Dam © 2023 9/28/23 29/77

● Fill in body of overridden method
with whatever we want a
Convertible to do when it is told

to drive

● In this case, we’re fully overriding
the method

● When a Convertible is told to

drive, it will execute this code

instead of the code in its
superclass’s drivemethod (Java

compiler does this automagically -

stay tuned)

Overriding methods (4/4)

public class Convertible extends Car {

public Convertible() {

}

@Override
public void drive(){

this.goSixtyMPH();
}

public void goSixtyMPH(){
//code elided

}
}

Andries van Dam © 2023 9/28/23 30/77

● Let’s say we want to keep

track of CS15Mobile’s route

● CS15Mobile drives at the

same speed as a Car, but it

adds dots to a map

Partially overriding methods (1/6)

Andries van Dam © 2023 9/28/23 31/77

● We need a CS15Mobile to start
driving normally, and then start
adding dots

● To do this, we partially override
the drive() method

o partially accept the inheritance
relationship

Partially overriding methods (2/6)

CS15Mobile:
void drive:
Go 40mph
Add dot to map

Car:
void drive:
Go 40mph

Andries van Dam © 2023 9/28/23 32/77

● Just like previous example, use
@Override to tell compiler we’re
about to override an inherited
method

● Declare the drive() method,
making sure that the method
signature and return type match
that of superclass’s drive
method

Partially overriding methods (3/6)

public class CS15Mobile extends Car {

public CS15Mobile() {
//code elided

}

@Override
public void drive(){

super.drive();
this.addDotToMap();

}

public void addDotToMap() {
//code elided

}

}

Andries van Dam © 2023 9/28/23 33/77

● When a CS15Mobile drives, it first
does what every Car does: goes

40mph

● First thing to do in CS15Mobile’s

drivemethod therefore is “drive
as if I were just a Car, and

nothing more”

● Keyword super used to invoke

original inherited method from
parent: in this case, drive as

implemented in parent Car

Partially overriding methods (4/6)

public class CS15Mobile extends Car {

public CS15Mobile() {
//code elided

}

@Override
public void drive(){

// super refers to parent class
super.drive();
this.addDotToMap();

}

public void addDotToMap() {
//code elided

}

}

Andries van Dam © 2023 9/28/23 34/77

● After doing everything a Car
does to drive, the CS15Mobile
needs to add a dot to the map!

● In this example, the
CS15Mobile “partially overrides”
the Car’s drive method: it
drives the way its superclass
does, then does something
specialized

Partially overriding methods (5/6)

public class CS15Mobile extends Car {

public CS15Mobile() {
//code elided

}

@Override
public void drive(){

super.drive();
this.addDotToMap();

}

public void addDotToMap() {
//code elided

}
}

Andries van Dam © 2023 9/28/23 35/77

● If we think our CS15Mobile should move a

little more, we can call super.drive()
multiple times

● While you can use super to call other

methods in the parent class, it’s strongly

discouraged

o use the this keyword instead; parent’s

methods are inherited by the subclass

o except when you are calling the parent’s

method within the child’s method of the

same name

▪ what would happen if we said
this.drive() instead of super.drive()?

Partially overriding methods (6/6)

public class CS15Mobile extends Car {

public CS15Mobile() {
//code elided

}

@Override
public void drive(){

super.turnOnEngine();
super.drive();
this.addDotToMap();
super.drive();
super.drive();
this.addDotToMap();
this.turnOffEngine();

}

}

bad form!

StackOverflowError

this
this

Andries van Dam © 2023 9/28/23 36/77

● When we call drive() on some instance of Convertible, how

does the compiler know which version of the method to call?

● Starts by looking at the instance’s class, regardless of where class

is in the inheritance hierarchy

o if method is defined in the instance’s class, Java compiler calls it

o otherwise, it checks the superclass

▪ if method is explicitly defined in superclass, compiler uses it

▪ otherwise, checks superclass up one level… etc.

