
10/24/23

1

1 / 82
A ndries van D am © 2023 10/24 /23

TopHat Question
[Anonymous]: How did you feel about the water skit last
lecture and the raunchy elements of our skits in general?

A. I don't want to see anything like that again;
please tone it down

B. I didn't really like it ; I'd prefer if you tone it
down, but I am generally indifferent

C. I feel neutral
D. I thought it was a little funny
E. I thought it was very funny

1

2 / 82
A ndries van D am © 2023 10/24 /23

Revisiting Arrays: Size of 2-D Arrays
public static final int NUM_ROWS = 10; // defined in Constants
public static final int NUM_COLS = 6; // defined in Constants

public void practice2DArrays() {
 // deciding which is row and which is column index is

 // arbitrary but must be consistent!!!
 String[][] stringArray = new String[NUM_ROWS][NUM_COLS];
 int numRows = stringArray.length;
 int numCols = stringArray[0].length;
 System.out.println(“My array has ” + numRows * numCols + “ slots in total!”);
}

array.length gives size of first dimension (you decide whether you want

row or column), and array[0].length gives size of second dimension

2

3 / 82
A ndries van D am © 2023 10/24 /23

Common Array Errors - Watch Out! (1/2)
● Cannot assign a scalar to an array

int[] intArray = 5;

▪ 5 is not an array
o to initialize array elements, must loop over array and assign

values at each index. Here we assign 5 to each element:
int[] intArray = new int[20]; //initializes array, not elements
for (int i=0; i < intArray.length; i++){
 intArray[i] = 5;
}

3

10/24/23

2

4 / 82
A ndries van D am © 2023 10/24 /23

Common Array Errors - Watch Out! (2/2)
● Cannot assign arrays of different dimensions to each other

 int[] intArray = new int[23];

 int[][] 2DIntArray = new int[2][34];

 intArray = 2DIntArray;

● Doing so will result in this error:

 “Incompatible types: Can’t convert int[] to int[][]”

● Similar message for assigning arrays of mismatched type

● Take note that Java will automatically resize an array when assigning a

smaller array to a larger one

4

5 / 82
A ndries van D am © 2023 10/24 /23

2D Arrays Example (1/2)
• Let’s build a checkerboard with alternating black and

white squares, using JavaFX
• Each square has a row and column index
• Let’s use row-major order

o access any square with
checkerboard[rowIndex][colIndex]

• JavaFX Rectangle’s location can be set using row and
column indices, multiplied by square width factor
o row indicates Y values, column indicates X value

5

6 / 82
A ndries van D am © 2023 10/24 /23

2D Arrays Example (2/2)
// instantiate a Pane and initialize the checkboard 2D array
Pane myPane = new Pane();
Rectangle[][] checkerboard = new
 Rectangle[Constants.NUM_ROWS][Constants.NUM_COLS];
// loop through row and column indices (for each col in each row…)
for (int row = 0; row < checkerboard.length; row++) {
 for (int col = 0; col < checkerboard[0].length; col++) {
 // instantiate rectangle, setting Y/X loc using row/col indices
 Rectangle rect = new Rectangle(col * Constants.SQ_WIDTH,
 row * Constants.SQ_WIDTH,
 Constants.SQ_WIDTH,
 Constants.SQ_WIDTH);
 // alternate black and white colors
 if ((row + col) % 2 == 0) {
 rect.setFill(Color.BLACK);
 } else {
 rect.setFill(Color.WHITE);
 }
 myPane.getChildren().add(rect); // graphically add the rectangle
 checkerboard[row][col] = rect; // logically add the rectangle
 }
}

6

10/24/23

3

7 / 82
A ndries van D am © 2023 10/24 /23

SciLi Tetris: Loops and Arrays Writ Large
• In 2000, Tech House constructed then the largest Tetris

game on the Scili – the Woz flew out to play it!

• 5 months of work: 11 custom-built circuit boards, a 12-story
data network, a Linux PC, a radio-frequency video game
controller, and over 10,000 Christmas lights – see
http://bastilleweb.techhouse.org/

• Video:
https://www.youtube.com/watch?v=tkIRWoo9qrU&t=21s

• Article: http://news.bbc.co.uk/2/hi/science/nature/718009.stm

7

8 / 82
A ndries van D am © 2023 10/24 /23

Lecture 14
Design Patterns and Principles: Part 1

From xkcd Webcomics: https://xkcd.com/974/

8

9 / 82
A ndries van D am © 2023 10/24 /23

“Design-Focused” Projects (1/2)
• Projects up to and including Fruit Ninja were considered

