Lecture 10

Graphics Part 11— Animations & Shapes

[P 1/57

10/10/2023

Outline

+ EventHanders

» Lamda Expressions
+ Animation

» Layout Panes

» Java FXShapes

[ —— 2/57

EventHandlers (1/3)

« Button click causes JavaFXto generate a
javafx.event.ActionEvent

o ActionEvent is only one of many JavaFX EventTypes that are
subclasses of Event class
« Classesthatimplement EventHandler interface can
poly morphically handleany subclass of Event

o when aclass implements EventHandler interface, it must specify
what type of Event it should know how to handle

o how do we do this?

3/57




EventHandlers (2/3)

« EventHandlerinterface declared as:
public interface EventHandler<T extends Event>..
o the code inside literal < > is known as a “generic parameter” — this is magic for now

o lets you specialize the interface method declarations to handle one specific specialized
subclass of Event

o forces you to replace what is inside the literal < > with some subclass of Event, such as
ActionEvent, whenever you write a class that implements EventHandler interface

o p— 4/57

10/10/2023

EventHandlers (3/3)

* EventHandler interface only has one method, the handle method
« Parameter of handle will match the generic parameter of EventHandler type
o inthis case ActionEvent since Buttons generate ActionEvents

o JavaFX generates the specific event for you and passes it as an argument to your
handle method

o Note we dont actually use the data contained inan ActionEvent parameter for
button click handlers, but for MouseEvents and KeyEvents, you will need to use the
event parameter (next lecture!)

Wy Jummpry

e T
Mt e Tyt Bttt e K e

s an o < 105 5/57

Registering an EventHandler (1/2)

* How do we let a Button know which EventHandler to execute when it's
clicked?

*« We must register the EventHandler with the Button via the Button’'s
setOnAction method so that JavaFX can store the association with the
EventHandler and call it when the Button is clicked

o note the “generic parameter” <ActionEvent> since button clicks generate
ActionEvents

e o o 8 6/57




Registering an EventHandler (2/2)

i wlic class Mycl ickbandler imp 1 atereact
1. Write custom EventHandler class e class myclicktondier fmlerents Eventhindlercact foncvent> ¢

(MyClickHandler), implementing PUBLLE MYC Lckhandler (Lg el mytabel) ¢
handle with previous code to generate }
Color verride

- X public voi d hand le( Ac tionEvent ) (

o must create an association withthe intred = (nt) (athrandon 1230
Label so the handler knows which I P et
Label to change Color custonColor = Color. rgh(red,green, blue) ;

this. label .se tTe xt Fil 1(c us tomCol or) ;
2.In PaneOrganizer, register the y !

EventHandler with the Button, using  puiic class pancorganizer (
setOnAction method

public Paneor gan izer() {
7/ previous code elided

i i Label label = Label (“CS15 Rock s”);
3. When Button is clicked, handle Sutean bin = new Bt ton (“Randon Coor) ;
method in MycliCkHandler‘ is passed N btn. se tOnAct ion (new MyClickHand ler (1abel)) ;
an ActionEvent by JavaFX and is ¥

then executed 7/57

10/10/2023

Outline

» Lamda Expressions
* Animation

« Layout Panes

» Java FXShapes

[ —— 8/57

Lambda Expressions (1/3)

+ Creating a separate classMyClickHandler isnotthe
most efficient solution
o more complex EventHandlers may havetons of
associations with other nodes, all toimplementone handle
method
* Since EventHandler interface only hasone method, we
can use special syntax calleda lambdaexpression
instead of defining a separate classforimplementation
of handle

9/57




Lambda Expressions (2/3)

* Lambda expressions have
different syntax with same
semantics as typical method

o first parameter list
o followed by ->

o then an arbitrarily complex
method body in curly braces

= in CS15, lambda expression
body will be one line calling
another method, typically written
yourself in the same class; in this
case changelLabelColor

can omit curly braces when
ethod bodyis one line

public class PaneOrganizer {

private \Box root; parameter

public Paneorganizer() {

this.root = new VBox(); method
Label label = new Label(“CS15 Rocks”); body

Button btn = rew Button(“Rangan Colar”);
this.root. getthildren() .addyl1(1abel, btn)y
this.root.setSpacing(8);
btn. setOnAction((ActionEvent e) ->
this.changelabeltolor (label));
}

public void changelabelColor(Label myLabel) {
int red = (int) (Math.randan()*2%);
int green = (int) (Math. ramom()'zsé),
int blue = (int) (Math.random()*256);
Color custanCalor = Golor b(red green, blue);
myLabeLsetTextF)ll(custummlw),

