
Andries van Dam © 2023 10/03/23 1/73

Lecture 8
Math and Making Decisions

Andries van Dam © 2023 10/03/23 2/73

● Inheritance models very similar classes
o factor out all similar capabilities into a generic superclass
o superclasses can

▪ declare and define methods
▪ declare abstract methods

o subclasses can
▪ inherit methods from a superclass
▪ define their own specialized methods
▪ completely/partially override an inherited method

● Polymorphism allows programmers to reference instances of a subclass as
their superclass

● Inheritance, Interfaces, and Polymorphism take generic programming to the max
– more in later lecture

Review: Inheritance and Polymorphism Summary

Andries van Dam © 2023 10/03/23 3/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change

• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

Andries van Dam © 2023 9/28/23 4/77

● What if we wanted to seat all
of the passengers in the car?

● CS15Mobile, Convertible,
and Van all have different
numbers of seats

abstract Methods and Classes (1/6)

o they will all have different
implementations of the
same method

Andries van Dam © 2023 9/28/23 5/77

● We declare a method abstract in a superclass when the
subclasses can’t really re-use any implementation the
superclass might provide – no code-reuse

● In this case, we know that all Cars should
loadPassengers, but each subclass will loadPassengers
very differently

● abstract method is declared in superclass, but not
defined – it is up to subclasses farther down hierarchy to
provide their own implementations

● Thus superclass specifies a contractual obligation to its
subclasses – just like an interface does to its implementors

abstract Methods and Classes (2/6)

Andries van Dam © 2023 9/28/23 6/77

● Here, we’ve modified Car to make it
an abstract class: a class with at
least one abstract method

● We declare both Car and its
loadPassengers method abstract:
if one of a class’s methods is
abstract, the class itself must also
be declared abstract

● An abstract method is only
declared by the superclass, not
defined – thus use semicolon after
declaration instead of curly braces

abstract Methods and Classes (3/6)

public class Car {

 private Racer driver;

 public Car(Racer myDriver) {
 this.driver = myDriver;
 }

 public abstract void loadPassengers();

}

abstract

Andries van Dam © 2023 9/28/23 7/77

● How do you load Passengers?
o every Passenger must be told to sit in a specific Seat in a physical Car
o SeatGenerator has methods that returns a Seat in a specific logical position

abstract Methods and Classes (4/6)

public class Passenger {

 public Passenger() { //code elided }
 public void sit(Seat st) { //code elided }
}

public class SeatGenerator {

 public SeatGenerator () {//code elided }
 public Seat getShotgun() {//code elided }
 public Seat getBackLeft() {//code elided }
 public Seat getBackCenter() {//code elided }
 public Seat getBackRight() {//code elided }
 public Seat getMiddleLeft() {//code elided }
 public Seat getMiddleRight() {//code elided }
}

Andries van Dam © 2023 9/28/23 8/77

● All concrete subclasses of Car
override by providing a concrete
implementation for Car’s abstract
loadPassengers() method

● As usual, method signature and
return type must match the one
that Car declared

abstract Methods and Classes (5/6)
public class Convertible extends Car{
 @Override
 public void loadPassengers(){
 SeatGenerator seatGen = new

 SeatGenerator();
 this.passenger1.sit(

 seatGen.getShotgun());
 }
}

public class CS15Mobile extends Car{
 @Override
 public void loadPassengers(){
 SeatGenerator seatGen = new
SeatGenerator();
 this.passenger1.sit(seatGen.getShotgun());
 this.passenger2.sit(seatGen.getBackLeft());
 this.passenger3.sit(seatGen.getBackCenter());
 }
}

public class Van extends Car{
 @Override
 public void loadPassengers(){
 SeatGenerator seatGen = new SeatGenerator();
 this.passenger1.sit(seatGen.getMiddleLeft());
 this.passenger2.sit(seatGen.getMiddleRight());
 this.passenger3.sit(seatGen.getBackLeft());