“foundation-focused”
• Projects for remainder of semester are considered

“design-focused”
o given only an assignment specification (and hints), you will design

programs from scratch
• On early projects, design was 25% of code grade; now 30-35%

o for at least two of the following Fruit Ninja, Cartoon, Doodle Jump,
Tetris, you will have Code Debriefs

o 8% of your final grade is made up of Code Debriefs, where you will
describe your design and code to TAs

9

http://bastilleweb.techhouse.org/
https://www.youtube.com/watch?v=tkIRWoo9qrU&t=21s
http://news.bbc.co.uk/2/hi/science/nature/718009.stm

10/24/23

4

10 / 82
A ndries van D am © 2023 10/24 /23

“Design-Focused” Projects (2/2)
• Put much more effort (≥ 2-3 hours)

into understanding assignment
specifications and planning before
coding
ocontainment/association and

interface/inheritance diagrams crucial!

• Starting to code with a poor design
leads to hours wasted trying to design
and code on the fly

10

11 / 82
A ndries van D am © 2023 10/24 /23

Design Grading
• Cartoon design grade will be based on

design guidelines in the handout and
discussed throughout this semester
o will NOT be graded on specifics of this lecture

• Remaining projects’ design WILL be
graded with this week’s design patterns +
principles lectures in mind
o refer to this lecture when designing

DoodleJump with your partner!

11

12 / 82
A ndries van D am © 2023 10/24 /23

Outline

● Design in a Nutshell

● Abstraction and Encapsulation

● Class Cohesion and Coupling

● Wrapper Classes

12

10/24/23

5

13 / 82
A ndries van D am © 2023 10/24 /23

Context Beyond CS15
• Imagine you’re working for a company with a bunch of software

engineers that write the code for a popular app
• The app needs to work properly now, and in the future, more

engineers will need to add new/change existing features
• Your job is to write code that:

o works properly (functionality)
o is easily readable (style)
o another engineer can add to easily (design)
o another engineer can modify easily (design)

• When writing real code, the design of your program is
ultimately as important as its functionality

13

14 / 82
A ndries van D am © 2023 10/24 /23

Design in a Nutshell (1/2)
● Up to now, focused on how to program

o be appropriately lazy: re-use code and ideas

● Increasingly we learn about good design
● Some designs are better than others

o “better” means, for example:
▪ more efficient in space or time required (traditional criteria)
▪ more robust, the “ilities” – usability, maintainability, extensibility,

scalability…

● These are central concerns of Software Engineering
o discussed in detail in CS32 (CSCI0320)

14

15 / 82
A ndries van D am © 2023 10/24 /23

Design in a Nutshell (2/2)
● There are trade-offs to make everywhere

o architect balances aesthetics, functionality, cost
o mechanical engineer balances manufacturability, strength,

maintainability, cost

● Need to defend your trade-offs
o no perfect solution, no exact rules
o up to now designs rather straight-forward, not concerned about

performance because not dealing with larger collections of data

15

10/24/23

6

16 / 82
A ndries van D am © 2023 10/24 /23

What Do We Cover in These Lectures?
• Walk through process of planning design for a mock CS15

project
• Emphasize design principles and design patterns, which

will be directly relevant to projects (including DoodleJump!),

16

17 / 82
A ndries van D am © 2023 10/24 /23

Our Mock CS15 Project: Snake!
• Snake moves around board of squares at

specified rate and continues moving in its last
direction

• Player changes snake direction via key input,
with goal of eating pellets to increase score

• Snake starts 3 squares in length, grows 1
square for each pellet eaten

• Snake can only move forward and turn right or
left relative to its direction, not 180°

• Gain score by eating pellets – different colors
yield different scores

• Game ends when snake moves off screen or
into itself

CS15Snake Created by 2021 HTAs
Will Buerger and Harriet Muutu! J

17

18 / 82
A ndries van D am © 2023 10/24 /23

Outline

● Design in a Nutshell

● Abstraction and Encapsulation

● Class Cohesion and Coupling

● Wrapper Classes

18

10/24/23

7

19 / 82
A ndries van D am © 2023 10/24 /23

Where do I start?!
• Assignment specifications can be daunting

• Start at highest level: brainstorm how to separate
components of program (delegation pattern!)

ocontainment/association decisions
owhat classes should we write? how should they

communicate with each other?

ocritical to consider where to divide abstractions

19

20 / 82
A ndries van D am © 2023 10/24 /23

Recall: Delegation Leads to Abstraction
• Delegation results in levels of abstraction, where each

level deals with more specifics to complete an action

Please groom my
dog!

Wash this dog with
shampoo, then trim its

hair and dry!

