
10/19/2023

1

0/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays

C S C I 0 1 5 0

[0] [1] [2] [3] [4] [5] [6] [7]

Lecture 13

1/75
Andr ies van Dam © 2023 10/ 19/ 23

Outline

• Purpose

• Array Syntax

• ArrayLists

• Multi-Dimensional Arrays

2/75
Andr ies van Dam © 2023 10/ 19/ 23

Why Use Arrays? (1/2)
● So far, we’ve only studied variables that hold references

to single objects
● What about holding lots of data? Many programs need to

keep track of hundreds/thousands of data instances
o can’t alway s assign unique name to each data item (Brown

students hav e names, data f rom an experiment don’t)

● Want to hold arbitrary number of objects with single
reference – represents a collection of elements

o allows f or simple communication to multiple elements

o but still need to hav e unique identif ication of any element

● Arrays are the simplest data structure or collection -
we’ll also cover l ists, queues, and stacks

10/19/2023

2

3/75
Andr ies van Dam © 2023 10/ 19/ 23

Why Use Arrays? (2/2)
● Arrays allow instances of specific type to be “packaged” together and

accessed as group

● What if there are 13 instances of District?

o store all Districts in array for easy access (to make sure we have the
right number of tributes from each district!)

● Arrays are ordered - helpful when wanting to store or access
instances in particular order, e.g., alphabetically

(and so on…)

4/75
Andr ies van Dam © 2023 10/ 19/ 23

Your lovely TAs
• We want access to all 59 UTAs

(and 5 HTAs)!

▪ Adam, Asia, …, Xiaoyue

• Could use instance variables:

public class CS15TAs {

private TA adam;
private TA asia;
//other TAs elided
private TA xiaoyue;

}

• Can’t access 64 instance
variables very easily

▪ what if we wanted to access
CS15 TAs from fall 2022,
2021, 2020, …

5/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays (1/4)
● Arrays store specified, constant number of data elements of same type –

our first homogeneous collection

o each element must be same type or subclass of same type (polymorphism)

● Arrays are special in Java

o special syntax to access array elements:

studentArray[index]

▪ the index of array is always of type int

○ neither base type nor class, but Java construct

▪ use new to initialize an array (even though it’s not a class!)

▪ special syntax, does not invoke constructor like for a class

10/19/2023

3

6/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays (2/4)

● Arrays only hold elements of specified type

o when declaring array s, state type of object it stores:

▪ base ty pe

▪ class

▪ sub-array s (f or multi-dimensional array s – soon)

▪ or f or max poly morphic flexibility, interface or superclass

o ty pe can ev en be java.lang.Object to store any instance,
but that isn’t usef ul: wouldn’t take adv antage of compiler’s
ty pe-checking

7/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays (3/4)

● Every array element is an object reference, sub-array, or
base type. What real-world objects can be organized by
arrays?
o number of electoral votes by state
o streets in Providence
o Strings representing names or Banner IDs of people in a course

● Elements ordered sequentially by numerical index
o in math, use subscript notation, i.e., A0, A1, A2, ...An-1

o in Java, use index inside brackets, i.e., for an array of n number
of students:
students[0] , students[1] ,.. . students[n-1]

8/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays (4/4)
● Arrays store objects in numbered slots

o for array of size n, first index is always 0, last index is always n-1

● Common graphical representations of arrays:

n = 20

Note: 1-D Arrays are called vectors, and 2-D or n-D arrays are called matrices in mathematics

10/19/2023

4

9/75
Andr ies van Dam © 2023 10/ 19/ 23

Array Examples
● Houses on a Neighborhood Street

o array size: 8
o array index: house number

o element type: house

● Sunlab Computers
o array size: 72
o array index: computer number

o element type: computer

Note: arrays don’t need to be full (e.g., no
house 0, 4, or 7)

Note: Could be modeled as a 2-D array (see slide 51)

10/75
Andr ies van Dam © 2023 10/ 19/ 23

Outline
• Purpose

• Array Syntax

• ArrayLists

• Multi-Dimensional Arrays

11/75
Andr ies van Dam © 2023 10/ 19/ 23

Java’s Syntax for Arrays (1/4)
<type>[] <array-name> = new <type>[<size>];

e.g., Dog[] dogArray = new Dog[101];

• <type> denotes data type array holds: can be class, base type,
interface, superclass, or another array (nested arrays)

o no reserved word “array” - [] brackets suffice

• We use new here, because arrays are a Java construct

• <size> must be integer value greater than 0; indices range from 0
to <size> - 1

declaration initialization

10/19/2023

5

12/75
Andr ies van Dam © 2023 10/ 19/ 23

Java’s Syntax for Arrays (2/4)

● Arrays can be local variables, so they can get declared
and initialized in single statement - just l ike objects and
base types:

Colorable[] otherColorables = new Colorable[5];

● Arrays can also be instance variables, which get declared
and then initialized separately in constructor:

private Colorable[] myColorables;

...

