
1/89
Andries v an Dam © 2023 10/5/23

Lecture 9

Graphics Part I

Intro to JavaFX

(photo courtesy of Instagram filters)

2/89
Andries v an Dam © 2023 10/5/23

3/89
Andries v an Dam © 2023 10/5/23

• To do something different for every possible value of an

integer variable, have two options:

o use a lot of else-ifs:

o better solution: use a switch statement!

switch Statements (1/2)

if (myInteger == 0) {
// do something...

} else if (myInteger == 1) {
//do something else...

} else if (myInteger == 2) {
// do something else...

} else if (myInteger == 3) {
// etc…

}
...
else {

// last case
}

4/89
Andries v an Dam © 2023 10/5/23

Syntax:

switch (<variable>) {

case <value>:
// do something
break;

case <other value>:
// do something else
break;

default:
// take default action
break;

}

switch Statements (2/2)

Rules:

• <variable> usually an integer – char
and enum (discussed later) also possible

• values have to be mutually exclusive

• If default is not specified, Java compiler

will not do anything for unspecified values

• break indicates the end of a case – skips

to end of switch statement (if you forget
break, the code in next case will execute)

5/89
Andries v an Dam © 2023 10/5/23

// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

}
}

• Let’s make a ScarfCreator class that

produces different colored scarves for

our players using a switch statement

• The scarf is chosen by weighted

distribution (more orange, red, brown,

and fewer blue, green, yellow)

• ScarfCreator generates random

values using Math

• Based on random value, creates and

returns a Scarf of a particular type

switch Example (1/6)

This is an example of the “factory” pattern in object-

oriented programming: it is a method that has more
complicated logic than a simple assignment
statement for each instance variable.

6/89
Andries v an Dam © 2023 10/5/23

// imports elided – Math and Color
public class ScarfCreater{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);

}
}

• To generate a random value, we use

static method random from

java.lang.Math

• random returns a double between

0.0 (inclusive) and 1.0 (exclusive)

• This line returns a random int 0-9

by multiplying the value returned by

random by 10 and casting the result

to an int

• Casting is a way of changing the

type of an object to another specified

type. Casting from a double to int
truncates your double!

switch Example (2/6)

7/89
Andries v an Dam © 2023 10/5/23

• We initialize myScarf to null,

and switch on the random

value we’ve generated

switch Example (3/6)
// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

}
}

}

8/89
Andries v an Dam © 2023 10/5/23

• Scarf takes in an instance of

javafx.scene.paint.Color as a

parameter of its constructor (needs to

know what color it is)

• Once you import

javafx.scene.paint.Color, you only

need to say, for example, Color.ORANGE
to name a color of type Color

• If random value turns out to be 0 or 1,

instantiate an orange Scarf and assign it

to myScarf

• break breaks us out of switch statement

// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

}
}

}

switch Example (4/6)

9/89
Andries v an Dam © 2023 10/5/23

public class ScarfCreator{
// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

case 2: case 3: case 4:
myScarf = new Scarf(Color.YELLOW);
break;

}
}

}

• If our random value is 2, 3, or 4, we

instantiate a yellow Scarf and

assign it to myScarf

• Color.YELLOW is another constant of

type Color – check out Javadocs for

javafx.scene.paint.Color!

switch Example (5/6)

10/89
Andries v an Dam © 2023 10/5/23

public class ScarfCreator{
// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

case 2: case 3: case 4:
myScarf = new Scarf(Color.YELLOW);
break;

// cases 5, 6, and 7 elided.
// they are green, blue, red.
default:

myScarf = new Scarf(Color.BROWN);
break;

}
return myScarf;

}
}

switch Example (6/6)

• We skipped over the cases for

values of 5, 6, and 7; assume they
create green, blue, and red Scarfs,

respectively

• Our default case (if random value

is 8 or 9) creates a brown Scarf

• Last, we return myScarf, which was

initialized in this switch with a color

depending on the value of randInt

11/89
Andries v an Dam © 2023 10/5/23

TopHat Question
Which of the following switch statements is correct?

o In the constructor for Weapon, the parameter is a string.

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
case 0: case 1: case 2: case 3:

weapon = new Weapon(“Axe”);

case 4: case 5: case 6: case 7:
weapon = new Weapon(“Poison”);

default:
weapon = new Weapon(“Knife”);
break;

}

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
case 0: case 1: case 2: case 3:

weapon = new Weapon(“Axe”);
break;

case 4: case 5: case 6: case 7:
weapon = new Weapon(“Poison”);
break;

default:
weapon = new Weapon(“Knife”);
break;

}

B.
WeaponType type = type.random();
Weapon weapon = null;

switch (type) {
case Axe:

weapon = new Weapon(“Axe”);
break;

case Bali:
weapon = new Weapon(“Poison”);
break;

default:
weapon = new Weapon(“Knife”);
break;

}

C.A.

Join Code: 504547

12/89
Andries v an Dam © 2023 10/5/23

TopHat Question
When you want to review lecture recordings how often are they available

online?

A) Never
B) Sometimes
C) Often
D) Always

Join Code: 504547

13/89
Andries v an Dam © 2023 10/5/23

TopHat Question
When you review lecture recordings how useful are they to helping you review

class material?