▪ if a class has no superclass, then compiler throws an error

Method Resolution (1/3)

Andries van Dam © 2023 9/28/23 37/77

● Essentially, the Java compiler

“walks up the class inheritance

tree” from subclass to superclass

until it either:

o finds the method, and calls it

o doesn’t find the method, and

generates a compile-time error.

Compiler won’t let you give a

command for which there is no

method!

Method Resolution (2/3)

Car
drive()

Convertible
drive()
topDown()

Porsche
drive()

Andries van Dam © 2023 9/28/23 38/77

● When we call drive() on

a Porsche, Java compiler

uses the drive() method

defined in Porsche

● When we call topDown()
on a Porsche, Java

compiler uses the

topDown() method defined

in Convertible

Method Resolution (3/3)

Car
drive()

Convertible
drive()
topDown()

Porsche
drive()

Andries van Dam © 2023 9/28/23 39/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 40/77

● Let’s use the car inheritance relationship in an actual program

● Remember the race program from last lecture?

● Silly Premise

o the department received a ~mysterious~ donation and can now afford to
give all TAs cars! (we wish)

o Lexi and Cannon want to race from their dorms to the CIT in their brand
new cars

▪ whoever gets there first, wins!

▪ you get to choose which car they get to use

Inheritance Example

Andries van Dam © 2023 9/28/23 41/77

Inheritance Example

● What classes will we need for this lecture’s program?

o old: App, Racer

o new: Car, Convertible, CS15Mobile, Van

● Rather than using any instances of type Transporter, Lexi and

Cannon are limited to only using instances of type Car

o for now, transportation options have moved from Bike and Car to

Convertible, CS15Mobile, and Van

● How do we modify Racer’s useTransportation()method to

reflect that?

o can we use polymorphism here?

Andries van Dam © 2023 9/28/23 42/77

● What is the “lowest common denominator” between Convertible,
CS15Mobile, and Van?

Inheritance and Polymorphism (1/3)

Car is the LCD!Car

Van CS15Mobile Convertible

Andries van Dam © 2023 9/28/23 43/77

● Can we refer to CS15Mobile as
its more generic parent, Car?

● Declaring CS15Mobile as type
Car follows the same process
as declaring a Bike as of type
Transporter

● Transporter and Car are the
declared types

● Bike and CS15Mobile are the
actual types

Inheritance and Polymorphism (2/3)

Transporter bike = new Bike();

Car car = new CS15Mobile();

Andries van Dam © 2023 9/28/23 44/77

● What would happen if we made Car the type of the parameter

passed into useTransportation?

o can only pass in Car and subclasses of Car, i.e., anything that is-a Car

Inheritance and Polymorphism (3/3)

public class Racer {

//previous code elided

public void useTransportation(Car myCar) {
//code elided

}

}

Andries van Dam © 2023 9/28/23 45/77

Car convertible = new Convertible();
this.lexi.useTransportation(convertible);

Is this legal?

Convertible convertible = new Convertible();
this.lexi.useTransportation(convertible);

Car bike = new Bike();
this.lexi.useTransportation(bike);

Bike is not a subclass of Car (the two classes

have no relationship), so you cannot treat an
instance of Bike as a Car

Andries van Dam © 2023 9/28/23 46/77

● Let’s define

useTransportation()

● What method should we

call on myCar?

o every Car knows how to

drive, which means we

can guarantee that every

subclass of Car also knows

how to drive

Inheritance and Polymorphism (1/2)

public class Racer {

//previous code elided

public void useTransportation(Car myCar) {
myCar.drive();

}

}

Andries van Dam © 2023 9/28/23 47/77

● That’s all we needed to do!