//in constructor of class that contains the array

this.myColorables = new Colorable[10];

13/75
Andr ies van Dam © 2023 10/ 19/ 23

Initializing Array Example
• Houses on a neighborhood street

House[] houses = new House[8];
//next enter values in array

• Sunlab Computers
Computer[] sunlab = new Computer[72];

• Only array is initialized, not elements of
array; all references are set to a default of
null for Objects, 0 for ints, false for
booleans, etc.
o House[] houses = new House[8];

Does not create and store 8 instances of House

14/75
Andr ies van Dam © 2023 10/ 19/ 23

Java’s Syntax for Arrays (3/4)

● Accessing individual elements:

<array-name>[<index>]
o index must be integer between 0 and (array size-1)

o result is value stored at that index

o if <index> > size, or < 0,
ArrayIndexOutOfBoundsException gets thrown

● Think of student[i] as the “name” of that particular student (like
studenti) – simpler way to refer to each individual element in
collection, better than having to use unique names

Note: some other languages
allow an arbitrary value for the
lower bound, but not Java!

10/19/2023

6

15/75
Andr ies van Dam © 2023 10/ 19/ 23

Accessing Array Elements Example

● Houses on a Neighborhood Street

● Sunlab Computers

House[] houses = new House[8];
//code initializing array elements elided

House myHouse = houses[6];

CPU[] sunlab = new CPU[72];
//code initializing array elements elided

CPU myCPU = sunlab[42];

<array-name>[<index>]

<array-name>[<index>]

16/75
Andr ies van Dam © 2023 10/ 19/ 23

Java’s Syntax for Arrays (4/4)

● An array element will work anywhere variable would

// initialize first element of array of objects implementing Colorables to be a Ball

myColorables[0] = new Ball();

// call a method on 3rd element

myColorables[2].setCo lor(Color .RED);

// assign fourth element to a local variable

Colorable myC olorable Var = myC olorables [3];

// pass 5th as a parameter

this.myPaintShop.paintRandomColor(myColorables[4]);

17/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays as Parameters (1/3)
● Can pass entire array as parameter by adding array

brackets to type inside signature

● Now we can do the following (somewhere else in the
class that contains sum):

public int sum(int[] numbers){ //no size declared!

//code to compute sum of elements in the int array

}

int[] myNumbers = new int[5];
//code elided - initializes myNumbers with values, sum method

System.out.println(this.sum(myNumbers));

Note: there is no way to tell from this use of sum that myNumbers is an array -

would need to see how sum and myNumbers were declared to know that!

10/19/2023

7

18/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays as Parameters (2/3)

● How do we determine size of array?

o arrays have length as public property (not a method)

o use special “dot” syntax to determine length; here we
inquire it, then store it for later

int arrayLength = <array-name>.length;

19/75
Andr ies van Dam © 2023 10/ 19/ 23

Arrays as Parameters (3/3)
● How does .length work in actual code?

public int sum (int[] numbers){

//sum all entries in array
int total = 0;

for (int i = 0; i < numbers.length; i++){
total += numbers[i];

}

return total;
}

Note: for loop often used to traverse through all elements of array. Can

use loop counter (i in this case) inside the body of loop but should never

reset it. Incrementing/decrementing counter is done by for loop itself!

20/75
Andr ies van Dam © 2023 10/ 19/ 23

Example: Hunger Games Tribute Selection (1/2)

• We want to store all
13 Districts from the
Hunger Games one
by one, using our
array of Districts

so we can select
tributes for the
Games

10/19/2023

8

21/75
Andr ies van Dam © 2023 10/ 19/ 23

Example: Hunger Games Tribute Selection (2/2)
// first, declare and initialize the array

District[] districts = new District[13];

// then, initialize the contents of the array
districts[0] = new District(“Luxury District”);
districts[1] = new District(“Masonry District”);
...
districts[12] = new District(“Nuclear District”);

// lastly, use a loop to select the tributes
for (int i = 0; i < districts.length; i++) {

districts[i].selectTributes();
}

Note: actually district
13, because arrays are
indexed at 0

22/75
Andr ies van Dam © 2023 10/ 19/ 23

ArrayIndexOutOfBoundsExceptions (1/2)

• Careful about bounds of loops that

access arrays!

• Java throws

ArrayIndexOutOfBoundsException if

index is negative since sequence starts

at 0

• Also throws

ArrayIndexOutOfBoundsException if

index is ≥ array size; remember that

array goes from 0 to n-1

//code from previous slide
District[] districts = new
District[13];

// then, initialize the contents of the
array
districts[0] = new District(“Luxury
District”);
districts[1] = new District(“Masonry
District”);
...
districts[12] = new District(“Nuclear
District”);

// lastly, use a loop to select the
tributes
for (int i = 0; i < districts.length;
i++) {

districts[i].selectTributes();

}

23/75
Andr ies van Dam © 2023 10/ 19/ 23

ArrayIndexOutOfBoundsExceptions (2/2)

In Terminal:

Exception in thread “main”
java.lang.ArrayIndexOutOfBoundsException:
Index 13 out of bounds for length 13

at (HungerGames.java:64)

Example of a classic “off-

by-one” error!