10/10/2023

}
}
S 10/57
public class PareOrganizer {
. private \Box root;
« Lambda expression
shares scope with its P o0
tl = new VBox
enclosing method Label label = new Label (“CSLS Rocks”);
Button btn = new Button(“Randam Color”);
o can access myLabel or this.root. getthildren() .addi11(1abel, btn);
btn without setting up a EzséigAiiiifﬂmlam e -
class association , this .changelabelolor (label ) );
* Lambda expression body public void changelabelColor(Label myLabel) {
h int red = (int) (Math.randan()*2%);
is then storedby JavaFX int green = (int) (Math.rardom()*256);
to be called once the int blue - (i) (ath, mnaxgg) zey ,
: : Calor custanCalor = red,green,blue);
button is clicked my;abel,setTextFlll(cusmmculcw‘),
}
}
[T — 11/57

The Whole App:
ColorChanger

rport v, stape e 3
import j avafx. scene .5t
inport 3 avax. appli cation Appld cation;

public class App ex tends Application {
@ove rride

publ ic voi d start(stage stage) {
Pane0r ganiz er onganizer = new Pane Organ izer() ;

ne = new Scene (organizer. getRoot(),180,80) ;

stage setsc ensc ene
tle("Color Change r*);

stage shaw( )

inport j avafx. scene . layou £.VBox ;
import j avafx. scene .contr ol..Lab el;
inport 3 avafx. scene .contr ol.But ton;
import j avafx. event .Actio nEvent ;
import j avafx. scene .paint .Color ;

Puhh( s pancor ganszer ¢
ate VBox root;

L sc pnorganszer() ¢
this, Box();

Label Tabel — new. Labet (G515 Rock s");

Button btn = new Button (“Random Color”) ;

this.root.g etChil dre"() .addA 11(1ab el,bt n);
cot.s etpac ing(s) ;

btn. se tonAc tion(( Action Event event )

¥
publ ic VBox get Root() {

eturn this .root;

peivate vold changuabulalor(tabel myLakel) {
)

56);
Color custonColor = Co or.rgb(red, green, blue);
aplabe 1. 5et Texti 11(cus v Lorys

this .chang eLabe 1Color (label ));

12/57




Note: Logical vs. Graphical Containment/Scene Graph

= & St
B i D
Label —»
e = e e
— w ey
== sutton VEOX Scene

* Graphically, VBox is a pane contained within Scene, but logically, VBox is

contained within PaneOrganizer

Graphically, Button and Label are contained within VBox, but logically, Button
and Label are contained within PaneOrganizer, which has no graphical
appearance

Logical containment is based on where instances are instantiated, while graphical

containment is based on JavaFX elements being added to other JavaFX elements
via getChildren.add(..) method, he résulting scene graph

10/10/2023

13/57

Outline

* Animation

» Layout Panes

» Java FXShapes

[ —— 14/57

Animation —Change Over Time

+ Suppose we have an alien Shape we would
like to animate (e.g. make it move across the
screen)

As in film and video animation, we can create
apparent motion with many small changes in
position (e.g., Flipbook Animation:

bitps Jwaay youtube com/watch?uz ntD2gIG Y-
fa14)

If we move fast enough and in small enough
increments, we get smooth motion

+ Same goes for size, orientation, shape
change, etc...
+ Howto a sequence of ir

changes?
© UseaTimeline wherewe define changes at
specific insants

e o o o 15/66



https://www.youtube.com/watch?v=ntD2qiGx-DY
https://www.youtube.com/watch?v=ntD2qiGx-DY

Introducing Timelines (1/3)

* The Timeline sequences(putsin order)one or more
KeyFrames

oaKeyFrame can be thought of as a singular snapshot
O constructed with an associated Duration and EventHandler

oinour simple use of JavaFX KeyFrames, each lasts for its
entire Durationwithout making any changes

owhen the Duration ends, the EventHandler updates variables
to affectthe animation

S 16/57
Introducing Timelines (2/3)
fondter fondter
2
'j KeyFrame KeyFrame KeyFrame eoo
o [« < >|
.E Duration Duration Duration
[ —— 17/66

10/10/2023

Introducing Timelines (3/3)

KeyFrame

Duration

TimelLine

We can do simple animation using a single KeyFrame that is repeated afixed or indefinite number of
times EventHandLer is called, EventHandLer makes incremental changes totime-varying \ariables
(e.g., (x, y) position of a shape)

e o o o 18/66




Using JavaFX Timelines (1/2)

* Jjavafx.animation.Timeline is used to sequence one or more
javafx.animation.KeyFrames or run through them cyclically

o each KeyFrame lasts for its entire Duration until its time interval ends and EventHandler
is called to make updates