//more code elided
 }
}

Andries van Dam © 2023 9/28/23 9/77

● abstract classes cannot be instantiated!
o this makes sense – shouldn’t be able to just instantiate a generic Car, since it has no

code to loadPassengers()
o instead, provide implementation of loadPassengers() in concrete subclass, and

instantiate subclass
● Subclass at any level in inheritance hierarchy can make an abstract method

concrete by providing implementation
o it’s common to have multiple consecutive levels of abstract classes before reaching a

concrete class
● Even though an abstract class can’t be instantiated, its constructor must still be

invoked via super() by a subclass
o because only the superclass knows about (and therefore only it can initialize) its own

instance variables

abstract Methods and Classes (6/6)

Andries van Dam © 2023 10/03/23 10/73

• Abstract classes have 1 or more abstract methods

• An abstract method simply specifies a contractual application for a child class (at any
level below parent) to provide a concrete implementation

• A class can NOT be instantiated if it is abstract

• An interface is simply an abstract class with NO code to inherit

Abstract Methods & Classes

Car

Van CS15Mobile Convertible

Abstract

Concrete

Andries van Dam © 2023 10/03/23 11/73

● You might be wondering: what’s the difference between abstract classes
and interfaces?

● abstract classes:
o can define instance variables
o can define a mix of concrete and abstract methods
o you can only inherit from one class

● Interfaces:
o cannot define any instance variables/concrete methods
o has only undefined methods (no instance variables)
o you can implement multiple interfaces

So.. What’s the difference?

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are
even closer in that you can have concrete methods in interfaces. We will not make use of this in CS15.

Andries van Dam © 2023 10/03/23 12/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change

• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

Andries van Dam © 2023 10/03/23 13/73

Review: Basic Arithmetic Operators

Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% remainder

Andries van Dam © 2023 10/03/23 14/73

Basic Arithmetic Operators: Shorthand

Operator Meaning Example Equivalent Operation

+= add and reassign a += 5; a = a + 5;

-= subtract and reassign a -= 5; a = a - 5;

*= multiply and reassign a *= 5; a = a * 5;

/= divide and reassign a /= 5; a = a / 5;

%= take remainder and reassign a %= 5; a = a % 5;

Andries van Dam © 2023 10/03/23 15/73

Unary Operators

Operator Meaning Example

- negate b = -b; // negates b

++ increment b++; // equivalent to: b = b + 1;

-- decrement b--; // equivalent to: b = b - 1;

Andries van Dam © 2023 10/03/23 16/73

Increment and Decrement Operators

• ++ and -- can be applied
before (prefix) or after (postfix)
the operand

o i++ and ++i will both
increment variable i

o i++ assigns, then increments

o ++i increments, then assigns

Postfix example:
int i = 10;

int j = i++; // j becomes 10, i becomes 11

Prefix example:
int i = 10;

int j = ++i; // i becomes 11, j becomes 11

Andries van Dam © 2023 10/03/23 17/73

• Extremely useful “utility” class, part of core Java libraries

• Provides methods for basic numeric operations

o absolute value: abs(double a)

o exponential: pow(double a, double b)

o natural and base 10 logarithm: log(double a), log10(double a)

o square root: sqrt(double a)

o trigonometric functions: cos(double a), sin(double a)…

o random number generation: random() returns random number from
0.0(inclusive) to 1.0(exclusive)

o for more check out:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

java.lang.Math

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

Andries van Dam © 2023 10/03/23 18/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change

• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

Andries van Dam © 2023 10/03/23 19/73

• All of java.lang.Math’s methods are declared static
• Example: the method that returns the absolute value of

an integer is declared below
o public static int abs(int a) {...}

• A static method belongs to a class, rather than an
instance of the class
o it cannot access instance variables, whose values may differ

from instance to instance
▪ but can have local variables, e.g., temps

static Methods

Andries van Dam © 2023 10/03/23 20/73

• static methods are invoked on the class, not on an
instance:

int absoluteValue = Math.abs(-7);

• That means we can use all of Math’s static methods
without ever instantiating it

Note: You won’t need to write any static methods of your
own in CS15, but you’ll be using Math’s static methods in
future assignments

Calling a static Method

Andries van Dam © 2023 10/03/23 21/73

tributeCounter is an instance of
the HungerGames class. Which is the correct
way to call this static method of the HungerGames class:

TopHat Question

public static int numAlive(){…}?