● Our inheritance structure looks really similar to our interfaces structure

o therefore, we only need to change 2 lines in Racer in order to use any of

our new Cars!

o but remember- what’s happening behind the curtain is very different:

method resolution “climbs up the hierarchy” for inheritance

● Polymorphism is an incredibly powerful tool

o allows for generic programming

o treats multiple classes as their generic type while still allowing specific

method implementations for specific subclasses to be executed

● Maximum flexibility: polymorphism + inheritance and/or interfaces

Inheritance and Polymorphism (2/2)

Andries van Dam © 2023 9/28/23 48/77

● Polymorphism allows programmers to refer to instances of a subclass or a

class which implements an interface as type <superclass> or as type
<interface>, respectively

o relaxation of strict type checking, particularly useful in parameter passing

▪ e.g. drive(Car myCar){…} can take in any kind of Car that is an instance of a
subclass of Car and Race(Transporter myTransportation){…} can take in
any instance of a class that implements the Transporter interface

● Advantages

o makes code generic and extensible

o treats multiple classes as their generic (declared) type while still allowing instances of

specific subclasses to execute their specific method implementations through method

resolution based on the actual type

● Disadvantages

o sacrifices specificity for generality

▪ can only call methods specified in superclass or interface, i.e., no putTopDown()

Polymorphism Review

Andries van Dam © 2023 9/28/23 49/77

In the following code, the HungerGames subclass extends the SurvivalGame
superclass. SurvivalGame defines a play() method, and HungerGames
overrides that method.

SurvivalGame game = new HungerGames();
game.play();

Whose play() method is being called?

A. SurvivalGame

B. HungerGames

TopHat Question 2 Join Code: 504547

Andries van Dam © 2023 9/28/23 50/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 51/77

● Can Convertible access engine?

● private instance variables or private
methods of a superclass are not

directly inherited by its subclasses
o superclass protects them from manipulation

by its own subclasses

● Convertible cannot directly access
any of Car’s private instance variables

● In fact, Convertible is completely

unaware that engine exists! This is

encapsulation for safety!
o programmers typically don’t have access to

superclass’ code – they know what methods

are available (i.e., their declarations) but not

how they’re implemented

Accessing Superclass Instance Variables (1/3)

public class Car {
private Engine engine;
//other variables elided
public Car(){

this.engine = new Engine();
}
public void turnOnEngine() {

this.engine.start();
}
public void turnOffEngine() {

this.engine.shutOff();
}
public void drive() {

//code elided
}
//more methods elided

}

Andries van Dam © 2023 9/28/23 52/77

● But that’s not the whole story…

● While every instance of a subclass of

Car is-a Car, it can’t access engine
directly by Convertible’s specialized

methods

● Instead parent can make a method

available for us by its subclasses
(cleanEngine())

Accessing Superclass Instance Variables (2/3)

public class Car {
private Engine engine;
//other instance variables elided

//constructor elided
public void cleanEngine() {

this.engine.steamClean();
}

}

public class Convertible extends Car {
//constructor elided
public void cleanCar() {

this.cleanEngine();
//additional code

}
}

public class Convertible extends Car {
//constructor elided
public void cleanCar() {

this.engine.steamClean();
//additional code

}
}

Andries van Dam © 2023 9/28/23 53/77

● What if superclass’s designer wants to allow subclasses access

(in a safe way) to some of its instance variables directly for their

own needs?

● For example, different subclasses might each want to do

something different to an engine, but we don’t want to factor out

and put each specialized method into the superclass Car (or

more typically, we can’t even access Car to modify it)

o Car can provide controlled indirect access by defining public accessor

and mutator methods for private instance variables, a familiar pattern!

Accessing Superclass Instance Variables (3/3)

Andries van Dam © 2023 9/28/23 54/77

● Assume Car also has radio; Radio class

defines setFavorite() method

● Car can provide access to radio via

getRadio() and setRadio(…) methods

● Important to consider this design decision

in your own programs – which properties

will need to be directly accessible to other

classes?