« First, we instantiate a KeyFrame, and pass in
o aDuration (e.g. Duration.seconds (8.3) or Duration.millis (38@)), which defines
time that each KeyFrame lasts
o an EventHandler of type ActionEvent that defines what should occur upon completion of
each KeyFrame
* KeyFrame and Timeline work together to control the animation, but our
application’s EventHandler is what actually causes variables to change

« From last lecture: we can use lambda expressions to represent the
EventHandlers instead of creating a separate class

o 19/57

10/10/2023

Using JavaFX Timelines (2/2)

* Next, we instantiate our Timeline, settingits CycleCount property
o defines number of cycles in Animation
o setting CycleCount toAnimation.INDEFINITE will let Timeline run
forever or until we explicitly stop it

* We pass our new KeyFrame into Timeline
+ After setting up Timeline, in order for it to start, we must call
timeline.play();

ep—— 20/57

Our First JavaFX animation: Clock

- Simple example of discrete (non-
smooth) animation

« Specifications: App shoulddisplay
current date andtime, updating
every second

- Useful classes:
o java.util.Date
o javafx.util.Duration
o javafx.animation.KeyFrame
o javafx.animation.Timeline

e o <3 21/57




Process: Clock

1. Write App class that extends
javafx.application.Application and implements Stage
start (Stage)

2. Write a PaneOrganizer class that instantiates root node &0 m
and returns it in a public getRoot() method. Instantiate a

Label and add it as root node’s child. Factor out code for
Timeline into its own method.

3. Inour own setupTimeline( ), instantiate a KeyFrame
passing in Duration and alambda expression (defined

later) as our EventHandler. Then instantiate Timeline, Label

passing in our KeyFrame, and play Timeline VBox

4. Define lambda expression to represent our EventHandler
— for every ActionEvent, update the text on the Label

Scene

22/57

10/10/2023

Clock: App class (1/3)

Note: Exactly the same process as in ColorChanger's App [Lecture 9]
la. Instantiate a PaneOrganizer . L
and store it in the local variable Public class App extends Application {
organizer @verride
public void start(Stage stage) {

PaneOrganizer organizer = new PaneOrganizer();

}
}
— 23/57
Clock: App class (2/3)
Note: Exactly the same process as in ColorChanger’'s App [Lecture 8]
la. Instantiate a PaneOrganizer X L
and store itin the local variable PUPlic class App extends Application {
organizer @verride
public void start(Stage stage) {
1b, Instantiate a Scene, passing in PaneOrganizer organizer = new PaneOrganizer();

- Scene scene =
organizer.getRoot(), and

desired width and height of
Scene

new Scene(organizer. getRoot (), 300, 200) ;

24/57




1la.

Clock: App class (3/3)
Note: Exactly the same process as in ColorChanger’s App [Lecture 9]
. Instantiate a PaneOrganizer
and store itin the local variabl

organizer (@verride
public void start(Stage stage) {

o Public class App extends Application {

PaneOrganizer organizer = new PaneOrganizer();

10/10/2023

1b. Instantiate a Scene, passing in s o
N cene scene =
organizer.getRoot(), new Scene(organizer. getRoot (), 300, 200);
desired width and height of the
s stage. setScene(scene);
cene stage.setTitle("Clock!");
stage. show();
1c. Setthe Scene, set the Stage’s }
title, and show the Stage! }
PR 25/57
Process: Clock
App
Javafx.applicat ion.Application Stage
start(Stage)
2. Write a PaneOrganizer class that instantiates root - & O Scene
node and returns it in apublic getRoot() method YT il
Instantiate a Label and add it as root node’s child. /
Factor out code for Timeline into its own method
which we’ll call setupTimeline()
3. Inour own setupTimeline(), instantiate a KeyFrame
passing in Duration and alambda expression (defined Label
later) as our EventHandler. Then instantiate a Timeline, VBox
passing in our KeyFrame, and play the Timeline
4. Define lambda expression to represent our EventHandler
— for every ActionEvent, update the text on the Label
— 26/57
Clock: PaneOrganizer Class (1/3)
2a. Inthe PaneOrganizer class’ public class PaneOrganizer {
private VBox root;
constructor, instantiate a root VBox
and set it as the retum value of a
public getRoot () method public PaneOrganizer() {
this.root = new VBox();
}
public VBox getRoot() {
return this.root;
¥
}
ot on om < v 27/57




Clock: PaneOrganizer Class (2/3)