A. int tributesRemaining = Instance.numAlive();

B. int tributesRemaining = HungerGames.numAlive(static);

C. int tributesRemaining = HungerGamesInstance.numAlive(static);

D. int tributesRemaining = HungerGames.numAlive();

E. int tributesRemaining = tributeCounter.numAlive();

Join Code: 504547

Andries van Dam © 2023 10/03/23 22/73

• Progression in scope:
o local variables are known in a single method
o instance variables are known to all methods of a class
o static instance variables are known to all instances of a class

• Each instance of a class has the same instance variables but
typically with different values for those properties

• If instead you want all instances of a class to share the same value
for a variable, declare it static – this is not very common (and
probably not used in CS15)

• Each time any instance changes the value of a static variable, all
instances have access to that new value

static Variables

Andries van Dam © 2023 10/03/23 23/73

static Variables: Simple Example
• tributes starts out with a value of 0

• Each time a new instance of Tribute is
created, tributes is incremented by 1

• Get current value at any point by calling:
Tribute.getNumTributes();

o each instance of Tribute will have
and know the same value of
tributes

• static methods can use static and
local variables – but not instance
variables

public class Tribute {

 private static int tributes = 0;

 public Tribute () {
 this.tributes++;
 }

 public static int getNumTributes () {
 return this.tributes;
 }
}

Andries van Dam © 2023 10/03/23 24/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change

• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

Andries van Dam © 2023 10/03/23 25/73

• Constants are used to represent values which never
change (e.g. Pi, speed of light, etc.) – very common!

• Keywords used when defining a constant:
o public: value should be available for use by anyone (unlike

private instance variables and local variables)
o static: all instances of the class share one value
o final: value cannot be reassigned

o naming convention for constants is all caps with
underscores between words: LIGHT_SPEED

Constants

Andries van Dam © 2023 10/03/23 26/73

Constants: Example (1/2)

public abstract class Physics {

 // speed of light (Units: hundred million m/s)
 public static final double LIGHT_SPEED = 2.998;

 // constructor elided

 public static double getDistanceTraveled(double numSeconds) {
 return (LIGHT_SPEED * numSeconds);
 }
}

• Useful to bundle a bunch of constants for your application in a “utility” class
(like Math), with useful methods using those constants; both constants and
methods will be then declared static

Andries van Dam © 2023 10/03/23 27/73

• Always use constants when possible
o literal numbers, except for 0 and 1,

should rarely appear in your code

o makes code readable, easier to alter

• Also called symbolic constants –
should have descriptive names

• If many classes use same
constants, make separate utility
class, like Physics

• A constants utility class should never
be instantiated, so it should be
declared abstract

public class Physics {

 //speed of light (Units: hundred million m/s)
 public static final double LIGHT_SPEED = 2.998;

 // we can add more constants if we want
}

We can access this constant from a method in
another class in our program like this:
 Physics.LIGHT_SPEED
 (another use of dot notation!)
Example:
spaceShip.setSpeed(Physics.LIGHT_SPEED)

abstract

Constants: Example (2/2)

Andries van Dam © 2023 10/03/23 28/73

Which of the following constants is defined correctly?

A. public static final int TRIBUTE_AGE;

B. public static final int TRIBUTE_AGE = 17;

C. public static int final TRIBUTE_AGE = 17;

D. private static final int TRIBUTE_AGE = 17;

TopHat Question Join Code: 504547

Andries van Dam © 2023 10/03/23 29/73

Bread Makers (1/6)
• Peeta has entered a competition to

see who can sell the most loaves of
bread!
o (don’t take this example too literally)

• Depending on the amount of dough
and time to bake it, he will be able to
make a certain amount of loaves

• Our Head TAs calculated that his
number of loaves made is the amount
dough times his baking time

