10/19/2023

Lecture 13
Arrays
Lelslel Jol:fe]:]
[o] 6] [s] (6] [7
0/75

Outline
* Purpose
* Array Syntax
* Araylists

* Multi-Dimensional Arrays

Why Use Arrays? (1/2)

e Sofar, we've only studied variablesthat hold references
to single objects
e What about holdinglotsof data? Many programsneed to
keep track of hundreds/thousandsof data instances
o can't always assign unique name to each data item (Brown
students hav e names, data from an experiment don’t)
e Wantto hold arbitrary number of objectswith single
reference — representsa collection of elements
o allows for simple communication to multiple elements
o but still need to hav e unique identification of any element
e Arrays are the simplest data structure orcollection -
we’ll also coverlists, queues, and stacks 275

Why Use Arrays? (2/2)
e Arrays allow instances of specific type to be “packaged” together and
accessed as group

e What ifthere are 13 instances of District?

o store all Districts in aray for easy access (to make sure we have the
right number of tributes from each district!)

(and so on...)

e Arrays are ordered - helpful when wanting to store or access
instances in particular order, e.g., alphabetically

10/19/2023

Your lovely TAs

* We want access to all 59 UTAs
(and 5 HTASs)!
« Adam, Asia, ..., Xiaoyue

® Could use instance variables:
public class CSI15TAs {

ﬁnhaw

private TA adam;

private TA asia;

private TA xiaoyue;

}

® Can't access 64 instance
variables very easily
= what if we wanted toaccessff
CS15 TAs fromfall 2022,
2021, 2020, A5

Arrays (1/4)

e Arrays store specified, constant number of data elements of same type —|
our first homogeneous collection
o each element must be same type or subclass of same type (polymorphism)
e Arrays are special in Java
o special syntax to access array elements:
studentArray[index]
= the index of array is aways of type int
o neither base type nor class, but Java construct
= use new to initialize an aray (eventhoughit's not aclass!)
= special syntax, does not invoke constructor like for a class

5/75

10/19/2023

Arrays (2/4)

e Arrays only hold elementsof specified type
o when declaring array s, state type of object it stores:
base ty pe
class
sub-array s (for multi-dimensional array s — soon)
or for max poly morphic flexibility, interface or superclass

o typecanevenbe java.lang.Object to store any instance,
but that isn’t useful: wouldn’t take adv antage of compiler’s
ty pe-checking

Arrays (3/4)

e Everyarray elementisan object reference, sub-array, or
base type. What real-world objectscan be organized by
arrays?

o number of electoral votes by state
o streets in Providence
o Strings representing names or Banner IDs of people in a course

e Elementsordered sequentially by numerical index
o inmath, use subscript notation, i.e., Ao, A, Az, ...An1
o inJava, use index inside brackets, i.e., for an array of n number
of students:
students[@], students[1],.. students[n-1]

7175

Arrays (4/4)

e Arrays store objectsin numbered slots
o for array of size n, firstindex is always O, last index is always n-1
e Common graphical representationsof arrays:

“n=20

[
[ERIEEN5) (yrpvae) !]

‘ Note: 1-D Arrays are called vectars, and 2-D or n-D arrays are called matrices in n'mharatic%
875

Arra'y Examples [F9 110 02 3 = s E

e Houses on a Neighborhood Street L L,’ L1401 1 T L1 1
o aray size: 8 s

o array index: house number e y f‘p ..-._,

o element type: house Q%- i ol e“
Note: arrays don't needto be ful(e.g.,no
house 0, 4, or 7)

e Sunlab Computers
o aray size: 72
o array index: computer number
o element type: computer

Note: Could be modeled as a2-D array (see indeSl)‘
A —— 975

10/19/2023

Outline

* Purpose
* Array Syntax
* Arraylists

* Multi-Dimensional Arrays

o e v 10/75

Java’s Syntax for Arrays (1/4)

<type>[] <array-name> = new <type>[<size>];

T v
declaration initialization

e.g., Dog[] dogArray = new Dog[101];

» <type> denotes data type array holds: can be class, base type,
interface, superclass, or another array (nested arrays)

o no reserved word “array” - [] brackets suffice

We use new here, because arrays are a Java construct

<size> must be integer value greater than O; indices range from O
to <size> -1

175

Java’s Syntax for Arrays (2/4)

e Arrays can be local variables, so they can get declared
and initialized insingle statement - just like objectsand
base types:

Colorable[] otherColorables = new Colorable[5];

e Arrays can also be instance variables, which get declared
and then initialized separately inconstructor:

private Colorable[] myColorables;

//in constructor of class that contains the array

this.myColorables = new Colorable[10];

10/19/2023

o oo 0203 T 12/75
Initializing Array Example
« Houses on a neighborhood street LN
House[] houses = new House[8]; Ll T, T Tl 1
//next enter values in array | = . | "-ls
+ Sunlab Computers 1 A: ‘? .
Computer[] sunlab = new Computer[72]; & — - : -
« Only array is initialized, not elements of ————l
array; all references are set to a default of | .
null for Objects, @ for ints, false for k)
booleans, etc.
o House[] houses = new House[8];
| Does not create and store 8 instances of Huusel
1375

Java’s Syntax for Arrays (3/4)

Note: some other languages

e Accessing individual elements: allow an arbitrary value for the

lower bound, but not Java!
<array-name>[<index>]
o index must be integer between 0 and (array size-1)
o result is value stored at that index
o if <index> > size, or< 0,
ArrayIndexOutOfBoundsException gets thrown

® Think of student[i] as the “name” of that particular student (like
student) — simpler way to refer to each individual element in
collection, better than having to use unique names

14175

Accessing Array Elements Example

e Houses on a Neighborhood Street II?'Jrlil UG
| |

House[] houses = new House[8];
//code initializing array elements elided

FE TR | v

£ | & | h
House myHouse = houses[6]; '.. é oy

£ir A_ o el

<array-name>[<index>] =
Sunlab Computers
CPU[] sunlab = new CPU[72]; T -
//code initializing array elements elided
CPU myCPU = sunlab[42];

<array-name>[<index>]
15/75

10/19/2023

Java’s Syntax for Arrays (4/4)
e An array element will work anywhere variable would

Il initialize first element of array of objects implementing Colorables to be a Ball
myColorables[@] = new Ball();

/I call a method on 3rd element

myColorables[2].setColor(Color .RED);

/I 'assign fourth element to a local variable

Colorable myColorableVar = myColorables[3];

Il pass 5th as a parameter
this.myPaintShop.paintRandomColor(myColorables[4]);

16/75

Arrays as Parameters (1/3)

e Can pass entire array as parameter by adding array
brackets to type inside signature
public int sum(int[] numbers){ //no size declared!
//code to compute sum of elements in the int array
¥
e Now we can do the following (somewhere else in the
class that contains sum):
int[] myNumbers = new int[5];
//code elided - initializes myNumbers with values, sum method
System.out.println(this.sum(myNumbers));

Note: there is noway o tell fromthis use of sum that myNumbers is an array -
wouldneed o see how sum and myNumbers were declared to know that

17175

Arrays as Parameters (2/3)
e How do we determine size of array?

o arrays have length as public property (not a method)

o use special “dot” syntax to determine length; here we
inquire it, then store it for later

int arraylLength = <array-name>.length;

18/75

10/19/2023

Arrays as Parameters (3/3)
e How does .length work in actual code?

public int sum (int[] numbers){

int total = o;
for (int 1 = ©; i < numbers.length; i++){
total += numbers[i];
}
return total;
}
Note: for loop often used to traverse through all elements of array. Can
use loop counter (i in this case) inside the body of loop but should never
reset it. Incrementing/decrementing counter is done by for loop itself!

19/75

Example: Hunger Games Tribute Selection (1/2)

* We want to store all
13 Districts from the
Hunger Gamesone
by one, using our
array of Districts
so we can select
tributesforthe
Games

20075

Example: Hunger Games Tribute Selection (2/2)

District[] districts = new District[13];

10/19/2023

districts[@] = new District(“Luxury District”); | Note: actually district
districts[1] = new District(“Masonry District”); |13, because arrays are
indexed at 0

districts[12] = new District(“Nuclear District”);<

for (int i = @; i < districts.length; i+) {
districts[i].selectTributes();

s 2175

ArrayIndexOutOfBoundsExceptions (1/2)

District[] districts
District[13];

new

« Careful about bounds of loops that

access arrays!
districts[e]

« Java throws District”);
ArrayIndexOutOfBoundsException if gisinicisfi] = new pistrict(“Masonry
index is negative since sequence starts -:- o

districts[12] = new District(“Nuclear
at 0 District”);

* Also throws
ArrayIndexOutOfBoundsException if for (int i = e; i < districts.length;
. . L i) {
index is 2array size; remember that districts[i].selectTributes();
array goes from Oto n-1

new District(“Luxury

e —— 22/75

ArrayIndexOutOfBoundsExceptions (2/2)