o don’t always need both set and get

o they should be provided very sparingly

o setter should error-check received

parameter(s) so it retains some control,

e.g., don’t allow negative values

Defining Accessors and Mutators in Superclass

public class Car {

//other instance variables
public Car() {

//other initialization
}
//other methods
public Radio getRadio(){

return this.radio;
}
public void setRadio(Radio myRadio){

this.radio = myRadio;
}

}

private Radio radio;

this.radio = new Radio();

accessor

mutator

Andries van Dam © 2023 9/28/23 55/77

● Methods are inherited, potentially (partially)

overridden

● Additional methods and instance variables

are defined to specialize the subclass

● Instance variables are also inherited, but

only “pseudo-inherited”, i.e., are part of a

subclass’ set of properties…but they can’t

be directly accessed by the subclass

● Instead, accessor/mutator methods are the

proper mechanism with which a subclass

can change those properties

● This provides the parent with protection

against children’s potential misbehavior

Review of Inheritance and Indirect (“pseudo”) Inheritance of
Instance Variables

Instance Vars

Subclass

defined

by

subclass

inherited

from

superclass

Andries van Dam © 2023 9/28/23 56/77

● Convertible can get a reference
to radio by calling

this.getRadio()

o subclasses automatically inherit

these public accessor and mutator

methods

● Note that by using “double dot,”
we’ve chained two methods

together

o first, getRadio is called, and

returns the radio

o next, setFavorite is called on

that radio

Calling Accessors/Mutators From Subclass

public class Convertible extends Car {
public Convertible() {
}

public void setRadioPresets(){
this.getRadio().setFavorite(1, 95.5);
this.getRadio().setFavorite(2, 92.3);

}
}

inherited

method

Andries van Dam © 2023 9/28/23 57/77

● Somewhere in our code, a Convertible is instantiated

● The next line of code calls setRadioPresets()

● Let’s step into setRadioPresets()

Let’s step through some code

//somewhere in the program
Convertible convertible = new Convertible();
convertible.setRadioPresets();

Andries van Dam © 2023 9/28/23 58/77

● Someone calls

setRadioPresets() on a

Convertible– first line is

this.getRadio()

● getRadio() returns radio

● What is the value of radio at

this point in the code?

o was it initialized when

Convertible was instantiated?

o Java will, in fact, call superclass

constructor by default, but we

don’t want to rely on that

Code Step Through
public class Convertible extends Car {

public Convertible() { //code elided
}

public void setRadioPresets() {
this.getRadio().setFavorite(1, 95.5);
this.getRadio().setFavorite(2, 92.3);

}
}

public class Car {

private Radio radio;
//constructor initializing radio and
//other code elided

public Radio getRadio() {

}
}

return this.radio;

Andries van Dam © 2023 9/28/23 59/77

Making Sure Superclass’s Instance Variables are Initialized

● Convertible may declare its own instance variables, which are

initialized in its constructor, but what about instance variables

pseudo-inherited from Car?

● Car’s instance variables are initialized in its constructor

o but we don’t instantiate a Car when we instantiate a

Convertible!

● When we instantiate Convertible, how can we make sure

Car’s instance variables are initialized too via an explicit call?

o want to call Car’s constructor without making an instance of

a Car via new

Andries van Dam © 2023 9/28/23 60/77

● Car’s instance variables (like radio)

are initialized in Car’s constructor

● To make sure that radio is initialized

whenever we instantiate a
Convertible, we need to call

superclass Car’s constructor

● The syntax for doing this is “super()”

● Here super() is the parent’s

constructor; before, in partial

overriding when we used
super.drive(), “super” referred to

the parent itself (verb vs. noun

distinction)

super(): Invoking Superclass’s Constructor (1/4)

public class Convertible extends Car {

private ConvertibleTop top;

public Convertible() {
super();
this.top = new ConvertibleTop();
this.setRadioPresets();

}

public void setRadioPresets(){
this.getRadio().setFavorite(1, 95.5);
this.getRadio().setFavorite(2, 92.3);

}
}

Andries van Dam © 2023 9/28/23 61/77

● We call super() from the

subclass’s constructor to make

sure the superclass’s instance

variables are initialized properly

o even though we aren’t

instantiating an instance of the

superclass, we need to

construct the superclass to

initialize its instance variables

● Can only make this call once,

and it must be the very first line

in the subclass’s constructor

super(): Invoking Superclass’s Constructor (2/4)

public class Convertible extends Car {

private ConvertibleTop top;

public Convertible() {
super();
this.top = new ConvertibleTop();
this.setRadioPresets();