• Loaves sold equals one half of the
square root of his baked loaves

Andries van Dam © 2023 10/03/23 30/73

Bread Makers (2/6)
• BreadMakerConstants class keeps track of

important constants in our calculation

public abstract class BreadMakerConstants {

 // Already sold 10 loaves
 public static final double START_LOAVES = 10;

 // Number of loaves sold to win the competition
 public static final double MAX_LOAVES= 200;
}

Andries van Dam © 2023 10/03/23 31/73

Bread Makers (3/6)

• Peeta keeps track of
instance variable
loavesSold

• loavesSold initialized in
constructor to
START_LOAVES defined in
BreadMakerConstants

import java.lang.Math;

public class Peeta {

 private double loavesSold;

 public Peeta() {
 this.loavesSold = BreadMakerConstants.START_LOAVES;

 }
}

Andries van Dam © 2023 10/03/23 32/73

Bread Makers (4/6)

• Peeta’s bake method
changes his number of
loaves sold depending
on the amount of dough
he has and the time he
has to bake

import java.lang.Math;

public class Peeta {

 private double loavesSold;

 public Peeta() {

 this.loavesSold = BreadMakerConstants.START_LOAVES;

 }

 public void bake(double dough, double bakeTime) {
 // code elided

 }
}

Andries van Dam © 2023 10/03/23 33/73

Bread Makers (5/6)
• First, loavesMade is

computed

• Second, anotherLoafSold is
calculated according to the
formula

• Math.sqrt is a static method
from java.lang.Math that
computes the square root of a
value

• Increment the total loaves
sold

import java.lang.Math;
public class Peeta {

 private double loavesSold;

 public Peeta() {

 this.loavesSold = BreadMakerConstants.START_LOAVES;

 }

 public void bake(double dough, double bakeTime) {

 double loavesMade = dough * bakeTime;
 double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
 this.loavesSold += anotherLoafSold;
 }
}

Andries van Dam © 2023 10/03/23 34/73

Bread Makers (6/6)
• Now fill in sellBread()

• Peeta will only bake & sell
bread until he wins the
competition

• How can we check if condition
is met?

• Introducing… boolean's and
if’s!
o seen booleans in Pong

assignment but let’s
formally introduce them

import java.lang.Math;

public class Peeta {

 private double loavesSold;

 public Peeta() {

 this.loavesSold = BreadMakerConstants.START_LOAVES;

 }

 public void bake(double dough, double bakeTime) {

 double loavesMade = dough * bakeTime;
 double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
 this.loavesSold += anotherLoafSold;
 }

 public void sellBread() {
 // decision-making logic that calls bake()!
 }
}

Andries van Dam © 2023 10/03/23 35/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change

• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

Andries van Dam © 2023 10/03/23 36/73

• British logician George Boole (1815-1864) wanted to improve on
Aristotelian (formal) logic, e.g., modus ponens, rule of inference:

o “All men are mortal, Socrates is a man, therefore…”

• boolean (named after Boole) is simplest Java base type

o You’ve seen this in Pong!

• A boolean variable can have value true or false

• Example initialization:

boolean foo = true;

boolean bar = false;

booleans

The terms foo, bar, etc. are often
used as placeholder names
in computer programming or
computer-related documentation:
derived from FUBAR, WWII slang

Andries van Dam © 2023 10/03/23 37/73

Relational Operators
• Can compare numerical expressions

with relational operators

• Full expression evaluates to a
boolean: either true or false

• Examples:
boolean b1 = (3 > 2);
boolean b2 = (5 <= 5);
int x = 8;
boolean b3 = (x == 6);

• b1 and b2 are true, b3 is false

Operator Meaning

== is equal to

!= is not equal to

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

Andries van Dam © 2023 10/03/23 38/73

Comparing References
• Can use == and != to see if two

references point to the same
instance, or not

• What three values are printed to
the console in this example?
o Assume these three examples are

run in order
1. false: d1 and d2 are not equal
2. true: d1 and d2 refer to the

same instance
3. true: d1 != d2 is false, so foo is

true (since foo = !(false))

public class DogPark {

 //constructor elided

 public void compareReferences() {
 //Dog class defined elsewhere in code
 Dog d1 = new Dog();
 Dog d2 = new Dog();

 boolean foo = (d1 == d2);
 System.out.println(foo);

 d2 = d1;
 foo = (d1 == d2);
 System.out.println(foo);

 foo = !(d1 != d2);
 System.out.println(foo);