Example of a classic “off- DistricEagysericrs = new
by-one” error!

districts[0] = new District(“Luxury

District”);

districts(1] = new District(“Masonry
fesh

District”);

Exception in thread “main”

java.lang.ArrayIndexOutOfBoundsException: S}iii:ﬁ?gm = new District(*Nuclear
Index 13 out of bounds for length 13
at (HungerGam java:

for (int i = @; i <= districts.length;
i+t

Note: The error tells you which index is throwing the error.
Here, it is attempting to access the element at index=13, but ar }
largest index of an array of size 13 is n-1 or, in thi :

districts[i].selectTributes();

23175

TopHat Question

Consider the sum function Public int sum (int[] numbers){

: . int total = @;
from slide 19: for (int i = @; i < numbers.length; i++) {

total += numbers[i];
What if the code read
i <= numbers.length?) retum total;

A. It would wrap around and add the value at index O again
B. It would reach the last element of the array

C. Itwould raise an ArrayIndexOutOfBoundsException
D. None of the above

24/75

10/19/2023

for vs. for-each loop (1/4)

e Intended to simplify most common form of iteration, when
loop body getsappliedto each member of collection

e How do for-each loop and forloopsdiffer?
o for loop gives access to index where item is stored
o for-each loops don't have direct access to index, but can easily
access item (see next example)

25/75

for vs. for-each loop (2/4)

o for loopswere extended to for-each loops, which
iterate overthe contentsof a data structure rather than
indices Can make up any

arbitrary name for
for (<type> <var>: <structure>){ <var> field, just like
1o0p body> when we declare a
< P y variable and choose
} its name
<type>: class of objects stored in the <structure>
<var>: name of current element-holds each successive element in turn;
effectively local variable whose scope is loop
<structure>: data structure (array or other collection) to iterate through
26/75

for vs. for-each loop (3/4)

e |feveryelementneedsto be iterated and loop body
doesn’tneed elementindex, for-each loopssuffice:

for (District currentDistrict: districts){
currentDistrict .selectTributes() ;

}

e Greatadvantage of for-each loopsis thattheydon't
raise ArrayIndexOutOfBoundsExceptions! Why?
o Java does the indexing for you!

10/19/2023

o 27175
for vs. for-each loop (4/4)
e Consider this for loop:
for (int i = @; i < districts.length; i++){
if (1% 2 ==90) {
districts[i].selectTributes();
}
}
® Only want to draw tributes from districts with even index, so for-each
loop wouldn’t work
O we don’t execute selectTributes () onevery element inthe array; we only
care about elements at specific indices
28/75

Inserting and Deleting in Arrays (1/2)

e Arrays are great for static data, but inserting without overwriting existing data and
deleting without leaving slots empty requires explicit programmer support
e |Ifthe amay contains data sorted alphanumerically, can’t justinsert a new item at
the end (assuming there is room in the array) but must move data overto make
room at the appropriate slotin the array
o When inserting at particular index, al other elements at and after that index must get

shifted right by programmer (their indices are incremented by 1) otherwise data at
index of insertinnwaniid he eraced and renlacad

= 20175

10

Inserting and Deleting in Arrays (2/2)

e When deleting from particularindex, could leave slot empty, but more
commonly, to preserve space, all other elements falling after that index get
shifted left by programmer to fill the newly opened space (index
decremented by 1). This does affect the index of all other items to the right

10/19/2023

furr0] | Aue[i]) | Aae[2] | Anr 3]
a5 | 1% TR
. 3075
Outline
* Purpose
* Array Syntax
* Arraylists
* Multi-Dimensional Arrays
3175

java.util.ArrayList (1/2)

e java.util.ArraylLists, like arrays, hold referencesto
many objectsof same data type

e Anotherkind of collection, also using an index, butmuch
easiermanagementof making changesto array at runtime

e Asname implies, haspropertiesof both Arrays and Lists
(covered later) —typically implemented "underthe hood” by
Java with arrays

e Differenceswith arrays:

o don’t need to be initialized with size - can hold an arbitrary and
mutable number of references
o are Java classes, not Java constructs, so have methods /75

11

java.util.ArrayList (2/2)

o Why use them instead of arrays?
o when number of elements to be held is unknown
o storing more data in an array that's too small leads to erors
o making array too large is inefficient, wastes memory
o ArraylList handles update dynamics (shifting elements in memory) foryou

e Why use arrays instead of array lists?
o want something simple

o want to use less memory (when you expect both array and array list to hold
same number of elements)

o want faster operations
33/75

10/19/2023

Objects
* Arraylists, like arrays, can hold any Object!