}

public void setRadioPresets(){
this.getRadio().setFavorite(1, 95.5);
this.getRadio().setFavorite(2, 92.3);

}
}

Note: Our call to super() creates one copy of the instance variables, located deep inside the

subclass, but accessible to subclass only if class provides setters/getters (see diagram in slide

55)

Andries van Dam © 2023 9/28/23 62/77

● What if the superclass’s
constructor takes in a parameter?

● We’ve modified Car’s constructor
to take in a Racer as a parameter

● How do we invoke this
constructor correctly from the
subclass?

super(): Invoking Superclass’s Constructor (3/4)

public class Car {

private Racer driver;
public Car() {

this.driver = myDriver;
}
public Racer getRacer() {

return this.driver;
}

}

Racer myDriver

Andries van Dam © 2023 9/28/23 63/77

● In this case, need the
Convertible’s constructor to also

take in a Racer

● This way, Convertible can pass on

the instance of Racer it receives to
Car’s constructor, super()

● The Racer is passed as an

argument to super() – now Racer’s

constructor will initialize Car’s
driver to the instance of Racer that

was passed to the Convertible

super(): Invoking Superclass’s Constructor (4/4)

public class Convertible extends Car {

private ConvertibleTop top;

public Convertible() {
super(myRacer);
this.top = new ConvertibleTop();

}

public void dragRace(){
this.getRacer().move();

}
}

Racer myRacer

Andries van Dam © 2023 9/28/23 64/77

● If you don’t explicitly call super() first
thing in your constructor, Java
compiler automatically calls it for you,
passing in no arguments

● But if superclass’s constructor
requires an argument, you’ll get an
error!

● In this case, we get a compiler error
saying that there is no constructor
“public Car()”, since it was
declared with a parameter

What if we don’t call super()?

public class Convertible extends Car {

private ConvertibleTop top;

public Convertible(Racer myRacer) {
//oops, forgot to call super(…)
this.top = new ConvertibleTop();

}

public void dragRace(){
this.getRacer().move();

}
}

Andries van Dam © 2023 9/28/23 65/77

● Does CS15Mobile need to have the same number of
parameters as Car?

● Nope!

o as long as Car’s parameters are among the passed parameters,
CS15Mobile’s constructor can take in anything else it needs for its job

● Let’s modify all the subclasses of Car to take in a number of
Passengers

Constructor Parameters

Andries van Dam © 2023 9/28/23 66/77

Constructor Parameters
public class Convertible extends Car {

private Passenger p1;
public Convertible(Racer myRacer, Passenger p1) {

super(myRacer);
this.p1 = p1;

}
//code with passengers elided

}

● Notice how we only
need to pass driver
to super()

● We can add additional
parameters in the

constructor that only

the subclasses will use

public class CS15Mobile extends Car {
private Passenger p1, p2, p3, p4;
public CS15Mobile(Racer myDriver, Passenger p1,

Passenger p2, Passenger p3, Passenger p4) {
super(myDriver);

this.p1 = p1;
this.p2 = p2;
this.p3 = p3;
this.p4 = p4;

}
//code with passengers elided

}

Andries van Dam © 2023 9/28/23 67/77

• Inheritance overview

• Implementing inheritance

o adding new methods to subclass

o overriding methods

o partially-overriding methods

• Inheritance and polymorphism

• Accessing instance variables

• Abstract methods and classes

Outline

Andries van Dam © 2023 9/28/23 68/77

● What if we wanted to seat all
of the passengers in the car?