 }
}

1

2

3

Andries van Dam © 2023 10/03/23 39/73

Which of the following will print false?
TopHat Question

public class TestClass {

 //constructor elided

 public void compareReferences() {
 Student s1 = new Student();
 Student s2 = new Student();

 boolean sameStudent = (s1 == s2);
 System.out.println(sameStudent);

 s2 = s1;
 sameStudent = (s1 == s2);
 System.out.println(sameStudent);

 boolean student1Exists = (s1 != null);
 System.out.println(student1Exists);

 }
}

A.

B.

C.

Join Code: 504547

Andries van Dam © 2023 10/03/23 40/73

• if statements allow us to make decisions based on value of a
boolean expression

• Syntax:
if (<boolean expression>) {

 // code to be executed if expression is true
}

• If boolean expression is true, code in body of if statement is
executed. If false, code in body skipped

• Either way, Java compiler continues on with rest of method

if Statements

Andries van Dam © 2023 10/03/23 41/73

if Statement: Flow Chart

Previous
Statements

Is
condition

true?
No Execute rest of

method

Yes Execute if
clause

Andries van Dam © 2023 10/03/23 42/73

if Statements: Examples
int x = 6;
if (x == 5) {
 // code to execute if x is 5
}

Not executed

Executed

if (myBoolean) {
 // code to execute if myBoolean is true
}

int y = 9;
//more code elided – y is not reassigned
if (y > 7) {
 // code to execute if y is greater than 7
}

Andries van Dam © 2023 10/03/23 43/73

• Logical operators && (“and”) and || (“or”) can be used to
combine two boolean expressions
o <expression a> && <expression b> evaluates to true only if

both expressions are true

o <expression a> || <expression b> evaluates to true if at
least one expression is true

• Logical operator ! (“not”) negates a boolean expression

• Logical operator ^ (“exclusive or”) returns true if either a or b is
true but not both

Logical Operators: And, Or, Not (1/2)

Andries van Dam © 2023 10/03/23 44/73

Logical Operators: And, Or, Not (2/2)

A B A && B A || B A^B !A

false false false false false true

false true false true true true

true false false true true false

true true true true false false

• To represent the values a logical operator may take, a
truth table is used

Andries van Dam © 2023 10/03/23 45/73

Which if clause statement will run if the game has started
and the tools have been gathered? (The variables below are
of type boolean)

A. if(!gameStarted && !toolsGathered){…}

B. if(!gameStarted && toolsGathered){…}

C. if(gameStarted && !toolsGathered){…}

D. if(gameStarted && tools Gathered){…}

TopHat Question Join Code: 504547

Andries van Dam © 2023 10/03/23 46/73

if Statements: More Examples
• Should always take one of two forms:

o if (<boolean expression>)

o if (!<boolean expression>)

• Never do this (inefficient):

o if (<boolean expression> == true)

o if (<boolean expression> == false)

• Be careful! It’s easy to mistakenly use =
(assignment operator) instead of ==
(comparator)

int x = 6;
if (x == 5) {
 // code to execute if x
 // is 5
}

if (!myBoolean) {
 // code to execute if
 // myBoolean is false
}

if (myBoolean == false) {
 // code to execute if
 // myBoolean is false
 // code is inefficient
}

inefficient

Andries van Dam © 2023 10/03/23 47/73

• If we want to do two different things depending
on whether the boolean expression is true or
false, we can use an else clause

• Syntax:
if (<boolean expression>) {

 // code executed if expression is true
} else {
 // code executed if expression is false
}

if-else (1/2)

Andries van Dam © 2023 10/03/23 48/73

if-else: Flow Chart

Previous
Statements

Is
condition

true?