+ Everyclassimplicitly extends Object
o every object “is an”Object
* Object is the most generic ty pe possible
o Object effie = new Dog();
o Object pongBall = new CS15Ball();

o Object cartoonPane = new Pane();

What can ArrayLists hold?

e Upside: ArrayLists store thingsas Object— maximum
polymorphic flexibility
= since everything is an Object, ArrayLists can hold
instances of any and every class: total heterogeneity
= easy inserting/deleting anything

e Downside: ArrayLists only store Objects:

only methods available are trivial ones of Object itself:
equals(), toString(), and finalize()

= typically want what an array is: homogeneous collection to
store only objects of particular type (and its subtypes) AND
have the compiler do type-checking for that type to enforce
homogeneity -

12

Generics! (1/2)

e Generics allow designer to write collection class A to hold instances of another
class B, without regard for what class B will be. User of that class A then decides
how to restrict/specialize type for that homogeneous collection

e Constructor of the generic ArrayList (a collection class) provided by Java:

public ArrayList<ElementType>();

e Think of ElementType as a “type parameter’ thatis used as a placeholder that the
user will substitute for with any non-primitive type (class, interface, amay, ...)

o primitive types: boolean, int, double must be special-cased — Slide 42
e Provides flexibility to have collection store any type while still having compiler help
enforce homogeneity by doing type-checking

36/75

10/19/2023

Generics! (2/2)

e With generics, ArrayList was implemented by the Java team to hold any
Object, but once an instance of an ArrayList is created by aprogrammer,
they must specify type. Let's create an ArrayList of HungerGamesTributes for
our CS15 Hunger Games!

Arraylist<HungerGamesTribute> tributes = new Arraylist<>();

e We specify HungerGamesTributes as type that our ArraylList, tributes, can
hold. Java will then replace ElementType with HungerGamesTribute in
ArrayList method parameters and return types

e Can think of generics as a kind of pseudo-parameter, with different syntax (the
<>) since only methods have parameters, not classes. Here, ElementType isa
pseudo-parameter and HungerGamesTribute is pseudo-argument

e Generics, like classes and methods with parameters, provide generality in

programming! (as does polymorphism in parameter passing)

_— 37175
java.util.ArrayList Methods (1/6)
- Note: think of < and > as
public ArrayList<ElementType>() meaning “of type”
public ElementType get(int index)
- 38/75

13

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

java.util.ArrayList Methods (2/6)

public boolean add(ElementType element)

public void add(int index, ElementType element)

public boolean remove(ElementType elem)

public ElementType remove(int index)

39/75

10/19/2023

java.util.ArrayList Methods (3/6)

public int size()

public boolean isEmpty()

40/75

java.util.ArrayList Methods (4/6)

e ArraylLists also have methods that access elements
through search (as opposed to using an index)
o these methodstake parameter of type Object
o butshould neverpassin anythingbesides
ElementType

4075

14

java.util.ArrayList Methods (5/6)

public int indexOf(ElementType elem)

public boolean contains(ElementType elem)

e vm o o3 i 42/75

10/19/2023

java.util.ArrayList Methods (6/6)

e Some otherArrayList notes...
o canadd object in particular slot or append to end

o canretriev e object stored at particular index and perform
operations on it

o canuse foror for-each loop to access all objects in
ArraylList
o shifting elements for adding/deleting from ArrayListis
done automagically by Java!
= beware that indices past an insertion/deletion will
increment/decrement respectively

s s 4375

ArrayList Example (1/2)

+ Store an ArrayList of bakingitemsin yourpantry, using
the Ingredient interface asthe generictype

ArraylList<Ingredient> pantry = new Arraylist<>();

pantry.add(new Flour());

pantry.add(new Sugar());

pantry.add(1, new ChocolateChips());

Pantry s [
Arrayl ist # %‘% T

size= 3

index 0 index 1 index 2 44175

15

ArrayList Example

Ingredient mySugar = pantry.get(2);

pantry.
pantry.
pantry.
pantry.

add(new BakingPowder());
remove (mySugar) ;
remove(0);

get(2);

(212)