Note: The error tells you which index is throwing the error.
Here, it is attempting to access the element at index=13, but our
largest index of an array of size 13 is n-1 or, in this case, 12.

// first, declare and initialize the
array
District[] districts = new
District[13];

// then, initialize the contents of the
array
districts[0] = new District(“Luxury
District”);
districts[1] = new District(“Masonry
District”);
...
districts[12] = new District(“Nuclear
District”);

// lastly, use a loop to select the
tributes
for (int i = 0; i <= districts.length;
i++) {

districts[i].selectTributes();

}

10/19/2023

9

24/75
Andr ies van Dam © 2023 10/ 19/ 23

TopHat Question
public int sum (int[] numbers){

int total = 0;
for (int i = 0; i < numbers.length; i++) {

total += numbers[i];
}
return total;

}

Consider the sum function

from slide 19:

What if the code read

i <= numbers.length?

A. It would wrap around and add the value at index 0 again

B. It would reach the last element of the array

C. It would raise an ArrayIndexOutOfBoundsException
D. None of the above

25/75
Andr ies van Dam © 2023 10/ 19/ 23

for vs. for-each loop (1/4)

● Intended to simplify most common form of iteration, when
loop body gets applied to each member of collection

● How do for-each loop and for loops differ?
o for loop gives access to index where item is stored
o for-each loops don’t have direct access to index, but can easily

access item (see next example)

26/75
Andr ies van Dam © 2023 10/ 19/ 23

for vs. for-each loop (2/4)
● for loops were extended to for-each loops, which

i terate over the contents of a data structure rather than
indices

for (<type> < var>: <s tructure>){

<loop bod y>

}

<type>: class of objects stored in the <structure>

<var>: name of current element–holds each successive element in turn;

effectively local variable whose scope is loop

<structure>: data structure (array or other collection) to iterate through

Can make up any
arbitrary name for
<var> field, just like
when we declare a
variable and choose
its name

10/19/2023

10

27/75
Andr ies van Dam © 2023 10/ 19/ 23

for vs. for-each loop (3/4)
● If ev ery element needs to be iterated and loop body

doesn’t need element index, for-each loops suffice:

for (District currentDistrict: districts){
//notice we don’t need to use index to get members from Array
currentDistrict.selectTributes();

}

● Great advantage of for-each loops is that they don’t

raise ArrayIndexOutOfBoundsExceptions! Why?
o Java does the indexing for you!

28/75
Andr ies van Dam © 2023 10/ 19/ 23

for vs. for-each loop (4/4)
● Consider this for loop:

for (int i = 0; i < districts.length; i ++){

if (i % 2 == 0) { //if ind ex ‘i’ is even

districts[i].selectTributes();

}

}

● Only want to draw tributes from districts with even index, so for-each

loop wouldn’t work
o we don’t execute selectTributes() on every element in the array; we only

care about elements at specific indices

29/75
Andr ies van Dam © 2023 10/ 19/ 23

Inserting and Deleting in Arrays (1/2)
● Arrays are great for static data, but inserting without overwriting existing data and

deleting without leaving slots empty requires explicit programmer support

● If the array contains data sorted alphanumerically, can’t just insert a new item at
the end (assuming there is room in the array) but must move data over to make

room at the appropriate slot in the array

o When inserting at particular index, all other elements at and after that index must get
shifted right by programmer (their indices are incremented by 1) otherwise data at
index of insertion would be erased and replaced

10/19/2023

11

30/75
Andr ies van Dam © 2023 10/ 19/ 23

Inserting and Deleting in Arrays (2/2)
● When deleting from particular index, could leave slot empty, but more

commonly, to preserve space, all other elements falling after that index get

shifted left by programmer to fill the newly opened space (index
decremented by 1). This does affect the index of all other items to the right

4t h

31/75
Andr ies van Dam © 2023 10/ 19/ 23

Outline
• Purpose

• Array Syntax

• ArrayLists

• Multi-Dimensional Arrays

32/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList (1/2)
● java.util.ArrayLists, l ike arrays, hold references to

many objects of same data type

● Another kind of collection, also using an index, but much
easier management of making changes to array at runtime

● As name implies, has properties of both Arrays and Lists
(covered later) – typically implemented ”under the hood” by
Java with arrays

● Differences with arrays:

o don’t need to be initialized with size - can hold an arbitrary and
mutable number of references

o are Java classes, not Java constructs, so have methods

10/19/2023

12

33/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList (2/2)

● Why use them instead of arrays?

o when number of elements to be held is unknown

o storing more data in an array that’s too small leads to errors

o making array too large is inefficient, wastes memory

o ArrayList handles update dynamics (shifting elements in memory) for you

● Why use arrays instead of array lists?

o want something simple

o want to use less memory (when you expect both array and array list to hold
same number of elements)

o want faster operations

34/75
Andr ies van Dam © 2023 10/ 19/ 23

Objects

• ArrayLists, l ike arrays, can hold anyObject!