Join Code: 504547

A) Not very useful
B) Somewhat useful
C) Quite useful
D) Very useful

14/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

15/89
Andries v an Dam © 2023 10/5/23

Pixels and Coordinate System

• Screen is a grid of pixels (tiny squares, each with
RGB values)

• Cartesian plane with:

o origin in upper-left corner

o x-axis increasing left to right

o y-axis increasing top to bottom

o corresponds to English writing order

• Each graphical element is positioned at specific pixel

(0, 0)

Y

pixels

X

Former HTA Sam Squires!

16/89
Andries v an Dam © 2023 10/5/23

What is JavaFX?

• Usually don’t want to program at the pixel level – far
too tedious!

• JavaFX is a set of graphics and media packages
enabling developers to design, create, and test
powerful graphical applications for desktop, web, and
mobile devices

• JavaFX is an API (Application Programming Interface)
to a graphics and media library: a collection of useful
classes and interfaces and their methods (with
suitable documentation) – no internals accessible!

17/89
Andries v an Dam © 2023 10/5/23

Creating Applications from Scratch

• Until now, TAs took care of graphical components for you

o our support code defined the relevant classes

• From now on, you are in charge of this!

• JavaFX is quite powerful but can be a bit tricky to wrap your head around
because of the size of the JavaFX library

o not to fear, all JavaFX packages, classes, and method descriptions can be found in the
JavaFX guide on our website!

https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/edit?usp=sharing

18/89
Andries v an Dam © 2023 10/5/23

Graphical User Interface (GUIs)

• GUIs provide user-controlled
(i.e., graphical) way to send
messages to a system of
instances, typically your app

• Use JavaFX to create your
own GUIs throughout the
semester

19/89
Andries v an Dam © 2023 10/5/23

Components of JavaFX application (1/2)
• Stage

o location (or “window”) where all graphic

elements will be displayed

o blue border with “Stage” label and minimize,

maximize and close icons – the “decoration”

• Scene

o scene (grey interior portion) must be on a

stage to be visible

o container for all UI (User Interface)

elements to be displayed on a stage

o UI elements include Panes, Labels, Shapes,

etc., like the Button shown

20/89
Andries v an Dam © 2023 10/5/23

Components of JavaFX application (2/2)
• Scene Graph

o family tree of graphical elements

• Nodes

o all elements of the Scene Graph

o can have multiple children or none

o graphical representation called a UI

element, widget, or control (synonyms)

21/89
Andries v an Dam © 2023 10/5/23

Creating GUIs With JavaFX: Stage (1/2)
• App class for JavaFX application

extends imported abstract class
javafx.application.Application

• From now on, begin every project by
implementing Application’s
abstract start()
o start() is called automatically by

JavaFX to launch program

• Java automatically creates a Stage
using imported javafx.stage.Stage
class, which is passed into start()
o when start() calls stage’s show(),

stage becomes a window for the
application

• All this automagic reminds us of
Main

public class App extends Application {
//mainline provided by TAs elided
@Override
public void start() {

stage.show();
}

}

Stage stage

MyStage

22/89
Andries v an Dam © 2023 10/5/23

Creating GUIs With JavaFX: Scene (2/2)

• For our application to provide content to show on the stage, must first set
(specify) a scene before showing it on (in) the stage

• javafx.scene.Scene is the top-level container for all UI elements

o first instantiate Scenewithin App class’ startmethod

o then pass that Scene into Stage’s setScene(Scene scene)method to set the scene!

• In CS15, only specify 1 Scene – though JavaFX does permit creation of
applications with multiple Scenes

o ex: an arcade application where you could select to play either DoodleJump, Tetris or
Pacman from the main screen might utilize multiple Scenes – one for each subgame

• So, what exactly is a javafx.scene.Scene ?

Process shown in
a few slides!

23/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

24/89
Andries v an Dam © 2023 10/5/23

JavaFX Scene Graph Hierarchy

• In JavaFX, contents of the Scene (UI elements) are represented as a
hierarchical tree, known as the Scene Graph
o you are familiar with some other hierarchies already – containment/association and

inheritance/interface

Containment/Association Hierarchy Inheritance/Interface Hierarchy

25/89
Andries v an Dam © 2023 10/5/23

JavaFX Scene Graph Hierarchy: Nodes

• Think of the Scene Graph as a family
tree of visual elements

• javafx.scene.Node is the abstract
superclass for all UI elements that can
be added to the Scene, such as a
Button or a Label

o all UI elements are concrete subclasses of Node
(Button, Label, Pane, etc.)

• Each UI component that is added to
the Scene Graph as a Node gets
displayed graphically

Node

Node

Node

Node Node Node

26/89
Andries v an Dam © 2023 10/5/23

JavaFX Scene Graph Hierarchy: Node Properties

• Each Node can have multiple children
but at most one parent

o child Nodes are almost always graphically
contained in their parent Node

o more on graphical containment later!

• The Node at the top of the Scene
Graph is called the root Node

o the root Node has no parent

Node

Node

Node

Node Node Node

This node has
two children

27/89
Andries v an Dam © 2023 10/5/23

The root of the Scene

• Root Node is the highest level container and will always be a
javafx.scene.layout.Pane or one of Pane’s subclasses

• Different Panes have different built-in layout capabilities to allow easy
positioning of UI elements – see below for options!