● CS15Mobile, Convertible,

and Van all have different

numbers of seats

abstract Methods and Classes (1/6)

o they will all have different

implementations of the

same method

Andries van Dam © 2023 9/28/23 69/77

● We declare a method abstract in a superclass when the
subclasses can’t really re-use any implementation the superclass
might provide – no code-reuse

● In this case, we know that all Cars should loadPassengers, but
each subclass will loadPassengers very differently

● abstract method is declared in superclass, but not defined – it is
up to subclasses farther down hierarchy to provide their own
implementations

● Thus superclass specifies a contractual obligation to its subclasses
– just like an interface does to its implementors

abstract Methods and Classes (2/6)

Andries van Dam © 2023 9/28/23 70/77

● Here, we’ve modified Car to make it
an abstract class: a class with at

least one abstractmethod

● We declare both Car and its

loadPassengersmethod abstract:

if one of a class’s methods is
abstract, the class itself must also

be declared abstract

● An abstractmethod is only

declared by the superclass, not

defined – thus use semicolon after

declaration instead of curly braces

abstract Methods and Classes (3/6)

public class Car {

private Racer driver;

public Car(Racer myDriver) {
this.driver = myDriver;

}

public abstract void loadPassengers();

}

abstract

Andries van Dam © 2023 9/28/23 71/77

● How do you load Passengers?

o every Passenger must be told to sit in a specific Seat in a physical Car

o SeatGenerator has methods that returns a Seat in a specific logical position

abstract Methods and Classes (4/6)

public class Passenger {

public Passenger() { //code elided }
public void sit(Seat st) { //code elided }

}

public class SeatGenerator {

public SeatGenerator () {//code elided }
public Seat getShotgun() {//code elided }
public Seat getBackLeft() {//code elided }
public Seat getBackCenter() {//code elided }
public Seat getBackRight() {//code elided }
public Seat getMiddleLeft() {//code elided }
public Seat getMiddleRight() {//code elided }

}

Andries van Dam © 2023 9/28/23 72/77

● All concrete subclasses of Car
override by providing a concrete
implementation for Car’s abstract
loadPassengers()method

● As usual, method signature and
return type must match the one
that Car declared

abstract Methods and Classes (5/6)
public class Convertible extends Car{

@Override
public void loadPassengers(){

SeatGenerator seatGen = new
SeatGenerator();

this.passenger1.sit(
seatGen.getShotgun());

}
}

public class CS15Mobile extends Car{
@Override
public void loadPassengers(){

SeatGenerator seatGen = new
SeatGenerator();

this.passenger1.sit(seatGen.getShotgun());
this.passenger2.sit(seatGen.getBackLeft());
this.passenger3.sit(seatGen.getBackCenter());

}
}

public class Van extends Car{
@Override
public void loadPassengers(){

SeatGenerator seatGen = new SeatGenerator();
this.passenger1.sit(seatGen.getMiddleLeft());
this.passenger2.sit(seatGen.getMiddleRight());
this.passenger3.sit(seatGen.getBackLeft());
//more code elided

}
}

Andries van Dam © 2023 9/28/23 73/77

● abstract classes cannot be instantiated!

o this makes sense – shouldn’t be able to just instantiate a generic Car, since it has no

code to loadPassengers()

o instead, provide implementation of loadPassengers() in concrete subclass, and

instantiate subclass

● Subclass at any level in inheritance hierarchy can make an abstractmethod

concrete by providing implementation

o it’s common to have multiple consecutive levels of abstract classes before reaching a

concrete class

● Even though an abstract class can’t be instantiated, its constructor must still be

invoked via super() by a subclass

o because only the superclass knows about (and therefore only it can initialize) its own

instance variables

abstract Methods and Classes (6/6)

Andries van Dam © 2023 9/28/23 74/77

● You might be wondering: what’s the difference between abstract classes

and interfaces?

● abstract classes:

o can define instance variables

o can define a mix of concrete and abstract methods

o you can only inherit from one class

● Interfaces:

o cannot define any instance variables/concrete methods

o has only undefined methods (no instance variables)

o you can implement multiple interfaces

So.. What’s the difference?

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are

even closer in that you can have concrete methods in interfaces. We will not make use of this in CS15.