• Ev ery class implicitly extends Object

o ev ery object “is an” Object

• Object is the most generic ty pe possible

o Object effie = new Dog();

o Object pongBall = new CS15Ball();

o Object cartoonPane = new Pane();

35/75
Andr ies van Dam © 2023 10/ 19/ 23

What can ArrayLists hold?

● Upside: ArrayLists store things as Object─ maximum
polymorphic flexibil ity

▪ since everything is an Object, ArrayLists can hold
instances of any and every class: total heterogeneity

▪ easy inserting/deleting anything

● Downside: ArrayLists only store Objects:

▪ only methods available are trivial ones of Object itself:
equals(), toString(), and finalize()

▪ typically want what an array is: homogeneous collection to
store only objects of particular type (and its subtypes) AND
have the compiler do type-checking for that type to enforce
homogeneity

10/19/2023

13

36/75
Andr ies van Dam © 2023 10/ 19/ 23

Generics! (1/2)
● Generics allow designer to write collection class A to hold instances of another

class B, without regard for what class B will be. User of that class A then decides
how to restrict/specialize type for that homogeneous collection

● Constructor of the generic ArrayList (a collection class) provided by Java:

public ArrayL ist<Elem entType>();

● Think of ElementType as a “type parameter” that is used as a placeholder that the
user will substitute for with any non-primitive type (class, interface, array, …)

o primitive types: boolean, int, double must be special-cased – Slide 42

● Provides flexibility to have collection store any type while still having compiler help
enforce homogeneity by doing type-checking

37/75
Andr ies van Dam © 2023 10/ 19/ 23

Generics! (2/2)
● With generics, ArrayList was implemented by the Java team to hold any
Object, but once an instance of an ArrayList is created by a programmer,
they must specify type. Let’s create an ArrayList of HungerGamesTributes for
our CS15 Hunger Games!

ArrayList<HungerGamesTribute> tributes = new ArrayList<>();

● We specify HungerGamesTributes as type that our ArrayList, tributes, can
hold. Java will then replace ElementType with HungerGamesTribute in
ArrayList method parameters and return types

● Can think of generics as a kind of pseudo-parameter, with different syntax (the
<>) since only methods have parameters, not classes. Here, ElementType is a
pseudo-parameter and HungerGamesTribute is pseudo-argument

● Generics, like classes and methods with parameters, provide generality in
programming! (as does polymorphism in parameter passing)

38/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (1/6)
// Note: only most im portant m ethods sh own (ALL defined for you!)
// see Javadocs for full class

// Note: lite ral use of < and >, only o n the con structor ; most
methods use the specified ElementType

public ArrayL ist<Elem entType>()

// one of the many constructors for ArrayList class – specialize

// by providi ng Eleme ntType, j ust as Ar ray has t he type it

// stores.

public ElementType get(int index)

// returns the object of type ElementType at that index

Note: think of < and > as
meaning “of type”

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

10/19/2023

14

39/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (2/6)
//two add methods with unique method signatures - method overloading

public boolean add(ElementType element)

//inserts specified element at end of ArrayList

public void add(int index, ElementType element)
/* inserts the specified element at the specified index in
* this ArrayList; just as with arrays, causes indices of
* elements “to the right” to be incremented - but is done automagically */

public boolean remove(ElementType elem)
//remove first occurrence of specified element and returns true
//if ArrayList contains specified element

public ElementType remove(int index)

//removes the ElementType at given index and returns it

40/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (3/6)

public int size()

//returns number of elements stored in ArrayList

public boolean isEmpty()

//returns true if ArrayList contains zero elements; false
otherwise

41/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (4/6)

● ArrayLists also have methods that access elements

through search (as opposed to using an index)

o these methods take parameter of type Object

o but should never pass in anything besides

ElementType

10/19/2023

15

42/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (5/6)

public int in dexOf(El ementType elem)

//finds first occurrence of specified element, returns - 1 if

element not in ArrayList

public boolean contains(ElementType elem)

//return true if Arra yList con tains spe cified el ement

43/75
Andr ies van Dam © 2023 10/ 19/ 23

java.util.ArrayList Methods (6/6)

● Some other ArrayList notes…
o can add object in particular slot or append to end
o can retriev e object stored at particular index and perf orm

operations on it
o can use for or for-each loop to access all objects in

ArrayList
o shif ting elements f or adding/deleting f rom ArrayList is

done automagically by Java!