10/19/2023

mySugar

ArrayTndexoutof

Pantry
ArraylList

size = 4

index 0 index 1 index 2 index 3

BoundsException

45/75

Summary of ArrayLists (1/2)

More flexible than arrays for insertion/deleti on

o dynamically shifting elements and adjusting size in response to

insert/delete is all done automagically Weird edge case: To make an
ArrayList of primitive types, just
Useful methods and return types: specify Boolean, Integer, or
o ElementType get(int index) Float in the generic brackets.
o boolean add(ElementType element)
o void add(int index, ElementType element) IheBoolean remove() also has a
weird edge case for Integers: you
o int indexOf(ElementType elem) cannot use remove(5) to remove
o ElementType remove (int index) the first occurrence of 5, because it
o boolean remove (ElementType elem) will treat it as the ELementType for
o int size() penove. Th;yﬂxdée?we
; ever is at | . To remove
o boolean isEmpty() an Integer element, use
remove (new Integer(<number>))

e —— 46/75

Summary of ArrayLists (2/2)

e Can hold heterogeneous collection of any kind of Object; want
homogeneous collections...

e Specialize the ArrayList type by adding “generic” specification to a
declaration or instantiation - thereby specifying two classes in one
statement: the collection and the type of object it will hold and return

Arrayl ist<Hunge rGagesTribute > tributes = new ArrayList<>();

Now tributes will only hold instances
of type HungerGamesTribute

o Remember to use literal <> for specialized type!

47175

16

TopHat Question

Which of the following uses an ArrayList correctly ?

A. ArraylistcHungerGamesTribute> tributes = new Arraylist<>();
Hunge rGame sTribute heroicTribute = new HungerGamesTribute();
tributes.add(heroicTribute);

B. ArraylistcElementType> tributes = new Arraylist;
Hunge rGame sTribute wimpyTribute = tributes[e];

C. ArraylistcElementType> tributes = new Arraylist<>();
Hunge rGame sTribute backstabbingTribute = tributes.first();

D. ArraylList<String> tributes = new Arraylist<>;
Hunge rGame sTribute crazyTribute = new HungerGames Tribute() ;
tributes.add(crazyTribute);

48/75

10/19/2023

ConcurrentModificationExceptions

public static void main(String[] args){
ArraylistHungerGamesTribute> tributes = nes ArrayList<>();
tributes.add(new HingerGamesTribute(“Cannor”));
tributes.add(new HingerGamesTribute(“Lexi”));
tributes.add(new HungerGamesTribute(“Amastasio”
tributes.add(new HingerGamesTribute(“Allie”));
tributes.add(new HingerGamesTribute(“Sarah”));

for (HingerGamesTribute t : tributes){ Exception in thread “main”:
if(!t.getName().equals(“Sarah”)){ Jjav. ConcurrentModifica C
tributes.remove (t); \ eption
i at (App.java:13

}

e’ When tryingto modify an ArrayList whileiterating throughitwitha for-each loop, you
will get a ConcurrentModificationException

e Adding and removing cannot be done withina for-each loop because of the shifting of
the elements inthe list that Javadoes in response toan add or remove

e Note: this is important for DoodleJump! We'll goover this issue in detail during the
project helpslides andin section

e 49/75
Outline
* Purpose
* Array Syntax
* Araylists
¢ Multi-Dimensional Arrays
50/75

17

Multi-Dimensional Arrays

e Modeling chessbhoard:
o not linear group of squares
o more like grid of squares
e Multi-dimensional arraysare arrays of arrays of...
e Candeclare array to be 2 (or more)dimensions, by adding
more brackets
o one pair per dimension
o 2-D:int [][] grid = new int [a][b];
o 3-D:int [][][] cube = new int [x][y][z];

10/19/2023

e vm o o3 i 5175

2-Dimensional Array Examples (1/2)

e Pixel Array
o 2-D Aray size: width by height
o array indices: x, y
o element type: RGB color
o Pixel[][] MSFTLogo = new Pixel[x][y];

e Connect Four
o 2-D Aray size: 7 by 6
o array indices: row, column
o element type: checker
o Checker[][] connect4 = new Checker[6][7];

52/75

2-Dimensional Array Examples (2/2)

e The Sunlab

2-D Array size: 8 by 10 (approx.)

array indices: row, column

element type: computer

Computer[][] sunlab = new Computer[10][8];

0 0 0 O

e o 2 i 53/75

18

10/19/2023

Representing Multi-Dimensional arrays (1/2)

e Let'ssay we wantto representthisgrid of numbers:

1 z 3
rows 4] L}
T B ¥

columes

Representing Multi-Dimensional arrays (2/2)

e How do we want to represent this grid? There are two
equally valid options:

Arviry ol rows Aty Ol Colusmes
55/75

Ways to Think About Array Storage (1/3)

e Multi-dimensional arrays in Java do not make a
distinction betw een row s or columns

o think about 1D array —it doesn'’t really matter if we call it
a “row” or a “column”

o canthink of array s as ordered sequences of data stored
in contiguous positions in memory - no intrinsic
geometry /lay outimplied

56/75

19

Ways to Think About Array Storage (2/3)

e Two visualizations of two-dimensional array (called ballArray) are equally
valid. You can choose either for the organization of your array.

Row of Columns: Column of Rows:

= i-

[[]

® 80

20,0
column-major order, i.e., first index row-major order, i.e., first index is
is column index (e.g., purple ball is row index (e.g., purple ball is at
at array[0][2] — column O, row 3) array[2][0] — row 3, column 0)

e Make sure there’s consistency in the way you index into your 2-D array
throughout your program!
o since the elemerts are nat stored in a specific order, the way thatwe insert
elements and initialize and index into our array determines the order
57/75

10/19/2023

Ways to Think About Array Storage (3/3)

The choice between row-major and column-major I
organization can sometimes be arbitrary |
o Connect 4, a large carton of eggs, etc.

However, sometimes one will make more sense or simplify
your program based on what you are trying to achieve

1 _

o makes most sense to use column-major organization
= each column would be a sub-array of cans of the same type
= slots within each column are either null (empty) or hold a can
= can count number of each type by checking to see how many entries

are full (or not null) in each sub-array (column, here)
For a table of entries (e.g. student rows, course grades cols)
(2 /!

1

e !

!

Winwz

Can Storage example .qF
o goal: use array to keep track of the number of each type of can K
HE
b |

use row major order, while for GetPixel (x, y) use column

major order
s i e 58/75
TopHat Question
Here’s a grid of colored golfballsin column major order.
Whatindexisthe light blue golfballin?
A.ballArray[2][3] Eﬁnr Y
B. ballArray[2][1] L 4 k4
C. ballArray[3][2]
D. ballA 1][2
Y aele
—d
59/75

20

Common Array Errors - Watch Out! (1/2)

e Cannotassign a scalar to an array

int[] myArray = S;x

= 5isnot an array
o toinitialize array elements, must loop over array and assign
values at each index. Here we assign 5 to each element:

int[] myArray = new int[20];
for (int i=@; i < myArray.length; i++){
myArray[i] = 5;

60/75

10/19/2023

Common Array Errors - Watch Out! (2/2)
e Cannot assign arrays of different dimensions to each other
int[] myIntArray = new int[23];
int[][] my2DIntArray = new int[2][34];

x myIntArray = my2DIntArray;

e Doing so will result in this error:
“Incompatible types: Can’t convert int[] to int[][]”
e Similar message for assigning arrays of mismatched type
e Take note that Java will automatically resize an array when assigning a

smaller array to a larger one . 61/75

SciLi Tetris: Loops and Arrays Writ Large

+ In 2000, Tech House constructed then the largest Tetris
game on the Scili —the Woz flew out to play it!

+ 5months of work: 11 custom-built circuit boards, a 12-story
data network, a Linux PC, a radio-frequency video game
controller, and over 10,000 Christmas lights — see

+ Video:
h.tlps' ANAN YO tubhe comiwatch?v=tk EjA[Q_QQ_q[&1=21g

« Atrticle: hitp-//news hhe co nk/2/hi/science/nature/718009 stm

62/75

21

http://bastilleweb.techhouse.org/
https://www.youtube.com/watch?v=tkIRWoo9qrU&t=21s
http://news.bbc.co.uk/2/hi/science/nature/718009.stm

Announcements

« Cartoon deadlines
o early handin: tonight, 10/19
o on-time handin: Saturday, 10/21
o late handin: Monday, 10/23
o remember to tackle Minimum Functionality before trying any Bells
& Whistles!
 DoodleJump partner form due Saturday night
o ifyou don't fill itout, you'll be assigned a random partner on no
basis
o ifchoosing your own partner, you must both fill it out with the
correct logins

63/75

10/19/2023

Privacy and Surveillance II:

Cases and Protective Laws

CS15 Fall 2023

Case Study: Reproductive Health Data Tracking
FTC Finalizes Order with Flo Health, a Fertility-Tracking

that Shared Sensitive Healch Daca wich Facebook,
Gongh‘\ and Others

wez2n GO0

“This [U.S Supreme] Court
consistently has held that a person
e o 0

Post-Roe, prosecutors can seek

iESIno leg ate expectatio
YWY in information he voluntarily

unprotected reproductive health [REEERy. o o NS

v. Maryland (1979)

Citizens, Not the State, Will Enforce
New Abortion Law in Texas

data

22

https://forms.gle/okY6GUWSvFuat6AJ9
https://forms.gle/TKFXxqakVV5xRJBt5

Case Study: Private Cameras and Policing

Ring, Google and the Police:
What to Know About Emergency
Requests for Video Footage

%h Ry Crist

Amazon provided police with Ring video
footage without user consent or a
warrant under “emergency requests.”

Google does the same with Nest
footage.

Breaking News: Transport Security Administration Tracking

The TSA wants to put a government tracking app on
your smartphone

The mobile driver's license (mDL s comprised of the BEN

CEEKEENEIS that are used © produce a physical driver's
IOV RGeS trans mitted electronically 8

American Association of Motor Vehicle Administration

¥ Aadhaar Data Breach — How
-~ Sensitive Data Of 1.3 Billion Indians
s ; Was Compromised

. Rithik ¥ Gopal - Follow

WORLD PRIVACY MAP

Protective
Laws

10/19/2023

23

10/19/2023

May 2018 - General Data Protection Regulation (GDPR)

Set of privacy regulations in the EU, meant to harmonize laws between member countries
®Limits on how data can be collected and what is collected

'Strengthen the ‘right to be forgotten’ — process to remove your data from services
completely

O

consent fi
Data breaches must Users havea right to Fine: 4% of gobal consent from
bereported to know when their annual reven

or

datahas been €20M, whichever is

o retrieveany
information on a

device
leaked greater

January 2020 - CaliforniaConsumer Privacy Act

® “The Golden State officially hasthe strongest consumer data protections in the US”
(WIRED, 2020). Applies to businesses established in California:

'
k ,@]
tell consumerswhen way toopt out right to access
datais of the sale of info collected
collected/disclosed and aboutyou

right to equal

service evenif
personal data
towhom

exercising privacy
rights

Sept. 15,2022 - California Age Appropriate Design Code

.Requires online platforms to proactively consider how their product design
impacts the privacy and safety of children and teens in California. Companies
must:

Have
language kids
can
understand

T = ®m e

Set default to Tell kids when Have clear
most private they're being privacy
monitored reporting tools

ce: Humane Tech

24

10/19/2023

How is Tech Policy Shaped?

® |n 118t (current) Congress of 535
members, 4 scientists, 9 engineers, 4
software company executives

® The Internet Association: industry
players that make tech policy
suggestions

° Lobbying + vacuum of knowledge
around issues — often is just what is
best for industry!

® Consider working in tech policy!

THE WHITE HOUSE

Blueprint for an AI Bill of Rights: A
Vision for Protecting Our Civil Rights
in the Algorithmic Age hatew

12021, Brown CS
Professor Suresh
Venkatasubramanian
was appointed to the
White House Office of
Science and Technology

Policy, advising on
matters relating to
faimess and bias in tech
systems

Proposed 2022 — American Data Protection and Privacy Act

Image source: Bloomberg

25

10/19/2023

This Week's SRC Discussion!
More on GDPR and ADPPA

* ¥ %

* *

* GDPR *

* *
* 5 *

Appendix: 2D Array Example

76/75

Example: Size of 2-D Arrays

public static final int NUM_ROWS = 10;
public static final int NUM_COLS = 6;

public void practice2DArrays () {

String[]J[] myStringArray = new String [NUM_ROWS J[NUM_COLS];

int numRows = myStringArray. length;

int numCols = myStringArray[@].length;

System.out. println(“My array has ” + numRows * numCols + “ slots in totall”);

array.length gives size of first dimension (you decide whether you want
row or column), and array[@].Llength gives size of second dimension

775

26

2D Arrays Example (1/2)

Let’'s build a checkerboard with alternating blackand
white squares, using JavaFX

Each square has a row and column index
Let’s use row-majororder

o access any square with
checkerboard[rowIndex][colIndex]

JavaFX Rectangle’s location can be setusing row and
column indices, multiplied by square width factor
o row indicates Y values, column indicates X value

e vm o o3 i 7875

10/19/2023

2D Arrays Example (2/2)