Yes

Execute rest of
method

No Execute
else clause

Execute if
clause

Andries van Dam © 2023 10/03/23 49/73

if-else (2/2)
• Can use if-else to fill in

the sellBread method

• If Peeta’s loaves sold are
less than amount needed
when method is called, he
makes bread

• Otherwise, he stops and
wins the competition!

• Does this code limit the
final number of loaves sold
to MAX_LOAVES?

import java.lang.Math;

public class Peeta {

 private double loavesSold;

 // constructor elided

 public void bake(double dough, double bakeTime) {
 double loavesMade = dough * bakeTime;
 double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
 this.loavesSold += anotherLoafSold;
 }
 public void sellBread() {
 if (this.loavesSold < BreadMakerConstants.MAX_LOAVES) {
 //bake 120 units of dough for 5 hours!
 this.bake(120.0, 5.0);
 } else {

 // this method defined elsewhere in the code
 this.winCompetition();
 }
 }
}

Andries van Dam © 2023 10/03/23 50/73

Complex if-else Statements
• If <boolean expression 1> is

true, block 1 is executed and
blocks 2 and 3 are skipped

• If <boolean expression 1> is
false and <boolean expression
2> is true, block 2 is executed
and blocks 1 and 3 are skipped

• If both expressions are false,
block 3 is executed and blocks 1
and 2 are skipped

if (<boolean expression 1>) {
 // block 1

} else if (<boolean expression 2>) {
 // block 2

} else {
 // block 3
}

Andries van Dam © 2023 10/03/23 51/73

Nested if Statements
// variables and methods defined elsewhere

if (cs15Student.hasBug()) {

 if (cs15Student.hasInitiative()) {
 cs15Student.debug();
 } else {
 cs15Student.giveUp();
 }
}

Andries van Dam © 2023 10/03/23 52/73

Which print statement will be printed out?

TopHat Question

int x = 10;
if (x < 10) {
 if ((x+10) > 15) {
 System.out.println(“case A”);
 } else {
 System.out.println(“case B”);
 }
} else if (x <= 15) {
 if ((x+2) > 13) {
 System.out.println(“case C”);
 } else {
 System.out.println(“case D”);
 }
} else {
 System.out.println(“case E”);
}

A →
B →

C →
D →

E →

Join Code: 504547

Andries van Dam © 2023 10/03/23 53/73

Short-Circuiting (1/2)

• What is the value of n
after the code to the
right has executed?

• n is still 1

• Why?

int n = 1;
if ((n < 0) && (n++ == 2)) {
 // code to be executed if
 // expression is true
}

System.out.println(n);

Andries van Dam © 2023 10/03/23 54/73

Short-Circuiting (2/2)
• Beware of short-circuiting!

• If Java already knows what the full
expression will evaluate to after
evaluating left argument, no need to
evaluate right argument

o &&: if left argument of conditional
evaluates to false, right argument
not evaluated

o ||: if left argument evaluates to
true, right argument not evaluated

int n = 1;
if ((n == 1) || (n == 2)) {
 // code to be executed if
 // expression is true
}

int n = 1;
if ((n < 0) && (n++ == 2)) {
 // code to be executed if
 // expression is true
}

Andries van Dam © 2023 10/03/23 55/73

“Side-effect”ing
• Updating a variable inside a

conditional is not good coding
style; it makes code confusing
and hard to read

• Keep in mind short-circuiting if
you ever call a method that
might have a “side effect” inside
a conditional – here the first if
will leave n incremented, second
not

int n = 1;
if ((n++ == 2) && false) {
 // code to be executed if
 // expression is true
}
System.out.println(n);
//system output: 2

int n = 1;
if (false && (n++ == 2)) {
 // code to be executed if
 // expression is true
}
System.out.println(n);
//system output: 1

Andries van Dam © 2023 10/03/23 56/73

• To do something different for every possible value of an
integer variable, have two options:
o use a lot of else-ifs:

o better solution: use a switch statement!

switch Statements (1/2)

if (myInteger == 0) {
 // do something...
} else if (myInteger == 1) {
 //do something else...