▪ beware that indices past an insertion/deletion will
increment/decrement respectively

44/75
Andr ies van Dam © 2023 10/ 19/ 23

ArrayList Example (1/2)
• Store an ArrayList of baking items in your pantry, using

the Ingredient interface as the generic type

ArrayList<Ingredient> pantry = new ArrayList<>(); //empty ArrayList

pantry.add(ne w Flour()); // inserts at back of list, index 0

pantry.add(ne w Sugar()); // in serts at back of l ist, ind ex 1

pantry.add(1, new Cho colateChi ps()); // inserts at index 1

Pantry
ArrayList

size =

index 0 index 1 index 2

0123

10/19/2023

16

45/75
Andr ies van Dam © 2023 10/ 19/ 23

ArrayList Example (2/2)
Ingredient mySugar = pantry.get(2); // returns Sugar instance

pantry.add(new BakingPowder()); // inserts at back of list, index 3

pantry.remove(mySugar); // removes Sugar instance

pantry.remove(0); // removes Flour instance

pantry.get(2); // raises ArrayIndexOutOfBoundsException

Pantry
ArrayList

size =

index 0 index 1 index 2

23

index 3

4

mySugar ArrayIndexOutOf
BoundsException

46/75
Andr ies van Dam © 2023 10/ 19/ 23

Summary of ArrayLists (1/2)
● More flexible than arrays for insertion/deleti on

o dynamically shifting elements and adj usting size in response to
insert/delete is all done automagically

● Useful methods and return types:
o ElementType g et(int i ndex)
o boolean add(ElementType element)
o void add(int index, E lementTyp e element)

o int indexOf(ElementType elem) //search
o ElementType r emove (i nt index)
o boolean remove (ElementType elem)
o int size()

o boolean isEmpty()

Weird edge case: To make an
ArrayList of primitive types, just
specify Boolean, Integer, or
Float in the generic brackets.

The Boolean remove() also has a
weird edge case for Integers: you
cannot use remove(5) to remove
the first occurrence of 5, because it
will treat it as the ElementType for
remove. This would remove
whatever is at index 5. To remove
an Integer element, use
remove(new Integer(<number>))

47/75
Andr ies van Dam © 2023 10/ 19/ 23

Summary of ArrayLists (2/2)

● Can hold heterogeneous collection of any kind of Object; want

homogeneous collections…

● Specialize the ArrayList type by adding “generic” specification to a

declaration or instantiation - thereby specifying two classes in one

statement: the collection and the type of object it will hold and return

ArrayList<HungerGamesTribute> tributes = new ArrayList<>();

● Remember to use literal <> for specialized type!

Now tributes will only hold instances
of type HungerGamesTribute

10/19/2023

17

48/75
Andr ies van Dam © 2023 10/ 19/ 23

TopHat Question
Which of the f ollowing uses an ArrayList correctly ?

A. ArrayList<HungerGamesTribute> tributes = new ArrayList<>();

HungerGamesTribute heroicTribute = new HungerGamesTribute();

tributes.add(heroicTribute);

B. ArrayList<ElementType> tributes = new ArrayList;

HungerGamesTribute wimpyTribute = tributes[0];

C. ArrayList<ElementType> tributes = new ArrayList<>();

HungerGamesTribute backstabbingTribute = tributes.first();

D. ArrayList<String> tributes = new ArrayList<>;

HungerGamesTribute crazyTribute = new HungerGamesTribute();

tributes.add(crazyTribute);

49/75
Andr ies van Dam © 2023 10/ 19/ 23

public static void main(String[] args){
ArrayList<HungerGamesTribute> tributes = new ArrayList<>();
tributes.add(new HungerGamesTribute(“Cannon”));
tributes.add(new HungerGamesTribute(“Lexi”));
tributes.add(new HungerGamesTribute(“Anastasio”));
tributes.add(new HungerGamesTribute(“Allie”));
tributes.add(new HungerGamesTribute(“Sarah”));

for (HungerGamesTribute t : tributes){
if(!t.getName().equals(“Sarah”)){

tributes.remove(t);
}

}
}

ConcurrentModificationExceptions

In Terminal:

Exception in thread “main”:
java.util.ConcurrentModificationExc
eption
at (App.java:13)

● When trying to modify an ArrayList while iterating through it with a for-each loop, you
will get a ConcurrentModificationException

● Adding and removing cannot be done within a for-each loop because of the shifting of
the elements in the list that Java does in response to an add or remove

● Note: this is important for DoodleJump! We’ll go over this issue in detail during the
project help slides and in section

50/75
Andr ies van Dam © 2023 10/ 19/ 23

Outline

• Purpose

• Array Syntax

• ArrayLists

• Multi-Dimensional Arrays

10/19/2023

18

51/75
Andr ies van Dam © 2023 10/ 19/ 23

Multi-Dimensional Arrays

● Modeling chess board:
o not linear group of squares
o more like grid of squares

● Multi-dimensional arrays are arrays of arrays of…
● Can declare array to be 2 (or more) dimensions, by adding

more brackets
o one pair per dimension

o 2-D: int [][] grid = new int [a][b];

o 3-D: int [][][] cube = new int [x][y][z];
// a, b, x, y, z are ints whose values are set elsewhere

52/75
Andr ies van Dam © 2023 10/ 19/ 23

2-Dimensional Array Examples (1/2)
● Pixel Array

o 2-D Array size: width by height
o array indices: x, y
o element type: RGB color
o Pixel[][] MSF TLogo = new Pixel [x][y];