2a. Inthe PaneOrganizer class’ public class PaneOrganizer {
B N private VBox root;
constructor, instantiate a root VBox private Label label;
and set it as the return value of a
public getRoot () method public PaneOrganizer() {
is.root = new VBox();
this.label = new Label();
2b. Instantiate a Label and add it to this.root.getChildren().add(this.label);
the list of the root node’s children
}

public VBox getRoot() {
return this.root;

}

JON—— 28/57

10/10/2023

Clock: PaneOrganizer Class (3/3)

2a. Inthe PaneOrganizer class’ public class PaneOrganizer {
. N private VBox root;
constructor, instantiate a root VBox private Label label;
and set it as the retum value of a

public getRoot () method public PaneOrganizer() {
this.root = new VBox();
this.label = new Label();
) ) this.root.getChildren().add(this.label);
2b. Instantiate a Label and add it to & Ri )

the list of the root node’s children this.setupTimeline();
}

public VBox getRoot() {

2c. Call setupTimeline(); thisis return this.root;

another example of delegation to a
specialized “helper method” which we’ll
define next !

— 29/57

Process: Clock

App
javafx.application.Application Stage
start(Stage)

PaneOrganizer -
getRoot() method.

Fun 3 T
Label /
Timeline

3. In setupTimeline(), instantiate a KeyFrame, passing
in Duration and alambda expression (defined later)
as our EventHandler. Then instantiate a Timeline, Label
passing in our KeyFrame, and play the Timeline VBox

4. Define lambda expression to represent our EventHandler
— for every ActionEvent, update the text on the Label

e o <3 30/57

10



Clock: PaneOrganizer

Within setupTimeline():

3a. Instantiate a KeyFrame,
which takes two parameters:
Duration and EventHandler

class - setupTimeline() (1/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

S 31/57

10/10/2023

Clock: PaneOrganizer

Within setupTimeline():

3a. Instantiatea KeyFrame,
which takes two parameters:
Duration and EventHandler

want to update text of label
each second — therefore make
Duration of the KeyFrame 1
second

class - setupTimeline() (1/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {

KeyFrame kf = new KeyFrame(
Duration.seconds (1), //how long

)i

BpC—— 32/57

Clock: PaneOrganizer c

Within setupTimeline():

3a. Instantiate a KeyFrame,
which takes two parameters:
Duration and EventHandler

want to update text of label
each second — therefore make
Duration of the KeyFrame 1
second

for the EventHandler
parameter, pass alambda
expression (to be defined later)

Note: JavaFXautomatically calls
this.updatelabel atend ofeachkeyFrame,
which in this case chargesthe label text, and then
lets the next1 second cyde of Key Framestart

e o <3 33/57

lass - setupTimeline() (1/4)

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(
Duration.seconds(1), //how long
(ActionEvent e) ->
this.updatelabel()); //event handler

11



Clock: PaneOrganizer class-setupTimeline() (2/4)

Within setupTimeline():

3a. Instantiate a KeyFrame

3b. Instantiate a Timeline,
passing in our new KeyFrame

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(
Duration. seconds (1),
(ActionEvent e) ->
this.updateLabel()); //event

Timeline timeline = new Timeline(kf);

handler

34/57

10/10/2023

Clock: PaneOrganizer

Within setupTimeline():

class-setupTimeline() (3/4)

3a.

Instantiate a KeyFrame

public class PaneOrganizer {
//other code elided

private void setupTimeline() {
KeyFrame kf = new KeyFrame(

3b. Instantiate a Timeline, [(l:r‘:v_:iog.se;om;s(l),
; ctionEvent e) ->
passing in our new KeyFrame this.updateLabel()); //event handler
Timeline timeline = new Timeline(kf);
3c. Set CycleCount to N . . .
INDE FINITE timeline. setCycleCount(Animation. INDEFINITE);
}
}
[p— 35/57
Clock: PaneOrganizer class-setupTimeline() (4/4)
Within setupTimeline(): public class PaneOrganizer {
3a. Instantiate a KeyFrame //other code elided
private void setupTimeline() {
KeyFrame kf = new KeyFrame(
3b.  Instantiate a Timeline, ?:'“:F"’gsei""‘;S(l)'
ctionEvent e) ->
passing in our new KeyFrame this.updateLabel()); //event handler
Timeline timeline = new Timeline(kf);
S.  SetGycleomnt o timeline. setCycleCount (Animation. INDEFINITE)
imeline.setCycleCount (Animation. 5
INDEFINITE Sineline piavly;
}
3d.  Play, ie. start Timeline }
O — 36/57