• For now, use a VBox as the root of the Scene – more on VBox later

28/89
Andries v an Dam © 2023 10/5/23

Constructing the Scene Graph (1/2)
• Instantiate root Node

• Pass it into Scene constructor to
construct Scene Graph
o Scene Graph starts off as a single root

Node with no children

o the root is simply a container, without
graphical shape

/*within top-level pp class*/

public void start (Stage stage) {

VBox root = new VBox();

Scene scene = new Scene(root);

}

public class App extends Application {
@Override
public void start(Stage stage) {

//code to populate Scene Graph
VBox root = new VBox();
Scene scene = new Scene(root);

stage.setScene(scene);
stage.show();

}
}

29/89
Andries v an Dam © 2023 10/5/23

Constructing the Scene Graph (2/2)

• Once we setScene() and show()
on Stage, we begin populating the
Scene Graph

public class App extends Application {
@Override
public void start(Stage stage) {

//code to populate Scene Graph
VBox root = new VBox();
Scene scene = new Scene(root);
stage.setScene(scene);
stage.show();

}
}

30/89
Andries v an Dam © 2023 10/5/23

Adding UI Elements to the Scene (1/2)

• How can we add more Nodes to the
Scene Graph?

• Adding UI elements as children of root
Node adds them to Scene and makes
them appear on Stage!

• Calling getChildren() method on a Node
returns a list of that Node’s children

o by adding/removing Nodes from a Node’s
list of children, we can add/remove Nodes
from the Scene Graph!

o later we’ll see how Java supports Lists

31/89
Andries v an Dam © 2023 10/5/23

Adding UI Elements to the Scene (2/2)

• getChildren() returns a List of the
child Nodes

o in example on right, root.getChildren()
returns a List holding three Buttons
(assuming we created them previously –
next slide)

• To add a Node to this list of children, call
add(Node node) on that returned List!
o also, addAll(Nodes… node1, node2, …)

which takes in any number of Nodes

o allowing any number of arguments is a new
capability of parameter lists

32/89
Andries v an Dam © 2023 10/5/23

root.getChildren().add(…) in action
• Add 3 Buttons to the Scene by adding them as children of

the root Node (no children before this)

• First create buttons

• Then add buttons to Scene Graph

Remember double dot method call shorthand?
root.getChildren() returns a List of root’s children. Rather than storing that returned List in a variable and
calling add(…) on that variable, we simplify code by calling add(…) directly on returned List of children!

/* Within App class */
@Override
public void start(Stage stage) {

//code for setting root,stage,scene elided

Button b1 = new Button(“Button 1”);
Button b2 = new Button(“Button 2”);
Button b3 = new Button(“Button 3”);
root.getChildren().addAll(b1,b2,b3);

}

Note the default
button selection in
blue

Order matters - order
buttons added effects
order displayed
(b1, b2, b3) vs. (b2, b1, b3)

33/89
Andries v an Dam © 2023 10/5/23

Removing UI Elements from the Scene
• Similarly, remove a UI element by removing it from the list

of its parent’s children with remove(Node node)
o note: order of children doesn’t matter when removing elements

since you specify their variable names

• Let’s remove third Button*

/* Within App class */
@Override
public void start(Stage stage) {

//code for setting root, stage, scene elided

Button b1 = new Button(“Button 1”);
Button b2 = new Button(“Button 2”);
Button b3 = new Button(“Button 3”);
root.getChildren().addAll(b1,b2,b3);
root.getChildren().remove(b3);

}

*Note: not a typical design choice to add and then remove a Node in the same code block!

34/89
Andries v an Dam © 2023 10/5/23

Populating the Scene Graph (1/3)

• What if we want to make more
complex applications?

• Add specialized layout containers,
called Panes

• Add another Pane as child of root
Node, then add more UI elements as
child Nodes of this Pane

• This will continue to populate the
scene graph!

35/89
Andries v an Dam © 2023 10/5/23

Populating the Scene Graph (2/3)

• First, instantiate another VBox and add it
as child of root Node

o Note: VBox is a pure container without
graphical shape

/* Within App class */
@Override
public void start(Stage stage) {

//code for setting scene elided

Button b1 = new Button(); //no label
Button b2 = new Button(); //no label
root.getChildren().addAll(b1,b2);

VBox holder = new VBox();
root.getChildren().add(holder);

}

36/89
Andries v an Dam © 2023 10/5/23

• Next, add Label to Scene as child of new VBox

/* Within App class */
@Override
public void start(Stage stage) {

//code for setting scene elided

Button b1 = new Button();
Button b2 = new Button();
root.getChildren().addAll(b1,b2);
VBox holder = new VBox();
root.getChildren().add(holder);

}

Populating the Scene Graph (3/3)

Label text = new Label(“I live in the
VBox!”);

holder.getChildren().add(text);

37/89
Andries v an Dam © 2023 10/5/23

38/89
Andries v an Dam © 2023 10/5/23

Removing a Node with children (1/3)

• Removing a Node with no children simply
removes that Node…

o root.getChildren().remove(b2);
to remove second Button

39/89
Andries v an Dam © 2023 10/5/23

Removing a Node with children (2/3)

• Removing a Node with no children simply
removes that Node…

o root.getChildren().remove(b2);
to remove second Button

• Removing a Node with children removes all its
children as well!