● Connect Four
o 2-D Array size: 7 by 6
o array indices: row, column
o element type: checker
o Checker[][] c onnect4 = new Che cker[6][7];

53/75
Andr ies van Dam © 2023 10/ 19/ 23

2-Dimensional Array Examples (2/2)

● The Sunlab
o 2-D Array size: 8 by 10 (approx.)
o array indices: row, column
o element type: computer
o Computer[][] sunlab = new Computer[10][8];

10/19/2023

19

54/75
Andr ies van Dam © 2023 10/ 19/ 23

Representing Multi-Dimensional arrays (1/2)

● Let’s say we want to represent this grid of numbers:

55/75
Andr ies van Dam © 2023 10/ 19/ 23

Representing Multi-Dimensional arrays (2/2)

● How do we want to represent this grid? There are two
equally valid options:

56/75
Andr ies van Dam © 2023 10/ 19/ 23

Ways to Think About Array Storage (1/3)

● Multi-dimensional arrays in Java do not make a

distinction betw een row s or columns

o think about 1D array – it doesn’t really matter if we call it

a “row” or a “column”

o can think of array s as ordered sequences of data stored

in contiguous positions in memory - no intrinsic

geometry /lay out implied

10/19/2023

20

57/75
Andr ies van Dam © 2023 10/ 19/ 23

Ways to Think About Array Storage (2/3)
● Two visualizations of two-dimensional array (called ballArray) are equally

valid. You can choose either for the organization of your array.

● Make sure there’s consistency in the way you index into your 2 -D array
throughout your program!

o since the elements are not stored in a specific order, the way that we insert
elements and initialize and index into our array determines the order

row-major order, i.e., first index is
row index (e.g., purple ball is at
array[2][0] – row 3, column 0)

Column of Rows:Row of Columns:

column-major order, i.e., first index
is column index (e.g., purple ball is
at array[0][2] – column 0, row 3)

58/75
Andr ies van Dam © 2023 10/ 19/ 23

Ways to Think About Array Storage (3/3)
• The choice between row-major and column-major

organization can sometimes be arbitrary
o Connect 4, a large carton of eggs, etc.

• However, sometimes one will make more sense or simplify
your program based on what you are trying to achieve

• Can Storage example
o goal: use array to keep track of the number of each type of can

o makes most sense to use column-major organization

▪ each column would be a sub-array of cans of the same type
▪ slots within each column are either null (empty) or hold a can

▪ can count number of each type by checking to see how many entries
are full (or not null) in each sub-array (column, here)

• For a table of entries (e.g. student rows, course grades cols)
use row major order, while for GetPixel (x, y) use column
major order

(1, 2)

59/75
Andr ies van Dam © 2023 10/ 19/ 23

TopHat Question
Here’s a grid of colored golf balls in column major order.
What index is the light blue golf ball in?

A. ballArray[2][3]

B. ballArray[2][1]

C. ballArray[3][2]

D. ballArray[1][2]

10/19/2023

21

60/75
Andr ies van Dam © 2023 10/ 19/ 23

Common Array Errors - Watch Out! (1/2)

● Cannot assign a scalar to an array

int[] myArray = 5;

▪ 5 is not an array
o to initialize array elements, must loop over array and assign

values at each index. Here we assign 5 to each element:

int[] myArray = new i nt[20]; / /initiali zes array , not el ements

for (int i=0; i < myA rray.leng th; i++){

myArray[i] = 5;

}

61/75
Andr ies van Dam © 2023 10/ 19/ 23

Common Array Errors - Watch Out! (2/2)
● Cannot assign arrays of different dimensions to each other

int[] myI ntArray = new int[23];

int[][] my2DIntArray = new int[2][34];

myIntArra y = my2D IntArray;

● Doing so will result in this error:

“Incompat ible typ es: Can’t convert int[] to int[][]”

● Similar message for assigning arrays of mismatched type

● Take note that Java will automatically resize an array when assigning a

smaller array to a larger one

62/75
Andr ies van Dam © 2023 10/ 19/ 23

SciLi Tetris: Loops and Arrays Writ Large

• In 2000, Tech House constructed then the largest Tetris
game on the Scili – the Woz flew out to play it!

• 5 months of work: 11 custom-built circuit boards, a 12-story
data network, a Linux PC, a radio-frequency video game
controller, and over 10,000 Christmas lights – see
http://bastilleweb.techhouse.org/

• Video:
https://www.youtube.com/watch?v=tkIRWoo9qrU&t=21s

• Article: http://news.bbc.co.uk/2/hi/science/nature/718009.stm

http://bastilleweb.techhouse.org/
https://www.youtube.com/watch?v=tkIRWoo9qrU&t=21s
http://news.bbc.co.uk/2/hi/science/nature/718009.stm

10/19/2023

22

63/75
Andr ies van Dam © 2023 10/ 19/ 23

Announcements
• Cartoon deadlines

o early handin: tonight, 10/19

o on-time handin: Saturday, 10/21

o late handin: Monday, 10/23

o remember to tackle Minimum Functionality before trying any Bells
& Whistles!