12



Process: Clock

10/10/2023

1 App
Javafx.application.Application Stage
start(Stage)
2 PaneOrganizer " ;
Node getRoot() B A OT Scene
Label /
Timeline
3 setupTimeline() , KeyFrame
Duration
EventHandler. tiate ¢ Timeline Label
KeyFrame Timeline VBox
4. Define alambda expression to represent our
EventHandler —for every ActionEvent, update the text
on the Label
s 37/57
Clock: EventHandler: lambda expression (1/3)
public class PaneOrganizer {
private Label label;
4a.  The last step is to create our other code elided
TimeHandler and implement
handle(), specifying what to occur at private void setUpTimeline () {
the end of each KeyFrame — called KeyFrame kf = new KeyFrame(
automatically by JavaFX Duration.seconds(1),
(ActionEvent e) ->
this.updatelabel()); handle
ot ode elided
}
private void wdatelabel() {
S G- 38/57
Clock: EventHandler: lambda expression (2/3)
public class Panedrganizer {
private Label label;
4a.  The last step is to create our other code elided
TimeHandler and implement
handle(), specifying what to occur at private void setUpTimeline () {
the end of each KeyFrame - called KeyFrame kf = new KeyFrame(
automatically by JavaFX Duration. seconds(1),
(Actionkvent e) ->
4b.  java.util.Date represents a specific this.upditelabel()); //eve andle
instant in time. Date is a representation ) ther code elid
of the time, to the nearest milisecond,
at the moment the Date is instantiated private void wpdateLabel() {
Date now = new Date();
}
PRI — 39/57

13



Clock: EventHandler:

4a.  The last step is to create our
TimeHandler and implement
handle(), specifying what to occur at
the end of each KeyFrame - called
automatically by JavaFX

4b. java.util.Date represents a specific
instant in time. Date is a representation
of the time, to the nearest milisecond,
at the moment the Date is instantiated

4c.  Because our Timeline has a Duration
of 1 second, each second a new Date
will be generated, converted to a
String, and set as the label’s text.
This will appropriately update label
with correct time every second!

lambda expression (3/3)

public class PaneOrganizer {
private Label label;
//other code elided

private void setUpTimeline () {
KeyFrame kf = new KeyFrame(
Duration. seconds (1),
(Actionkvent e) ->

this.updateLabel ()); //event handler

//other code elided

¥

private void wpdateLabel() {
e now = new Date();
//this.label instantiated in
or of PO
this.label.setText(now.testring());

toString( ) converts the Date into
a String with year, day, time etc.

40/57

10/10/2023

The Whole App: Clock ™ “iatimr

//hgp class inports
inport javafx. stage. Stage;
rport Javafx.scene.Scene;

inport. javafx. scene. layout.;
//package inc abel, Button classes
inport. javafx. scene. control. *;
//package includes ActionEvent

inport. javafx. event .ActionEvent;

inport Javafx.util.buration;

inport. javafx.animation.Animation;
inport Javafx.animation. KeyFrane;

inport javafx.animation. Tineline;

inport Java.util.Date;

public ¢ lass App ex tends Application {

@override
public void st art(s tage s tage) {
Pane Ongani zer o rganiz er = new Panedrganizer ();

Scene scene = new Sce ne(organizer.getRoot() , 309, 200);

stage. sets cene( scene)
stage.setT itle( "Cloc
stage.show ();

}

public s tatic void main(string[ ] args) { 1aunch (args) ; }

root;
private Label label ;

public P aneorganize () {
new VBox();

this [label

this _setup Tinel ine();

)

public VBox g thoot ()
return thi s.reot;

¥

private void s etupT ineline() {

Tine line t ineli ne = n ew Timeline (kf);

tine line.p lay() ;
)

private void update Label() {
Da

O
this .label .setTe xt(now.tost ring());

105
this .root. getCh ildren ().add (this .label );

KeyF rane kf = new Key Frane( burat ion.se conds (1),
(Action vent e) -> this.updatel abel());

ne (
tinel ine. se tCycle Count (Anima tion. INDEFI NITE);

41/57

Outline

» Layout Panes

+ Java FXShapes

14



Layout Panes

< Until now, we have beenadding allour GUI componentstoa
VBox
o VBoxes lay everything out in one vertical column

* What if we wantto make some more interesting GUIs?
« Use different types of layout panes!

o VBox is just one of many JavaFX panes — there are many more
options

o we will introduce a few, but check out our documentation or Javadocs
for a complete list

43/57

10/10/2023

HBox

« Similar to VBox, but lays everything outin a e —
horizontal row (hence the name) | et o

« Example:
HBox )b‘utt‘c;\Eu;‘ = HE«‘J }‘E‘n‘x H ne er
Button bl = new Button(“Button ne”);
Button b2 = rew Button}::Euttm Two”) ;
Button b3 = new Button(“Button Three”);
buttonBox.getChildren().addAll (b1, b2, b3); P
« Like VBox, we can set the amount of horizontal
spacing betweeneach childin the HBox using
the setSpacing(double) method

but tonBox. setSpacing(20);

44/57

BorderPane (1/2)

* BorderPane lays outchildrenin top,
left, bottom, right, and center positions

« To add things visually, use
setLeft(Node), setCenter(Node),
etc.

o this includes an implicit call to
getChildren().add(..)