o root.getChildren().remove(holder);
makes both VBox and its Label disappear

40/89
Andries v an Dam © 2023 10/5/23

Removing a Node with children (3/3)

• Removing a Node with no children simply
removes that Node…

o root.getChildren().remove(b2);
to remove second Button

• Removing a Node with children removes all its
children as well!

o root.getChildren().remove(holder);
makes both VBox and its Label disappear

41/89
Andries v an Dam © 2023 10/5/23

TopHat Question
Given this code:

public void start(Stage stage) {

//code for setting scene elided

//code for setting up root elided

Button b1 = new Button();

Button b2 = new Button();

root.getChildren().addAll(b1,b2);

VBox holder = new VBox();

root.getChildren().add(holder);

Label removeLabel = new Label(“remove me!”);

holder.getChildren().add(removeLabel);

}

Which of the following would correctly remove

removeLabel from the VBox holder?

A. root.remove(removeLabel);

B. holder.remove(removeLabel);

C. root.getChildren.remove(removeLabel);

D. holder.getChildren().remove(removeLabel);

42/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

43/89
Andries v an Dam © 2023 10/5/23

VBox layout pane (1/5)

• So what exactly is a VBox?

• VBox is a Pane that creates an easy way for
arranging a series of children in a single vertical
column

• We can customize vertical spacing between children
using VBox’s setSpacing(double)method

o the larger the double passed in, the more
space between the child UI elements

44/89
Andries v an Dam © 2023 10/5/23

VBox layout pane (2/5)
• Can also set positioning of entire vertical column of children

• Default positioning for the vertical column is in TOP_LEFT of VBox (Top Vertically, Left
Horizontally)

o can change Vertical/Horizontal positioning of column using VBox’s setAlignment(Pos
position) method, passing in a javafx.geometry.Pos constant – javafx.geometry.Pos is a
class of enums (more on these later!), or fixed set of values, to describe vertical and horizontal
positioning. Use these values just like a constants class that you would write yourself!

• Pos options are in the form Pos.<vertical position>_<horizontal position>

o e.g., Pos.BOTTOM_RIGHT represents positioning on the bottom vertically, right horizontally

o full list of Pos constants can be found here

Why ALL_CAPS notation?
It is a “symbolic constant” with pre-defined meaning.

https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html

45/89
Andries v an Dam © 2023 10/5/23

VBox layout pane (3/5)

• The following code produces the example
on the right:

VBox root = new VBox();

Button b1 = new Button(“Top”);
Button b2 = new Button(“Middle”);
Button b3 = new Button(“Bottom”);
root.getChildren().addAll(b1,b2,b3);

width, height

Scene scene = new Scene(root, 300, 200);
stage.setTitle("Sample VBox");
stage.setScene(scene);
stage.show();

46/89
Andries v an Dam © 2023 10/5/23

VBox layout pane (4/5)

• Adding spacing between children

VBox root = new VBox();

Button b1 = new Button(“Top”);
Button b2 = new Button(“Middle”);
Button b3 = new Button(“Bottom”);
root.getChildren().addAll(b1,b2,b3);

root.setSpacing(8);

//code for setting the Scene elided

47/89
Andries v an Dam © 2023 10/5/23

VBox layout pane (5/5)

• Setting alignment property to configure
children in TOP (vertically) CENTER
(horizontally) of the VBox

VBox root = new VBox();

Button b1 = new Button(“Top”);
Button b2 = new Button(“Middle”);
Button b3 = new Button(“Bottom”);
root.getChildren().addAll(b1,b2,b3);

root.setSpacing(8);
root.setAlignment(Pos.TOP_CENTER);

//code for setting the Scene elided

48/89
Andries v an Dam © 2023 10/5/23

CS15 PaneOrganizer Class (1/2)

• Until now, all code dealing with the Scene has been inside Application’s
start method; adding more nodes will clutter it up…
o remember App class should never have more than a few lines of code!

• Write a PaneOrganizer class where all graphical application logic will live
– an example of delegation pattern
o PaneOrganizer is our new graphical top-level class

• PaneOrganizerwill instantiate root Pane, and provide a public getRoot()
method that returns this root
o App class can now access root Pane through PaneOrganizer’s public getRoot()

method and pass root into Scene constructor

• We’ll do this together soon!

49/89
Andries v an Dam © 2023 10/5/23

CS15 PaneOrganizer Class (2/2)
Pattern

1. App class instantiates a PaneOrganizer, which creates root

2. App class passes return value from getRoot() to Scene
constructor, so Scene has a root

3. Top-level PaneOrganizer class instantiates JavaFX UI
components (Button,Label,Pane…)

4. These UI components are added to root Pane (and therefore
to the Scene, indirectly) using
root.getChildren().add(...); or
root.getChildren().addAll(...);

50/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

51/89
Andries v an Dam © 2023 10/5/23

Our First JavaFX Application: ColorChanger

• Spec: App that contains text
reading “CS15 Rocks” and a
Button that randomly changes
text’s color with every click

• Useful classes: Stage, Scene,
VBox, Label, Button,
EventHandler

Stage

Scene
This is the grey
background. All
elements in the
Scene Graph will
show up within
the Scene

Pane (e.g., VBox)
This is the
structure that
contains the label
and the Button

Label

Button

52/89
Andries v an Dam © 2023 10/5/23

Process: ColorChanger

1. Create App class that extends
javafx.application.Application
and implements start (where you set
Scene) – the standard pattern