Fill the bath with warm
water until it’s two-

thirds full…

DogOwner PetShop DogGroomer

Bath

HairDryer

Clippers

20

21 / 82
A ndries van D am © 2023 10/24 /23

Abstractions (1/3)
● Each class represents an abstraction

o a “black box”: hides details that external
users do not care about

o allows you as the programmer to control
programs’ complexity – only think about
relevant features

21

10/24/23

8

22 / 82
A ndries van D am © 2023 10/24 /23

Abstractions (2/3)
• CS15 support code and JavaFX are great examples of

levels of abstraction
andyBot.turnRight();

Don’t need to worry about
internals of how robot moves

this.pongBall.updatePosition();

Ball tracks its own speed and
direction – we just tell it to move

vbox.setAlignment(

Pos.TOP_CENTER);

JavaFX handles pixel-level graphical
representation and display

22

23 / 82
A ndries van D am © 2023 10/24 /23

Abstractions (3/3)
• CS15 support code itself results in levels of abstraction

o each layer becomes more specific

this.pongBall.updatePosition();

PongGame CS15Ball

circle.setCenterY(

circle.getCenterY() +
verticalChange);

JavaFX Circle

JavaFX internals to
manipulate specific

pixels

23

24 / 82
A ndries van D am © 2023 10/24 /23

Encapsulation(1/2)
• Lack of clean abstractions leads to messy

communication between classes

• Example: Game class contains CompositeShape
class that moves across screen
o must allow access to CompositeShape’s private

components via getHead() and getBody()
o each communication between Game and

CompositeShape internals is an arrow connecting
them

• With access to those shapes, Game could also
write code like
this.getHead().setFill(Color.RED);
o but what if we don’t want Game to be allowed to

change CompositeShape’s color?!

Game

CompositeShape

shape.getHead().setX(20 +
shape.getHead().getX());

shape.getBody().setX(20 +
shape.getBody().getX());

sh
ap
e.
ge
tH
ea
d(
)

sh
ap
e.
ge
tH
ea
d(
)

sh
ap
e.
ge
tB
od
y(
)

sh
ap
e.
ge
tB
od
y(
)

24

10/24/23

9

25 / 82
A ndries van D am © 2023 10/24 /23

Encapsulation(2/2)
• We do this by…

o delegating details to CompositeShape,
simplifying communication

o abstracting details of moving shapes,
means no more need for getHead() and
getBody()

o so, Game doesn’t need to know the details of
moving shapes!

• Clean abstractions leads to clear communication
between classes

• Key Point: Use getters/setters ONLY as
necessary to maximize encapsulation safety
(IMPORTANT for future courses like CS200)
o and you may well have a getter w/o a

setter!

Game

CompositeShape

shape.moveRight();

public void moveRight() {

 this.head.setX(20
 + this.head.getX());
 this.body.setX(20
 + this.body.getX());
}

sh
ap
e.
mo
ve
Ri
gh
t(

)

25

26 / 82
A ndries van D am © 2023 10/24 /23

Outline

● Design in a Nutshell

● Abstraction and Encapsulation

● Class Cohesion and Coupling

● Wrapper Classes

26

27 / 82
A ndries van D am © 2023 10/24 /23

● You’ve used composition from the beginning

● Models object built through its containment of other objects and/or
association with peer objects

• This is a has-a relationship, in which an object has an instance of
another class stored as an instance variable
o can be modeled through both containment – using the new keyword
o as well as association – passing an object to an instance of another

class to store as one of its instance variables

• Think of instance variables as modeling both the components and the
properties/attributes that make up a class

Review: Composition Pattern (1/3)

27

10/24/23

10

28 / 82
A ndries van D am © 2023 10/24 /23

Review: Composition Pattern (2/3)
● Compose one object out of other, more specialized objects that do one

specific thing, e.g., car’s engine
o factor out code that works together for one specific purpose into a separate

class (ex. heatOven() & bakeCookies() can go into a Baker class)
§ only instantiate an instance of this class if you need that functionality

o specialist classes allow you to design components that you can build on
▪ i.e., black boxes that expose only limited functionality
▪ this is a form of delegation – don’t rewrite code that specialists can do

for you!

• Think of these specialist classes like Lego blocks that you can piece
together to compose a larger class
o every type of Lego block is unique and serves a specific purpose in your overall

structure

28

29 / 82
A ndries van D am © 2023 10/24 /23

Review: Composition Pattern (3/3)
● How can we determine good delegation and composition

decisions?
● A Car class would use instances of these classes

o Engine, Brake, Transmission, SeatBelt....
o Car can delegate startUp() to the Engine,…

29

30 / 82
A ndries van D am © 2023 10/24 /23

High Cohesion and Loose Coupling (1/3)
• Cohesion refers to how well-defined the purpose of a

single class is

• A class with a single, well-defined purpose has high
cohesion
o This is also known as the Single Responsibility

Principle

• Strong separation of concerns reduces mental
juggling – when coding in one class, only need to think
about limited pieces of functionality – avoid “Swiss
army knife” classes!