« Use any type of Node — Panes (with ther

own children), Buttons, Labels, etc.!

45/57

15


https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/edit
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/layout/package-summary.html

BorderPane (2/2)

+ Remember our VBox example from earlier?

VBox buttcBax = new \Box();
Button bl = rew Button(“Top”);
Button b2 = rew Button(“Middle”);
Button b3 = rew Button(“Bottan”); e
buttonBox.getChildren.addAll (b1,b2,b3);
buttonBox.setSpacing(8);
buttonBox.setAlignment(Pos. TCP_CENTER);

« We can make our VBox the center of this

BorderPane
Note: we ot have o cal
BorderPane cantainer = new BorderPane(); container. getC hil dre n.add (bu tto nB ox),
container.setCenter(buttorBox); as this callis done implicitly in the
A ) SetCenter() - method
+ No need to use all regions — could just use a
few of them

+ Unused regions are “compressed”, e.g. could
have a two-region (left/right) layout without a
center

46/57

10/10/2023

Absolute Positioning

* Until now, all layout panes we have seen have performed
lay out management for us
o what if we want to position our GUI components freely ourselves?

» Need to set component’s location to exactpixel location on
screen

o called absolute positioning
* When would y ouuse this?
o to position shapes — stay tuned!

ep—— 47/57

Pane

« Pane allows y ou to lay things out completely freely, like on an artcanvas
—DIY graphics! More control, more work &)

« Itis a concrete superclass to all more specialized layout panes seen
earlier that do automatic positioning
o we can call methods on its graphically contained children (panes, buttons,
shapes, etc.) to set location within pane
for example: use setX(double) and setY(double) to position a Rectangle, one of the
primitive shapes
o Pane performs no layout management, so coordinates you set determine where
things appear on the screen

| rome
[rey pe—— lm.-.' i.....' vime [ tens
ot on om < v 48/57

16



Creating Custom Graphics

« We'v e nowintroducedyou to using JavaF X's native Ul elements
o ex: Label and Button

« Lots of handy widgets for makingyour own graphical applications!
« What if you wantto create your own custom graphics?

« This lecture: build your own graphics using the
javafx.scene.shape package!

[p— 49/57

10/10/2023

Outline

» Java FXShapes

[ —— 50/57

javafx.scene.shape Package
+ JavaFXprovides builtinclasses to represent 2D shapes, such
as rectangles, ellipses, polygons, etc.

* Allthese classes inherit from
abstract class Shape, which

inherits fromNode E
o methods relating to rotation and ruy
visibility are defined in Node
o methods relating to color and El

border are defined in Shape
o other methods are implemented

in the individual classes of | — '|[ — ” — '|
Ellipse, Rectangle, etc.

e o <3 51/57

17



Shape Constructors

« Rectangle(double width, double height)
* Ellipse(double radiusX, double radiusY)
. Polygon(double .. points)

o the *..inte signaurre means hat you can pass inas many points as
youwould ke to the constru

o passinPoints (evennumber ofx andy coordinates) and Polygon will

connectthem for you
o passing points willdefine and positon the shape of Polygon- this is not

always the case with other Shapes (like Rectangle or E1lipse)
o eample new Polygon(@,10,10,10,5,0)

* Each of these Shape subclasses have multiple constructors (same

name, different parameter lists) This is called method overloading — ,0)

well come back to it during Design Patterns. Check out the JavaFX
documentation for more options!
o for examp\e if youwanted to instantate a Rectangle with a given position
and siz:
Re(tangle(douhle X, double y, dotble width, double height)

© youcoudalso instaniate a Reciangle wit a given widh, heigh, and color
Rectangle(double width, double height, Paint Fill)

(0,10)

(10,10)

52/57

location
Shapes: Setting Location

« JavaFX Shapes have different behaviors (methods) for setting
their location within their parent’s coordinate system
o Rectangle: use setX(double) and setY(double)
o Ellipse: use setCenterX(double) and
setCenterY(double) Jocation
o Polygon: use setLayoutX(double) and
setLayouty(double)
« JavaFX has many different ways to set location
o from our experience, these are the most straighforward ways
o if you choose to use other methods, be sure you fuly
understand them or you may get strange bugs!
o check out our JavaEX documentation and the Javadacs for
more detailed explanations!