Andries van Dam © 2023 9/28/23 75/77

● Inheritance models very similar classes

o factor out all similar capabilities into a generic superclass

o superclasses can:

▪ declare and define methods

▪ declare abstract methods

o subclasses can:

▪ inherit methods from a superclass

▪ define their own specialized methods

▪ completely/partially override an inherited method

● Polymorphism allows programmers to reference instances of a subclass as
their superclass

● Inheritance, Interfaces, and Polymorphism take generic programming to the
max – more in later lecture

Summary

Andries van Dam © 2023 9/28/23 76/77

● Each subclass can only inherit from one

superclass

● Useful when classes have more

similarities than differences and can

share code

● “is-a” relationship: classes that extend

another class

o i.e. A Convertible is-a Car

● Can define more methods to specialize

o i.e. Convertible putting its top down

Quick Comparison: Inheritance and Interfaces

Inheritance Interface

● Classes can implement as

many interfaces as you want

● Useful for when classes have

more differences than

similarities

● “acts-as” relationship: classes

implementing an interface

define its methods

● Can only use methods declared

in the interface

Andries van Dam © 2023 9/28/23 77/77

Announcements

● Tic Tac Toe deadlines
o Early handin: today 9/28 (+2 bonus points)

o On-time handin: Saturday 9/30

o Late handin: Monday 10/2 (-8 for late handin, but 4 late days to use throughout

semester)

● SRC Extra Credit Discussion (1 extra point on final grade)!
o See Ed or website for details

o Sunday 10/22 at 2pm,3pm and 4pm

● HTA Hours: Fridays 3 - 4pm in CIT210, or email us!

● ~ special surprise ~ at Tuesday’s lecture

Topics in Socially

Responsible Computing

Artificial Intelligence I

Photo credit: Unsplash

CS15 Fall 2023

Source: CNN, Reuters, The Intercept, The Verge

2022

Headline

2023

Headline

Automation as a force for good

Improve
workers’ health

and safety

Take over mind-
numbing,

repetitive jobs

Work
collaboratively

with human
workers

Take over night
shifts

Take over jobs
with dangerous

working
conditions

The flip side of automation…

Uncertainty as to
whether it creates
as many jobs as it

removes

Can reduce
worker welfare
if not deployed

well

Uncertainty as to
whether it creates
as many jobs as it

removes

Can reduce
worker welfare
if not deployed

well

2018 PwC Report on Automation Replacing Workers

How AI is predicted to enter the workforce

Automating non-
physical, routine
labor
• Bookkeepers
• Accountants
• Radiologists
• Lawyers
(est. 62 million
jobs - Fed)

Automating
creative work
• Branding
• Logo design
• Voice acting
• … even art!

• Even
programming!

Automating
physical labor
• Factory

automation
• Self-driving

trucks!
(est. 3.5 million
drivers - US
Census)

(blue collar work) (white collar work) (creator economy)

How can we ensure that automation has
good impacts on the labor force?

Support for workers – education & reskilling

Estimated to cost $24,800 per person in the United States!

(World Bank, Boston Consulting Group, 2019)

Hard Skills Soft Skills

Reskilling Initiatives

Company Specific Programs:

• Ex. Amazon Career Choice
Program

• According to BCG ~24% of large
companies link reskilling efforts to
their corporate strategy

Government Efforts

• 2019 Trump Executive Order
addressed AI’s effect on
workforce

• Biden has indicated plans to
release a similar executive order
soon

Ethical limits of AI

Explored this
week in lab!

Source: MIT Technology Review

“Yet there is no country and no
people, I think, who can look
forward to the age of leisure and
of abundance without a dread.
For we have been trained too
long to strive and not to enjoy.”

John Maynard Keynes, Economic

Possibilities for our Grandchildren (1930)

In the limit…

… will anyone need
to work?