• You should be able to succinctly describe the purpose
of each class in class header comments

30

10/24/23

11

31 / 82
A ndries van D am © 2023 10/24 /23

High Cohesion or Low Cohesion?
High Cohesion Low Cohesion

• In a program modeling the life of a
student, there is one CS15 class for
the student to track their CS15
assignments

• In a program modeling the life of a
student, there is one Life class that
handles Fall classes, social life, and
extracurriculars

• In a program representing the life of
a student, there is one Life class
that handles Fall classes, social life,
and extracurriculars

• In a program representing the life
of a student, there is one CS15
class for the student to track their
CS15 assignments

• In Cartoon, one class that
represents a Cloud with 5 circles
and moves each of the circles
across the pane

• In Cartoon, PaneOrganizer handles setting
up the overall structure of panes, subpanes
and shapes, and handles changing the
color of each shape on key presses

• In Cartoon, PaneOrganizer handles
setting up the overall structure of
panes, subpanes and shapes, and
handles changing the color of each
shape on key presses

• In Cartoon, one class that models
a Cloud with 5 circles and moves
each of the circles across the
pane

31

32 / 82
A ndries van D am © 2023 10/24 /23

High Cohesion and Loose Coupling (2/3)
• Coupling refers to how interdependent two classes are
• Each class should have loose coupling with other

classes
o use abstractions to keep clear relationships between classes

• Limit dependencies between classes
o should be able to modify internals of one class without worrying

about impact on other classes

32

33 / 82
A ndries van D am © 2023 10/24 /23

Coupling Example (1/3)
• Back to shape movement! Let’s say we have our app to

make a planet move via Planet class
o to start, the planet is just represented by a Circle

// in Cartoon class

Planet venus = new Planet();
Timeline timeline = new Timeline(Duration.seconds(1), (ActionEvent e) ->
 venus.getCircle().setX(venus.getCircle().getX() + 10));

public class Planet {
 private Circle circle;
 public Planet() {
 this.circle = new Circle(Constants.PLANET_RADIUS);
 }
 public Circle getCircle() { return this.circle; }

}

33

10/24/23

12

34 / 82
A ndries van D am © 2023 10/24 /23

Coupling Example (2/3)
• Now we decide to use a composite shape with 4 rings around the planet
• First, move the Circle from Planet class
• Then, move the rings from Planet class
• Now every time a shape is added, it must be moved in Cartoon
• This is tight coupling (bad), i.e., Cartoon is too involved with details of

moving Planet

// in Cartoon class
Planet venus = new Planet();
Timeline timeline = new Timeline(Duration.seconds(1), (ActionEvent e) -> {
 venus.getCircle().setX(venus.getCircle().getX() + 10);
 venus.getRing1().setX(venus.getRing1().getX() + 10);
 venus.getRing2().setX(venus.getRing2().getX() + 10);

 // etc.
 });

34

35 / 82
A ndries van D am © 2023 10/24 /23

Coupling Example (3/3)
• Alternatively, could just have one move method in Planet
• Planet could have 1 shape or 18 shapes, and Cartoon

doesn’t need to change!
• This is loose coupling (good)

// in Cartoon class
Planet venus = new Planet();
Timeline timeline = new Timeline(Duration.seconds(1),
 (ActionEvent e) -> venus.move());

public class Planet {

 // constructor and instance variables elided
 public void move() {
 // This method could move one shape or a bunch of shapes, but
 // Cartoon doesn’t need to know about the details!
 }

}

35

36 / 82
A ndries van D am © 2023 10/24 /23

High Cohesion and Loose Coupling (3/3)
• Key Point: Each class should have an independent,

well-defined purpose (high cohesion), and
communication between classes should be as simple
and well-defined as possible (loose coupling)

36

10/24/23

13

37 / 82
A ndries van D am © 2023 10/24 /23

TopHat Question
A Tribute class is using an instance of the Bow class to hunt for food.
Which code in Tribute would indicate that the Bow class is written
with proper encapsulation, abstractions, and loose coupling?