location

Rectangle

Ellipse

Polygon
53/57

Shapes: Setting Size

« JavaFXShapes also have different behaviors
(methods) for altering their size

o Rectangle: use setWidth(double) and
setHeight(double)

setScaleY(double)
= multiplies the original size in the X or Y dimension by the
scale factor =,
« Again, this is nat the only way tosetsize forShapes £
but it is relatively painless %
!

o reminder: JavaEX documentation and Javadocs!

o Ellipse: use setRadiusX(double) and
setRadiusY(double)
o Polygon: use setScaleX(double) and

L

Rectangle

ipse
scaleX_* Width

Polygon

10/10/2023

54/57

18


https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/
https://docs.oracle.com/javase/8/javafx/api/index.html?javafx/scene/shape/Shape.html
http://cs.brown.edu/courses/cs015/docs/JavaFXGuide.pdf
https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/
https://docs.oracle.com/javase/8/javafx/api/index.html?javafx/scene/shape/Shape.html

Accessors and Mutators of all Shapes

« Setters and Getters! Rotation is about the gener of the Shape’s

Rotation: .
o public final wid setRotate(dowle rotateAngle);
o public final double getRotate();

Final = cant override reffod| | ‘bounding box’; ce., the smallest rectargle
that contains the entire shape. Tohave a
Shape rotate about an arbitrary center of

rotation, add a Rotate instancewith a
new center of rotationto the Shape’s

10/10/2023

Visibility: transform list (see Javadocs)

o public final wid setVisible(baolean visible);

o public final boolean getVisible(); The stroke is the border that outlines the Shape,
Color: while the fill is the color of theinterior of the Shape

o public final wid setStroke(Paint value);
o public final Paint getStroke();

o public final wid setFill(Paint value);
o public final Paint getFill();

Generally, use a Color, whichinherits from Paint
Use predefined color constants Color. WHITE,
Color.BLUE, Color.AQUA, etc., or define your aan
new color by using the following syntax:

Border: Paint color = Color.color(e.5, 0.5, 0.5);
OR:

o public final wid setStrokeWidth(double val);

o public final double getStrokeWidth(); Paint color = Color.rgb(16e, 150, 200);

55/57

Announcements (1/2)

+ Code fromtoday's lectureis available on GitHub — mess
around for practice!

* Fruit Ninja deadines (all due 11:59 PM ET):
o On-time handin: today 10/11
o Late handin: Thursday 10/13
« JavaFXLab
o Pre-lab video and pre-lab guiz
« Fill out the GitHub Username Form
« Fruit Ninja Code Debriefs coming up!
o Keep an eye on your emails to see if you were chosen as tribute!
o Not an exam! Just a chance to talk though YOUR implementation ©

56/57

Announcements (2/2)

* Calahoration Palicy Phase 2 starting at Cartoon
o can debug each other’s terminalproduced errors

o fillout mandatory callaboration phase 2 guiz

S Dy S | gy

3 X -
oo

57/57

19


https://docs.oracle.com/javase/8/javafx/api/javafx/scene/transform/Rotate.html
https://github.com/brown-cs15-2022/clock
https://github.com/brown-cs15-2023/clock.git
https://github.com/brown-cs15-2022/clock
https://youtu.be/bM2u5OUF1YQ
https://forms.gle/L36mqbpaCRwSYXB37
https://forms.gle/CnHCYUAiJXKnGR6h6
https://docs.google.com/document/d/11oqlPAXNYx9heme3zrhdYnYzgsFFnWa7NknjSStCick/edit
https://docs.google.com/forms/d/1IqAwIED7lAwiiP0Xv9MjWaaevZCgQ-cVjII_9i_Ijks/edit

10/10/2023

20



SociallyResponsible Computing

Blockchain & Cryptocurrency |

CS15 Fall 2023

BLICKTALN A CATTTR

10/10/2023

The StatusQuo: Centralized Databases

|W%
& 1

The Utopian Promise: Aninteroperable, decentralized
database that maintains the privacy of users

B — |

I"

=@

|| —HX ET:ﬁ

21



Introduction to Blockchain Tech

Picture a massive excelspreadsheet thatrecords transactions

but makeit...
image source: Excel Easy
= P
20 @ B ~7
Duplicated across Raw data is public ~ Each transaction Append-only, Regularly updated
avast network of and open-access  and identities are changes are
computers encrypted permanent

.. which results in a ginormous,
decentralized ledger that allows us to
verify the valdity of future transactions

10/10/2023

How Money Transfers Over Blockchain Work

Jim wants to send The transaction is The block gets distributed
money to Mary represented as a block across the network
5 * & ‘ @_ﬁ *@
e
Jim’s record of ownership of The block is added to the chain, The network verifies
the money moves to Mary creating a permanent record the transaction is valid

S

s ;

Original Image Source: Paul Dughi

G

Economic philosophy of Silicon Valley

Predispositions and the Political Behawiar of
American Economic Elites: Evidence from
Technobagy Entrépremsurs.