2. Create top-level PaneOrganizer class
that instantiates root Pane and provides
public getRoot() method to return the
Pane. In PaneOrganizer, instantiate a
Label and Button and add them as
children of root Pane

3. Set up a custom EventHandler that
changes Label’s color each time
Button is clicked, and register Button
with this handler

Stage

Scene
This is the grey
background. All
elements in the
Scene Graph will
show up within
the Scene

Pane (e.g., VBox)
This is the
structure that
contains the label
and the Button.
Note: no visual
outline of panes

Button

Label

53/89
Andries v an Dam © 2023 10/5/23

ColorChanger: App class (1/3)

1. To implement start:

A. Instantiate a PaneOrganizer as
top-level class and store it in the
local variable organizer

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
/*write our PaneOrganizer class later, where we will

instantiate the root Pane */

}

}

54/89
Andries v an Dam © 2023 10/5/23

ColorChanger: App class (2/3)

1. To implement start:

A. Instantiate a PaneOrganizer as
top-level class and store it in the
local variable organizer

B. Instantiate a new Scene, passing
in:

o root Pane, accessed through
organizer’s public getRoot()

o along with desired width and
height of Scene

C. Set the Scene, title the Stage, and
show the Stage!

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
/*write our PaneOrganizer class later, where we will

instantiate the root Pane */
Scene scene = new Scene(organizer.getRoot(),80,80);

stage.set(scene);
stage.setTitle(“Color Changer!”);
stage.show();

}

}

root width height

55/89
Andries v an Dam © 2023 10/5/23

ColorChanger: App class (3/3)

1. To implement start:

A. Instantiate a PaneOrganizer as
top-level class and store it in the
local variable organizer

B. Instantiate a new Scene, passing
in:

o root Pane, accessed through
organizer’s public getRoot()

o along with desired width and
height of Scene

C. Set the Scene, title the Stage, and
show the Stage

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
/*write our PaneOrganizer class later, where we will

instantiate the root Pane */
Scene scene = new Scene(organizer.getRoot(),80,80);
stage.setScene(scene);
stage.setTitle(“Color Changer!”);
stage.show();

}

}

56/89
Andries v an Dam © 2023 10/5/23

Process: ColorChanger

1. Create App class that extends
javafx.application.Application
and implements start (where you set
Scene) – the standard pattern

2. Create top-level PaneOrganizer class
that instantiates root Pane and provides
public getRoot() method to return the
Pane. In PaneOrganizer, instantiate a
Label and Button and add them as
children of root Pane

3. Set up a custom EventHandler that
changes Label’s color each time
Button is clicked, and register Button
with this handler

Stage

Scene
This is the grey
background. All
elements in the
Scene Graph will
show up within
the Scene

Pane (e.g., VBox)
This is the
structure that
contains the label
and the Button

Button

Label

57/89
Andries v an Dam © 2023 10/5/23

ColorChanger: Our PaneOrganizer Class (1/4)

2. To write PaneOrganizer class:

A. Instantiate root VBox and store it in
instance variable root

public class PaneOrganizer {
private VBox root;

private Label _label;
public PaneOrganizer() {

this.root = new VBox();
_label = new Label(“CS15 Rocks!”);
Button btn = new Button(“Random

Color”);
_root.getChildren().addAll(_label,btn);

_root btn.setOnAction(new
ClickHandler());

}

public VBox getRoot() return _root;

}

}

58/89
Andries v an Dam © 2023 10/5/23

ColorChanger: Our PaneOrganizer Class (2/4)

2. To write PaneOrganizer class:

A. Instantiate root VBox and store it in
instance variable root

B. Create a public getRoot()
method that returns root
o reminder: this makes root Pane

accessible from within App’s start
for new Scene(root)

public class PaneOrganizer {
private VBox root;

private Label _label;
public PaneOrganizer() {

this.root = new VBox();
_label = new Label(“CS15 Rocks!”);
Button btn = new Button(“Random

Color”);tChildren().addAll(_label,btn);
_root.setSpacing(8);

btn.setOnAction(newClickHandler());
}

public VBox getRoot() {
return this.root;

}

}

59/89
Andries v an Dam © 2023 10/5/23

ColorChanger: Our PaneOrganizer Class (3/4)

2. To write PaneOrganizer class:

C. Instantiate Label and Button,
passing in String representations
of text we want displayed
o myLabel and btn are local variables

because only need to access them
from within constructor

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label myLabel = new Label(“CS15 Rocks”);
Button btn = new Button(“Random

Color”);

}

public VBox getRoot() {
return this.root;

}

}

60/89
Andries v an Dam © 2023 10/5/23

ColorChanger: Our PaneOrganizer Class (4/4)

2. To write PaneOrganizer class:

C. Instantiate Label and Button,
passing in String representations
of text we want displayed
o label and btn are local variables

because only need to access them
from within constructor

D. Add Label and Button as children of
root

o this.root.setSpacing(8) is
optional but creates a nice vertical
distance between Label and Button

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random

Color”);
this.root.getChildren().addAll(

label,btn);
this.root.setSpacing(8);

}

public VBox getRoot() {
return this.root;

}

}

61/89
Andries v an Dam © 2023 10/5/23

Containment / Association Structure (1/2)

Scene is always contained

in App; but no need to

include in your own

containment diagrams…

62/89
Andries v an Dam © 2023 10/5/23

Containment / Association Structure (2/2)

This simplified diagram

will suffice!