	Slide 1: Lecture 7
	Slide 2: Outline
	Slide 3: Recall: Interfaces and Polymorphism
	Slide 4: Similarities? Differences?
	Slide 5: Convertibles vs. Sedans
	Slide 6: Digging deeper into the similarities
	Slide 7: Can we model this in code?
	Slide 8: Interfaces
	Slide 9: Outline
	Slide 10: Inheritance
	Slide 11: Modeling Inheritance (1/3)
	Slide 12: Modeling Inheritance (2/3)
	Slide 13: Modeling Inheritance (3/3)
	Slide 14: Motivations for Inheritance
	Slide 15: Benefits of Inheritance
	Slide 16: Outline
	Slide 17: Superclasses vs. Subclasses
	Slide 18: Modeling Inheritance Example (1/3)
	Slide 19: Modeling Inheritance Reminders
	Slide 20: TopHat Question 1
	Slide 21: Modeling Inheritance Example (2/3)
	Slide 22
	Slide 23: Adding new methods (1/3)
	Slide 24: Adding new methods (2/3)
	Slide 25: Adding new methods (3/3)
	Slide 26: Overriding methods (1/4)
	Slide 27: Overriding methods (2/4)
	Slide 28: Overriding methods (3/4)
	Slide 29: Overriding methods (4/4)
	Slide 30: Partially overriding methods (1/6)
	Slide 31: Partially overriding methods (2/6)
	Slide 32: Partially overriding methods (3/6)
	Slide 33: Partially overriding methods (4/6)
	Slide 34: Partially overriding methods (5/6)
	Slide 35: Partially overriding methods (6/6)
	Slide 36: Method Resolution (1/3)
	Slide 37: Method Resolution (2/3)
	Slide 38: Method Resolution (3/3)
	Slide 39: Outline
	Slide 40: Inheritance Example
	Slide 41: Inheritance Example
	Slide 42: Inheritance and Polymorphism (1/3)
	Slide 43: Inheritance and Polymorphism (2/3)
	Slide 44: Inheritance and Polymorphism (3/3)
	Slide 45: Is this legal?
	Slide 46: Inheritance and Polymorphism (1/2)
	Slide 47: Inheritance and Polymorphism (2/2)
	Slide 48: Polymorphism Review
	Slide 49: TopHat Question 2
	Slide 50: Outline
	Slide 51: Accessing Superclass Instance Variables (1/3)
	Slide 52: Accessing Superclass Instance Variables (2/3)
	Slide 53: Accessing Superclass Instance Variables (3/3)
	Slide 54: Defining Accessors and Mutators in Superclass
	Slide 55: Review of Inheritance and Indirect (“pseudo”) Inheritance of Instance Variables
	Slide 56: Calling Accessors/Mutators From Subclass
	Slide 57: Let’s step through some code
	Slide 58: Code Step Through
	Slide 59: Making Sure Superclass’s Instance Variables are Initialized
	Slide 60: super(): Invoking Superclass’s Constructor (1/4)
	Slide 61: super(): Invoking Superclass’s Constructor (2/4)
	Slide 62: super(): Invoking Superclass’s Constructor (3/4)
	Slide 63: super(): Invoking Superclass’s Constructor (4/4)
	Slide 64: What if we don’t call super()?
	Slide 65: Constructor Parameters
	Slide 66: Constructor Parameters
	Slide 67: Outline
	Slide 68: abstract Methods and Classes (1/6)
	Slide 69: abstract Methods and Classes (2/6)
	Slide 70: abstract Methods and Classes (3/6)
	Slide 71: abstract Methods and Classes (4/6)
	Slide 72: abstract Methods and Classes (5/6)
	Slide 73: abstract Methods and Classes (6/6)
	Slide 74: So.. What’s the difference?
	Slide 75: Summary
	Slide 76: Quick Comparison: Inheritance and Interfaces
	Slide 77: Announcements
	Slide 78
	Slide 79
	Slide 80: Automation as a force for good
	Slide 81: The flip side of automation…
	Slide 82
	Slide 83: How AI is predicted to enter the workforce
	Slide 84: How can we ensure that automation has good impacts on the labor force?
	Slide 85: Reskilling Initiatives
	Slide 86: Ethical limits of AI
	Slide 87