Source: Stanford Business (2017)

22



Why decentralization? Inc'
« Attractive to libertarian viewpoint
« Free from govemment oversight;
govemed by users mwmmh
Libertarian,

AL s CommunisL! What
the Heck Does That Mean™

Cryptocurrency: a digital currency in which transactions are verified and
records are maintained by a decentralized system
* Bom out of the 2008 financial crisis

Source: Inc (218)

10/10/2023

Collapse of FTX

comm

FTX Taﬁped Into Customer Accounts to
Fund Risky Bets, Setting Up Its
Downfall

Feb 2022 Super Bowl Commercial Nov 2022 Wall Street Journal

Collapse of FTX

Source: StructureFow

23



Collapse of FTX

$152 Billion

decrease in world’s 15 largest
cryptocurrencies between
11/8/22 —11/11/22

Source: WSJ

10/10/2023

24



	Slide 1: Lecture 10
	Slide 2: Outline
	Slide 3: EventHandlers (1/3)
	Slide 4: EventHandlers (2/3)
	Slide 5: EventHandlers (3/3)
	Slide 6: Registering an EventHandler (1/2)
	Slide 7: Registering an EventHandler (2/2)
	Slide 8: Outline
	Slide 9: Lambda Expressions (1/3)
	Slide 10: Lambda Expressions (2/3)
	Slide 11: Lambda Expressions (3/3)
	Slide 12: The Whole App:   ColorChanger
	Slide 13: Note: Logical vs. Graphical Containment/Scene Graph
	Slide 14: Outline
	Slide 15: Animation – Change Over Time
	Slide 16: Introducing Timelines (1/3)
	Slide 17: Introducing Timelines (2/3)
	Slide 18: Introducing Timelines (3/3)
	Slide 19
	Slide 20: Using JavaFX Timelines (2/2)
	Slide 21: Our First JavaFX animation: Clock
	Slide 22: Process: Clock 
	Slide 23: Clock: App class (1/3)
	Slide 24: Clock: App class (2/3)
	Slide 25: Clock: App class (3/3)
	Slide 26: Process: Clock 
	Slide 27: Clock: PaneOrganizer Class (1/3)
	Slide 28: Clock: PaneOrganizer Class (2/3)
	Slide 29: Clock: PaneOrganizer Class (3/3)
	Slide 30: Process: Clock 
	Slide 31: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 32: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 33: Clock: PaneOrganizer class - setupTimeline() (1/4)
	Slide 34: Clock: PaneOrganizer class- setupTimeline() (2/4)
	Slide 35: Clock: PaneOrganizer class- setupTimeline() (3/4)
	Slide 36: Clock: PaneOrganizer class- setupTimeline() (4/4)
	Slide 37: Process: Clock
	Slide 38: Clock: EventHandler: lambda expression (1/3)
	Slide 39: Clock: EventHandler: lambda expression (2/3)
	Slide 40: Clock: EventHandler: lambda expression (3/3)
	Slide 41: The Whole App: Clock
	Slide 42: Outline
	Slide 43: Layout Panes
	Slide 44: HBox
	Slide 45: BorderPane (1/2)
	Slide 46: BorderPane (2/2)
	Slide 47: Absolute Positioning
	Slide 48: Pane
	Slide 49: Creating Custom Graphics
	Slide 50: Outline
	Slide 51: javafx.scene.shape Package
	Slide 52: Shape Constructors 
	Slide 53: Shapes: Setting Location
	Slide 54: Shapes: Setting Size
	Slide 55: Accessors and Mutators of all Shapes
	Slide 56: Announcements (1/2)
	Slide 57: Announcements (2/2)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: The Status Quo: Centralized Databases
	Slide 63: The Utopian Promise: An interoperable, decentralized database that maintains the privacy of users
	Slide 64: Introduction to Blockchain Tech
	Slide 65: How Money Transfers Over Blockchain Work
	Slide 66: Economic philosophy of Silicon Valley 
	Slide 67: Why decentralization? 
	Slide 68: Collapse of FTX
	Slide 69: Collapse of FTX
	Slide 70: Collapse of FTX