63/89
Andries v an Dam © 2023 10/5/23

Process: ColorChanger

1. Create App class that extends
javafx.application.Application
and implements start (where you set
Scene) – the standard pattern

2. Create top-level PaneOrganizer class
that instantiates root Pane and provides
public getRoot() method to return the
Pane. In PaneOrganizer, instantiate a
Label and Button and add them as
children of root Pane

3. Set up a custom EventHandler that
changes Label’s color each time
Button is clicked, and register Button
with this handler

Stage

Scene
This is the grey
background. All
elements in the
Scene Graph will
show up within
the Scene

Pane (e.g., VBox)
This is the
structure that
contains the label
and the Button

Button

Label

64/89
Andries v an Dam © 2023 10/5/23

Generating javafx.scene.paint.Colors (1/2)
• Let’s first determine what should happen to generate the Label’s random color

• We can generate most colors of visible color spectrum by additive mixtures of Red,
Green and Blue “primaries” generated by display hardware

o each display pixel has a R,G, and B sub-pixels to do this color mixing

• javafx.scene.paint.Color class has static method rgb(int red, int green, int
blue) that returns a custom color according to specific passed-in Red, Green, and Blue
integer values in [0-255]

o ex: Color.WHITE can be expressed as Color.rgb(255,255,255)

65/89
Andries v an Dam © 2023 10/5/23

Generating javafx.scene.paint.Colors (2/2)
1. Defining our method to change

color of the label:

• Math.random() returns a random
double between 0 inclusive and 1
exclusive

• Multiplying this value by 256 turns
[0, 1) double into a [0, 256) double,
which we cast to a [0,255] int by
using (int) cast operator

• Use these ints as Red, Green, and
Blue RGB values for a custom
javafx.scene.paint.Color

• Call setTextFill on myLabel,
passing in new random Color
we’ve created

public void changeLabelColor(Label myLabel) {
int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
myLabel.setTextFill(customColor);

}

66/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

67/89
Andries v an Dam © 2023 10/5/23

Responding to User Input
• When should changeLabelColor be called?

• Need a way to respond to stimulus of Button
being clicked (like stimulus-response behavioral
learning theory in psychology)

• We refer to this as Event Handling

o a source (Node), such as a Button, generates an
Event (such as a mouse click) and notifies all
registered instances of EventHandler

o EventHandler is an interface, so all classes that
implement EventHandlermust implement its
handle(Event event)method, which defines
response to event

o note that handle(Event event) is called by JavaFX,
not the programmer

68/89
Andries v an Dam © 2023 10/5/23

EventHandlers (1/3)

• Button click causes JavaFX to generate a
javafx.event.ActionEvent

o ActionEvent is only one of many JavaFX EventTypes that are
subclasses of Event class

• Classes that implement EventHandler interface can
polymorphically handle any subclass of Event

o when a class implements EventHandler interface, it must specify
what type of Event it should know how to handle

o how do we do this?

69/89
Andries v an Dam © 2023 10/5/23

EventHandlers (2/3)
• EventHandler interface declared as:

public interface EventHandler<T extends Event>…
o the code inside literal < > is known as a “generic parameter” – this is magic for now

o lets you specialize the interface method declarations to handle one specific specialized
subclass of Event

o forces you to replace what is inside the literal < > with some subclass of Event, such as
ActionEvent, whenever you write a class that implements EventHandler interface

70/89
Andries v an Dam © 2023 10/5/23

EventHandlers (3/3)
• EventHandler interface only has one method, the handle method

• Parameter of handle will match the generic parameter of EventHandler type
o in this case ActionEvent since Buttons generate ActionEvents

o JavaFX generates the specific event for you and passes it as an argument to your
handlemethod

o Note we don’t actually use the data contained in an ActionEvent parameter for
button click handlers, but for MouseEvents and KeyEvents, you will need to use the
event parameter (during next lecture!)

71/89
Andries v an Dam © 2023 10/5/23

Registering an EventHandler (1/2)

• How do we let a Button know which EventHandler to execute when it’s
clicked?

• We must register the EventHandlerwith the Button via the Button’s
setOnActionmethod so that JavaFX can store the association with the
EventHandler and call it when the Button is clicked
o note the “generic parameter” <ActionEvent> since button clicks generate

ActionEvents

72/89
Andries v an Dam © 2023 10/5/23

Registering an EventHandler (2/2)
public class MyClickHandler implements EventHandler<ActionEvent> {

private Label label;
public MyClickHandler(Label myLabel) {

this.label = myLabel;
}

@Override
public void handle(ActionEvent e) {

int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
this.label.setTextFill(customColor);

}
}

public class PaneOrganizer {

public PaneOrganizer() {
// previous code elided
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
btn.setOnAction(new MyClickHandler(label));

}
}

1. Write custom EventHandler class
(MyClickHandler), implementing
handle with previous code to generate
Color

o must create an association with the
Label so the handler knows which
Label to change

2. In PaneOrganizer, register the

EventHandlerwith the Button, using

setOnActionmethod

3. When Button is clicked, handle
method in MyClickHandler is passed

an ActionEvent by JavaFX and is

then executed

73/89
Andries v an Dam © 2023 10/5/23

Lambda Expressions (1/3)