Pane myPane = new Pane();
Rectangle[][] checkerboard =

for &int row = @; row < checkerboard.length; row+) {
or (int col = @; col < checkerboard[@].length; col++) {

Rectangle[Cmstants NUM_ROWS][Constants .NUM_COLS];

Rectangle rect = new Rectangle(col * Constants.SQ WIDTH,
row * Constants.SQ_WIDTH,
Constants.SQ_WIDTH
Constants . Q_WIDTH};
if ((row + col =
(r(‘ect‘setﬁ?ll(Color‘ BLA&K),
} else {
rect.setFill(Color.WHITE);

r?KPanerEetChﬂdr‘en() add(rect);
checke oard[r‘oﬂ][col] = rect;

— 79/75

27

	Slide 0: Arrays
	Slide 1: Outline
	Slide 2: Why Use Arrays? (1/2)
	Slide 3: Why Use Arrays? (2/2)
	Slide 4: Your lovely TAs
	Slide 5: Arrays (1/4)
	Slide 6: Arrays (2/4)
	Slide 7: Arrays (3/4)
	Slide 8: Arrays (4/4)
	Slide 9: Array Examples
	Slide 10: Outline
	Slide 11: Java’s Syntax for Arrays (1/4)
	Slide 12: Java’s Syntax for Arrays (2/4)
	Slide 13: Initializing Array Example
	Slide 14: Java’s Syntax for Arrays (3/4)
	Slide 15: Accessing Array Elements Example
	Slide 16: Java’s Syntax for Arrays (4/4)
	Slide 17: Arrays as Parameters (1/3)
	Slide 18: Arrays as Parameters (2/3)
	Slide 19: Arrays as Parameters (3/3)
	Slide 20: Example: Hunger Games Tribute Selection (1/2)
	Slide 21: Example: Hunger Games Tribute Selection (2/2)
	Slide 22: ArrayIndexOutOfBoundsExceptions (1/2)
	Slide 23: ArrayIndexOutOfBoundsExceptions (2/2)
	Slide 24: TopHat Question
	Slide 25: for vs. for-each loop (1/4)
	Slide 26: for vs. for-each loop (2/4)
	Slide 27: for vs. for-each loop (3/4)
	Slide 28: for vs. for-each loop (4/4)
	Slide 29: Inserting and Deleting in Arrays (1/2)
	Slide 30: Inserting and Deleting in Arrays (2/2)
	Slide 31: Outline
	Slide 32: java.util.ArrayList (1/2)
	Slide 33: java.util.ArrayList (2/2)
	Slide 34: Objects
	Slide 35: What can ArrayLists hold?
	Slide 36: Generics! (1/2)
	Slide 37: Generics! (2/2)
	Slide 38: java.util.ArrayList Methods (1/6)
	Slide 39: java.util.ArrayList Methods (2/6)
	Slide 40: java.util.ArrayList Methods (3/6)
	Slide 41: java.util.ArrayList Methods (4/6)
	Slide 42: java.util.ArrayList Methods (5/6)
	Slide 43: java.util.ArrayList Methods (6/6)
	Slide 44: ArrayList Example (1/2)
	Slide 45: ArrayList Example (2/2)
	Slide 46: Summary of ArrayLists (1/2)
	Slide 47: Summary of ArrayLists (2/2)
	Slide 48: TopHat Question
	Slide 49: ConcurrentModificationExceptions
	Slide 50: Outline
	Slide 51: Multi-Dimensional Arrays
	Slide 52: 2-Dimensional Array Examples (1/2)
	Slide 53: 2-Dimensional Array Examples (2/2)
	Slide 54: Representing Multi-Dimensional arrays (1/2)
	Slide 55: Representing Multi-Dimensional arrays (2/2)
	Slide 56: Ways to Think About Array Storage (1/3)
	Slide 57: Ways to Think About Array Storage (2/3)
	Slide 58: Ways to Think About Array Storage (3/3)
	Slide 59: TopHat Question
	Slide 60: Common Array Errors - Watch Out! (1/2)
	Slide 61: Common Array Errors - Watch Out! (2/2)
	Slide 62: SciLi Tetris: Loops and Arrays Writ Large
	Slide 63: Announcements
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Appendix: 2D Array Example
	Slide 77: Example: Size of 2-D Arrays
	Slide 78: 2D Arrays Example (1/2)
	Slide 79: 2D Arrays Example (2/2)