• DoodleJump partner form due Saturday night
o if you don’t fill it out, you’ll be assigned a random partner on no

basis

o if choosing your own partner, you must both fill it out with the
correct logins

Privacy and Surveillance II:

Cases and Protective Laws

Photo credit:

CS15 Fall 2023

Case Study: Reproductiv e Health Data Tracking

Sourc e: Ax ios, NBC News , Flo, NYTimes

“This [U.S Supreme] Court
consistently has held that a person
has no legitimate expectation of
privacy in information he voluntarily
turns over to third parties” - Smith
v. Maryland (1979)

https://forms.gle/okY6GUWSvFuat6AJ9
https://forms.gle/TKFXxqakVV5xRJBt5

10/19/2023

23

Case Study: Priv ate Cameras and Policing

Sourc e: CNet, Elec tron ic Frontier Foundation

Amazon provided police with Ring video
footage without user consent or a
warrant under “emergency requests.”

Google does the same with Nest

footage.

Breaking News: Transport Security Administration Tracking

Sourc e: PapersPlease , Americ an Ass oc iation of Motor Vehicle Admin is tra tors, Medium, Unique Identi fic ation Authori ty o f Ind ia

The mobile driver's license (mDL) … is comprised of the same
data elements that are used to produce a physical driver's
license, however, the data is transmitted electronically -
American Association of Motor Vehicle Administration

Protective

Laws

10/19/2023

24

Data breaches must

be reported to

governments within

72 hrs

Set of privacy regulations in the EU, meant to harmonize laws between member countries

•Limits on how data can be collected and what is collected

•Strengthen the ‘right to be forgotten’ — process to remove your data from services

completely

Photo Credit: The Conversation

May 2018 - General Data Protection Regulation (GDPR)

Users have a right to

know when their

data has been

leaked

Fine: 4% of global

annual revenue or

€20M, whichever is

greater

requires consent from

visitors to retrieve any

information on a

device

January 2020 - California Consumer Privacy Act

Image source: termly.io

• “The Golden State officially has the strongest consumer data protections in the US”

(WIRED, 2020). Applies to businesses established in California:

=
tell consumers when

data is
collected/disclosed and

to whom

way to opt out
of the sale of

personal data

right to access
info collected

about you

right to equal
service even if

exercising privacy

rights

Sept. 15, 2022 - California Age Appropriate Design Code

•Requires online platforms to proactively consider how their product design

impacts the privacy and safety of children and teens in California. Companies

must:

Image source: Humane Tech

Set default to
most private

Tell kids when
they’re being

monitored

Have clear
privacy

reporting tools

Have
language kids

can
understand

10/19/2023

25

How is Tech Policy Shaped?

• In 118th (current) Congress of 535
members, 4 scientists, 9 engineers, 4

software company executives

24 of the Internet Association’s 42 industry members.
Photo Credit: The Internet Association

• The Internet Association: industry
players that make tech policy

suggestions

• Lobbying + vacuum of knowledge

around issues — often is just what is

best for industry!

• Consider working in tech policy!

Photo Cred i ts : wh i tehouse.gov

In 2021, Brown CS
Professor Suresh

Venkatasubramanian
was appointed to the

White House Office of
Science and Technology

Policy, advising on
matters relating to

fairness and bias in tech
systems

Proposed 2022 – American Data Protection and Privacy Act

Image source: Bloomberg

“This bill establishes requirements for how companies, including nonprofits and common

carriers, handle personal data, which includes information that identifies or is reasonably

linkable to an individual.” (U.S Library of Congress, 2022)

limit the collection +

transfer of personal

data

additional

protections for

minors

means to opt out

of targeted

advertising

More robust

company

cybersecurity

Right to more

control over

personal data

10/19/2023

26

More on GDPR and ADPPA

This Week’s SRC Discussion!

76/75
Andr ies van Dam © 2023 10/ 19/ 23

Appendix: 2D Array Example

77/75
Andr ies van Dam © 2023 10/ 19/ 23

Example: Size of 2-D Arrays

public static final int NUM_ROWS = 10; // defined in Constants
public static final int NUM_COLS = 6; // defined in Constants

public void practice2DArrays() {
// deciding which is row and which is column index is
// arbitrary but must be consistent!!!
String[][] myStringArray = new String[NUM_ROWS][NUM_COLS];
int numRows = myStringArray.length;
int numCols = myStringArray[0].length;
System.out.println(“My array has ” + numRows * numCols + “ slots in total!”);

}

array.length gives size of first dimension (you decide whether you want
row or column), and array[0].length gives size of second dimension

10/19/2023

27

78/75
Andr ies van Dam © 2023 10/ 19/ 23

2D Arrays Example (1/2)

• Let’s build a checkerboard with alternating black and
white squares, using JavaFX