• Creating a separate class MyClickHandler is not the
most efficient solution

o more complex EventHandlers may have tons of
associations with other nodes, all to implement one handle
method

• Since EventHandler interface only has one method, we
can use special syntax called a lambda expression
instead of defining a separate class for implementation
of handle

74/89
Andries v an Dam © 2023 10/5/23

Lambda Expressions (2/3)

• Lambda expression has different
syntax with same semantics as
typical method

o first parameter list

o followed by ->

o then an arbitrarily complex
method body in curly braces

▪ in CS15, lambda expression
body will be one line calling
another method, typically written
yourself in the same class; in
this case changeLabelColor

▪ can omit curly braces when
method body is one line

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent e) ->

this.changeLabelColor(label));
}

public void changeLabelColor(Label myLabel) {
int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
myLabel.setTextFill(customColor);

}
}

method
body

parameter

75/89
Andries v an Dam © 2023 10/5/23

Lambda Expressions (3/3)

• Lambda expression
shares scope with its
enclosing method

o can access myLabel or
btn without setting up a
class association

• Lambda expression body
is then stored by JavaFX
to be called once the
button is clicked

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent e) ->

this.changeLabelColor(label));
}

public void changeLabelColor(Label myLabel) {
int red = (int) (Math.random()*256);
int green = (int) (Math.random()*256);
int blue = (int) (Math.random()*256);
Color customColor = Color.rgb(red,green,blue);
myLabel.setTextFill(customColor);

}
}

76/89
Andries v an Dam © 2023 10/5/23

The Whole App:

ColorChanger

import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.application.Application;

public class App extends Application {

@Override
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();
Scene scene = new Scene(organizer.getRoot(),180,80);
stage.setScene(scene);
stage.setTitle("Color Changer");
stage.show();

}
}

import javafx.scene.layout.VBox;
import javafx.scene.control.Label;
import javafx.scene.control.Button;
import javafx.event.ActionEvent;
import javafx.scene.paint.Color;

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new VBox();
Label label = new Label(“CS15 Rocks”);
Button btn = new Button(“Random Color”);
this.root.getChildren().addAll(label,btn);
this.root.setSpacing(8);
btn.setOnAction((ActionEvent event) ->

this.changeLabelColor(label));
}

public VBox getRoot() {
return this.root;

}

private void changeLabelColor(Label myLabel) {
int red = (int) (Math.random() * 256);
int green = (int) (Math.random() * 256);
int blue = (int) (Math.random() * 256);
Color customColor = Color.rgb(red, green, blue);
myLabel.setTextFill(customColor);

}
}

77/89
Andries v an Dam © 2023 10/5/23

Outline

• GUIs and JavaFX

• JavaFX Scene Graph Hierarchy

• VBox panes and PaneOrganizers

• Example: ColorChanger

• Event Handling and lambda expressions

• Logical vs. Graphical Containment with JavaFX

78/89
Andries v an Dam © 2023 10/5/23

Logical vs. Graphical Containment/Scene Graph

• Graphically, VBox is a pane contained within Scene, but logically, VBox is contained
within PaneOrganizer

• Graphically, Button and Label are contained within VBox, but logically, Button
and Label are contained within PaneOrganizer, which has no graphical
appearance

• Logical containment is based on where instances are instantiated, while graphical
containment is based on JavaFX elements being added to other JavaFX elements
via getChildren.add(…)method, and on the resulting scene graph

SceneVBox
Button

Label

Stage

79/89
Andries v an Dam © 2023 10/5/23

Announcements
• Code from today’s lecture is available on Github – mess around for

practice!

• Fruit Ninja deadlines
o Early handin: Sunday 10/09
o On-time handin: Tuesday 10/11
o Late handin: Thursday 10/13

• Confused about the Javadocs? Be sure to submit the Fruit Ninja
Javadocs quiz prior to coding to make sure you have a solid grasp on
the support code

• We will hold TA hours over the long weekend
o Monday hours may be more limited because they are optional for our TAs

• Debugging hours start today
o Read the message on Ed for full debugging hours logistics

https://github.com/brown-cs15-2022/colorChanger
https://docs.google.com/forms/d/e/1FAIpQLSf7fGUp7rafzr2q3jy1TTYM7_BMLD4okH21wDoj2gYYDlsRfg/viewform?usp=send_form
https://docs.google.com/forms/d/e/1FAIpQLSf7fGUp7rafzr2q3jy1TTYM7_BMLD4okH21wDoj2gYYDlsRfg/viewform?usp=send_form

80/89
Andries v an Dam © 2023 10/5/23

Topics in SRC: Antitrust
and Regulating Big Tech

CS15 Fall 2023

81/89
Andries v an Dam © 2023 10/5/23

What is Antitrust?

anti∙trust

against monopolies

• Antitrust is legislation to prevent monopolies!

82/89
Andries v an Dam © 2023 10/5/23

History of US Antitrust

Federal Trade Commission, Clifford Berryman ~1909

83/89
Andries v an Dam © 2023 10/5/23

Traditional antitrust policy needs to
evolve

Some platforms are more
popular than others

Price-based regulation
doesn’t work on free

platforms

Platform use evolves
quickly and often

unpredictably

Image source: Freepik, X,

TikTok

84/89
Andries v an Dam © 2023 10/5/23

Lina Khan (current chair of the FTC)

Image source: NYT, 2018, FBA Seller’s Guide

NYTimes, September 26, 2023

85/89
Andries v an Dam © 2023 10/5/23

Would we get
more

competition?