} else if (myInteger == 2) {
 // do something else...
} else if (myInteger == 3) {
 // etc…
}
...
else {
 // last case
}

Andries van Dam © 2023 10/03/23 57/73

 Syntax:
switch (<variable>) {

 case <value>:
 // do something
 break;
 case <other value>:
 // do something else
 break;
 default:
 // take default action
 break;
}

switch Statements (2/2)
Rules:

• <variable> usually an integer – char
and enum (discussed later) also possible

• values have to be mutually exclusive

• If default is not specified, Java compiler
will not do anything for unspecified values

• break indicates the end of a case – skips
to end of switch statement (if you forget
break, the code in next case will execute)

Andries van Dam © 2023 10/03/23 58/73

// imports elided – Math and Color
public class ScarfCreator{
 // constructor elided
 public Scarf generateScarf() {

 }
}

• Let’s make a ScarfCreator class that
produces different colored scarves for
our players using a switch statement

• The scarf is chosen by weighted
distribution (more orange, red, brown,
and fewer blue, green, yellow)

• ScarfCreator generates random
values using Math

• Based on random value, creates and
returns a Scarf of a particular type

switch Example (1/6)

This is an example of the “factory” pattern in
object-oriented programming: it is a method that has
more complicated logic than a simple assignment
statement for each instance variable.

Andries van Dam © 2023 10/03/23 59/73

// imports elided – Math and Color
public class ScarfCreater{
 // constructor elided
 public Scarf generateScarf() {
 int randInt = (int) (Math.random() * 10);

 }
}

• To generate a random value, we use
static method random from
java.lang.Math

• random returns a double between
0.0 (inclusive) and 1.0 (exclusive)

• This line returns a random int 0-9
by multiplying the value returned by
random by 10 and casting the result
to an int

• Casting is a way of changing the type
of an object to another specified
type. Casting from a double to int
truncates your double!

switch Example (2/6)

Andries van Dam © 2023 10/03/23 60/73

• We initialize myScarf to null,
and switch on the random
value we’ve generated

switch Example (3/6)
// imports elided – Math and Color
public class ScarfCreator{
 // constructor elided
 public Scarf generateScarf() {
 int randInt = (int) (Math.random() * 10);
 Scarf myScarf = null;
 switch (randInt) {

 }
 }
}

Andries van Dam © 2023 10/03/23 61/73

• Scarf takes in an instance of
javafx.scene.paint.Color as a
parameter of its constructor (needs to
know what color it is)

• Once you import
javafx.scene.paint.Color, you only
need to say, for example, Color.ORANGE
to name a color of type Color

• If random value turns out to be 0 or 1,
instantiate an orange Scarf and assign it
to myScarf

• break breaks us out of switch statement

// imports elided – Math and Color
public class ScarfCreator{
 // constructor elided
 public Scarf generateScarf() {
 int randInt = (int) (Math.random() * 10);
 Scarf myScarf = null;
 switch (randInt) {
 case 0: case 1:
 myScarf = new Scarf(Color.ORANGE);
 break;

 }
 }
}

switch Example (4/6)

Andries van Dam © 2023 10/03/23 62/73

public class ScarfCreator{
 // constructor elided
 public Scarf generateScarf() {
 int randInt = (int) (Math.random() * 10);
 Scarf myScarf = null;
 switch (randInt) {
 case 0: case 1:
 myScarf = new Scarf(Color.ORANGE);
 break;
 case 2: case 3: case 4:
 myScarf = new Scarf(Color.YELLOW);
 break;

 }
 }
}

• If our random value is 2, 3, or 4, we
instantiate a yellow Scarf and
assign it to myScarf

• Color.YELLOW is another constant of
type Color – check out Javadocs for
javafx.scene.paint.Color!

switch Example (5/6)

Andries van Dam © 2023 10/03/23 63/73

public class ScarfCreator{
 // constructor elided
 public Scarf generateScarf() {
 int randInt = (int) (Math.random() * 10);
 Scarf myScarf = null;
 switch (randInt) {
 case 0: case 1:
 myScarf = new Scarf(Color.ORANGE);
 break;
 case 2: case 3: case 4:
 myScarf = new Scarf(Color.YELLOW);
 break;
 // cases 5, 6, and 7 elided.
 // they are green, blue, red.
 default:
 myScarf = new Scarf(Color.BROWN);
 break;
 }
 return myScarf;
 }
}

switch Example (6/6)