• Each square has a row and column index

• Let’s use row-major order

o access any square with
checkerboard[rowIndex][colIndex]

• JavaFX Rectangle’s location can be set using row and
column indices, multiplied by square width factor

o row indicates Y values, column indicates X value

79/75
Andr ies van Dam © 2023 10/ 19/ 23

2D Arrays Example (2/2)
// instantiate a Pane and initialize the checkboard 2D array
Pane myPane = new Pane();
Rectangle[][] checkerboard = new

Rectangle[Constants.NUM_ROWS][Constants.NUM_COLS];
// loop through row and column indices (for each col in each row…)
for (int row = 0; row < checkerboard.length; row++) {

for (int col = 0; col < checkerboard[0].length; col++) {
// instantiate rectangle, setting Y/X loc using row/col indices
Rectangle rect = new Rectangle(col * Constants.SQ_WIDTH,

row * Constants.SQ_WIDTH,
Constants.SQ_WIDTH,
Constants.SQ_WIDTH);

// alternate black and white colors
if ((row + col) % 2 == 0) {

rect.setFill(Color.BLACK);
} else {

rect.setFill(Color.WHITE);
}
myPane.getChildren().add(rect); // graphically add the rectangle
checkerboard[row][col] = rect; // logically add the rectangle

}
}

	Slide 0: Arrays
	Slide 1: Outline
	Slide 2: Why Use Arrays? (1/2)
	Slide 3: Why Use Arrays? (2/2)
	Slide 4: Your lovely TAs
	Slide 5: Arrays (1/4)
	Slide 6: Arrays (2/4)
	Slide 7: Arrays (3/4)
	Slide 8: Arrays (4/4)
	Slide 9: Array Examples
	Slide 10: Outline
	Slide 11: Java’s Syntax for Arrays (1/4)
	Slide 12: Java’s Syntax for Arrays (2/4)
	Slide 13: Initializing Array Example
	Slide 14: Java’s Syntax for Arrays (3/4)
	Slide 15: Accessing Array Elements Example
	Slide 16: Java’s Syntax for Arrays (4/4)
	Slide 17: Arrays as Parameters (1/3)
	Slide 18: Arrays as Parameters (2/3)
	Slide 19: Arrays as Parameters (3/3)
	Slide 20: Example: Hunger Games Tribute Selection (1/2)
	Slide 21: Example: Hunger Games Tribute Selection (2/2)
	Slide 22: ArrayIndexOutOfBoundsExceptions (1/2)
	Slide 23: ArrayIndexOutOfBoundsExceptions (2/2)
	Slide 24: TopHat Question
	Slide 25: for vs. for-each loop (1/4)
	Slide 26: for vs. for-each loop (2/4)
	Slide 27: for vs. for-each loop (3/4)
	Slide 28: for vs. for-each loop (4/4)
	Slide 29: Inserting and Deleting in Arrays (1/2)
	Slide 30: Inserting and Deleting in Arrays (2/2)
	Slide 31: Outline
	Slide 32: java.util.ArrayList (1/2)
	Slide 33: java.util.ArrayList (2/2)
	Slide 34: Objects
	Slide 35: What can ArrayLists hold?
	Slide 36: Generics! (1/2)
	Slide 37: Generics! (2/2)
	Slide 38: java.util.ArrayList Methods (1/6)
	Slide 39: java.util.ArrayList Methods (2/6)
	Slide 40: java.util.ArrayList Methods (3/6)
	Slide 41: java.util.ArrayList Methods (4/6)
	Slide 42: java.util.ArrayList Methods (5/6)
	Slide 43: java.util.ArrayList Methods (6/6)
	Slide 44: ArrayList Example (1/2)
	Slide 45: ArrayList Example (2/2)
	Slide 46: Summary of ArrayLists (1/2)
	Slide 47: Summary of ArrayLists (2/2)
	Slide 48: TopHat Question
	Slide 49: ConcurrentModificationExceptions
	Slide 50: Outline
	Slide 51: Multi-Dimensional Arrays
	Slide 52: 2-Dimensional Array Examples (1/2)
	Slide 53: 2-Dimensional Array Examples (2/2)
	Slide 54: Representing Multi-Dimensional arrays (1/2)
	Slide 55: Representing Multi-Dimensional arrays (2/2)
	Slide 56: Ways to Think About Array Storage (1/3)
	Slide 57: Ways to Think About Array Storage (2/3)
	Slide 58: Ways to Think About Array Storage (3/3)
	Slide 59: TopHat Question
	Slide 60: Common Array Errors - Watch Out! (1/2)
	Slide 61: Common Array Errors - Watch Out! (2/2)
	Slide 62: SciLi Tetris: Loops and Arrays Writ Large
	Slide 63: Announcements
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Appendix: 2D Array Example
	Slide 77: Example: Size of 2-D Arrays
	Slide 78: 2D Arrays Example (1/2)
	Slide 79: 2D Arrays Example (2/2)