Meta began
integrating their

backends

Alternative forms
of regulation

Source: Yale Insights, 2019

86/89
Andries v an Dam © 2023 10/5/23

Internal regulation?

Image sources: Microsoft, Meta, Google, X

87/89
Andries v an Dam © 2023 10/5/23

Overall limits of internal regulation in big
tech

What happens when
ethical choices come

at the expense of
profit?

How strictly are the
guidelines enforced

– and by whom?

Who gets to decide
the rules and set a
moral path for the

industry?

88/89
Andries v an Dam © 2023 10/5/23

Regulation and policy

Source: US News, NYTimes Sep 12, 2023

Bill Gates, 1998

89/89
Andries v an Dam © 2023 10/5/23

Across the ocean…

Source: European Commission, NYTimes

	Slide 1: Lecture 9
	Slide 2
	Slide 3: switch Statements (1/2)
	Slide 4: switch Statements (2/2)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: switch Example (6/6)
	Slide 11: TopHat Question
	Slide 12: TopHat Question
	Slide 13: TopHat Question
	Slide 14: Outline
	Slide 15: Pixels and Coordinate System
	Slide 16: What is JavaFX?
	Slide 17: Creating Applications from Scratch
	Slide 18: Graphical User Interface (GUIs)
	Slide 19: Components of JavaFX application (1/2)
	Slide 20: Components of JavaFX application (2/2)
	Slide 21: Creating GUIs With JavaFX: Stage (1/2)
	Slide 22: Creating GUIs With JavaFX: Scene (2/2)
	Slide 23: Outline
	Slide 24: JavaFX Scene Graph Hierarchy
	Slide 25: JavaFX Scene Graph Hierarchy: Nodes
	Slide 26: JavaFX Scene Graph Hierarchy: Node Properties
	Slide 27: The root of the Scene
	Slide 28: Constructing the Scene Graph (1/2)
	Slide 29: Constructing the Scene Graph (2/2)
	Slide 30: Adding UI Elements to the Scene (1/2)
	Slide 31: Adding UI Elements to the Scene (2/2)
	Slide 32: root.getChildren().add(…) in action
	Slide 33: Removing UI Elements from the Scene
	Slide 34: Populating the Scene Graph (1/3)
	Slide 35: Populating the Scene Graph (2/3)
	Slide 36: Populating the Scene Graph (3/3)
	Slide 37
	Slide 38: Removing a Node with children (1/3)
	Slide 39: Removing a Node with children (2/3)
	Slide 40: Removing a Node with children (3/3)
	Slide 41: TopHat Question
	Slide 42: Outline
	Slide 43: VBox layout pane (1/5)
	Slide 44: VBox layout pane (2/5)
	Slide 45: VBox layout pane (3/5)
	Slide 46: VBox layout pane (4/5)
	Slide 47: VBox layout pane (5/5)
	Slide 48: CS15 PaneOrganizer Class (1/2)
	Slide 49: CS15 PaneOrganizer Class (2/2)
	Slide 50: Outline
	Slide 51: Our First JavaFX Application: ColorChanger
	Slide 52: Process: ColorChanger
	Slide 53: ColorChanger: App class (1/3)
	Slide 54: ColorChanger: App class (2/3)
	Slide 55: ColorChanger: App class (3/3)
	Slide 56: Process: ColorChanger
	Slide 57: ColorChanger: Our PaneOrganizer Class (1/4)
	Slide 58: ColorChanger: Our PaneOrganizer Class (2/4)
	Slide 59: ColorChanger: Our PaneOrganizer Class (3/4)
	Slide 60: ColorChanger: Our PaneOrganizer Class (4/4)
	Slide 61: Containment / Association Structure (1/2)
	Slide 62: Containment / Association Structure (2/2)
	Slide 63: Process: ColorChanger
	Slide 64: Generating javafx.scene.paint.Colors (1/2)
	Slide 65: Generating javafx.scene.paint.Colors (2/2)
	Slide 66: Outline
	Slide 67: Responding to User Input
	Slide 68: EventHandlers (1/3)
	Slide 69: EventHandlers (2/3)
	Slide 70: EventHandlers (3/3)
	Slide 71: Registering an EventHandler (1/2)
	Slide 72: Registering an EventHandler (2/2)
	Slide 73: Lambda Expressions (1/3)
	Slide 74: Lambda Expressions (2/3)
	Slide 75: Lambda Expressions (3/3)
	Slide 76: The Whole App: ColorChanger
	Slide 77: Outline
	Slide 78: Logical vs. Graphical Containment/Scene Graph
	Slide 79: Announcements
	Slide 80
	Slide 81: What is Antitrust?
	Slide 82: History of US Antitrust
	Slide 83: Traditional antitrust policy needs to evolve
	Slide 84: Lina Khan (current chair of the FTC)
	Slide 85
	Slide 86: Internal regulation?
	Slide 87: Overall limits of internal regulation in big tech
	Slide 88: Regulation and policy
	Slide 89: Across the ocean…