• We skipped over the cases for
values of 5, 6, and 7; assume they
create green, blue, and red Scarfs,
respectively

• Our default case (if random value
is 8 or 9) creates a brown Scarf

• Last, we return myScarf, which was
initialized in this switch with a color
depending on the value of randInt

Andries van Dam © 2023 10/03/23 64/73

TopHat Question
Which of the following switch statements is correct?

o In the constructor for Weapon, the parameter is a string.

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
 case 0: case 1: case 2: case 3:
 weapon = new Weapon(“Axe”);

 case 4: case 5: case 6: case 7:
 weapon = new Weapon(“Poison”);

 default:
 weapon = new Weapon(“Knife”);
 break;
}

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
 case 0: case 1: case 2: case 3:
 weapon = new Weapon(“Axe”);
 break;

 case 4: case 5: case 6: case 7:
 weapon = new Weapon(“Poison”);
 break;

 default:
 weapon = new Weapon(“Knife”);
 break;
}

B.
WeaponType type = type.random();
Weapon weapon = null;

switch (type) {
 case Axe:
 weapon = new Weapon(“Axe”);
 break;

 case Bali:
 weapon = new Weapon(“Poison”);
 break;

 default:
 weapon = new Weapon(“Knife”);
 break;
}

C.A.

 Join Code: 504547

Andries van Dam © 2023 10/03/23 65/73

That’s It!

Important Concepts:

• static methods and static variables

• Constants

• booleans

• Making decisions with if, if-else, switch

Andries van Dam © 2023 10/03/23 66/73

• FruitNinja (handout and help slides) released today

o Early handin: 10/8 (+2 bonus points)

o On-time handin: 10/10

o Late handin: 10/12 (-8 for late handin, but 4 late days to use throughout
semester)

● Debugging Hours start Thursday, October 5

o More information on the course website

● Polymorphism section this week

o email your section TAs mini-assignment on time

● SNC Deadline today at 5pm!! (Not CS15 enforced, University Policy)

Announcements

SRC: Ethics and Labor
Practices in Big Tech

CS15 Fall 2023

The Power of Big Tech

As of 2022…
• 50% of global online ad spending goes

through Meta or Alphabet

• Amazon takes in more than 40% of online
spending in the US

• In search, Google has more than a 60% share
in the US

• Microsoft is a top-three vendor to 84% of
businesses

Source: Harvard Business Review (2022)

https://www.google.com/url?sa=i&url=https%3A%2F%2Fupfront.scholastic.com%2Fissues%2F2020-21%2F012521%2Fis-big-tech-too-powerful.html&psig=AOvVaw0kHMUdZdsZoHFZYYOAdT-Q&ust=1695912464843000&source=images&cd=vfe&opi=89978449&ved=0CA8QjRxqFwoTCJD0iLKEy4EDFQAAAAAdAAAAABA8

How Big Tech Does Ethics:
Internal Guidelines

- Internal advisory teams that create guidelines for responsible
use of AI and other technologies
- Reports with established ethical principles for teams to follow

How Big Tech Does Ethics:
Google’s “AI Applications We Will Not Pursue”

Source: NYT (2023)

Abuse of Power in Big Tech

Source: Wired (2022), Justice Dept. (2023), The Verge (2023), CNN (2023), NPR (2023), NYT (2023)

Working Conditions

Sources: CBS (2022), Forbes (2021), Time (2022)

Proposition 22

Source: NYT (2023)

- Classifies Uber/Lyft drivers as
independent contractors, not as
employees
- Reduces benefits like insurance,
saving companies money
- Gig companies spent >$200
million pushing for Proposition 22

Next lecture…

Source: NYT (2023)

Next lecture… antitrust laws!

Designed to increase consumer welfare

Involves breaking up firms that get “too big”, or
preventing mergers and acquisitions (M&A)

Highly debated subject