A. bow.getQuiver().getArrow().shoot();

B. bow.shootArrow();

C. bow.nockArrow(“Wooden”);
 bow.drawBowString();
 bow.looseArrow(“Wooden”);

37

38 / 82
A ndries van D am © 2023 10/24 /23

Back to Snake Brainstorming (1/3)
• Start at highest level: brainstorm how to separate

components of program
o keeping in mind aim of high cohesion and loose coupling

PaneOrganizer –
Organize high-level

graphical elements of
game

SnakeGame – Handle
high-level logic of

game through timeline
and key input

Data structure to
represent snake…W e succinctly described

purpose of these
components – indicator

of high cohesion!

2D array of squares

ArrayList because
length changes

Data structure to
represent a board…

38

39 / 82
A ndries van D am © 2023 10/24 /23

C/A Diagram Draft
App

PaneOrganizer

SnakeGame

Rectangle

39

10/24/23

14

40 / 82
A ndries van D am © 2023 10/24 /23

Back to Snake Brainstorming (2/3)
• Let’s think more about what’s going on in the SnakeGame class
• What should happen at each tick of the Timeline?
• Let’s write pseudocode:

omove snake into next tile
o if snake went off board or ran into itself:

▪ game over
o if pellet is on tile that snake moved into:

▪ eat pellet
▪ add to score
▪ Increase snake length by one square
▪ generate new pellet

40

41 / 82
A ndries van D am © 2023 10/24 /23

Back to Snake Brainstorming (3/3)
• We realize that each board square needs some extra

information
o is snake on the square?
o is pellet on the square?

• With more complexity, let’s consider delegating to a class
BoardSquare rather than making SnakeGame handle it
o instead of a board of “simple squares” (javafx Rectangles), we

need “smart squares” (our own BoardSquare class)
o then we can model this extra information as properties

(instance variables) of the square!

41

42 / 82
A ndries van D am © 2023 10/24 /23

Designing the BoardSquare (1/3)
• Since each BoardSquare represents one graphical square,

should we have BoardSquare inherit from a JavaFX
Rectangle? Similar to a sports car inheriting from a car…

public class BoardSquare extends Rectangle { …

BoardSquare

Rectangle

42

10/24/23

15

43 / 82
A ndries van D am © 2023 10/24 /23

Designing the BoardSquare (2/3)
• If BoardSquare extends Rectangle,
BoardSquare inherits all of Rectangle’s
methods

• That means BoardSquare’s set of public
methods becomes the Rectangle‘s set of
public methods plus whatever specialized
methods we write: is that a feature or a
bug?

• In the context of Snake, we don’t want
programmers to have access to all
Rectangle methods -- if they did, they
could change position, size, rotation, etc. of
BoardSquare

43

44 / 82
A ndries van D am © 2023 10/24 /23

Designing the BoardSquare (3/3)
• Key point: To achieve simple communication between classes

(loose coupling), the set of public methods a class or
interface exposes should be as simple and restricted as
possible

• Remember encapsulation… keep private parts your own
business

• Let’s only allow users of BoardSquare to access the limited
parts we need to make public

• In this case, most of Rectangle methods shouldn’t be
accessible – how can we make them private?

44

45 / 82
A ndries van D am © 2023 10/24 /23

Outline

● Design in a Nutshell

● Abstraction and Encapsulation

● Class Cohesion and Coupling

● Wrapper Classes

45

10/24/23

16

46 / 82
A ndries van D am © 2023 10/24 /23

Wrapper Classes
• A wrapper is code that encapsulates (or “wraps”

around) another software component as a layer of
abstraction

• In Java specifically, we create wrapper classes that add
a layer of abstraction to another Java class
o i.e., we add functionality to a class that other classes

using it do not need to know details of
• Instead of inheriting from a class, contain an instance of

that class as a component (in an instance variable)

46

47 / 82
A ndries van D am © 2023 10/24 /23

BoardSquare Wrapper Class (1/2)
• BoardSquare wraps an

instance of Rectangle
o Rectangle is the main

component of BoardSquare,
but it also has extra
functionality/information

• Allows us to restrict certain
accesses inherited from
Rectangle and add helpful
pieces of information
o Pellet contained in a

BoardSquare
o original Color of a

BoardSquare

public class BoardSquare {
 private Rectangle square;
 private Pellet pellet;
 private Color originalColor;

 public BoardSquare(Pane pane, boolean odd) {
 this.square = new Rectangle();
 this.pellet = null;
 if (odd) {
 this.originalColor = Color.GREEN;
 }
 else {
 this.originalColor = Color.YELLOW;
 }
 this.setUpSquare();//set size, location, …
 pane.getChildren().add(this.square);
 }
}

47

48 / 82
A ndries van D am © 2023 10/24 /23

BoardSquare Wrapper Class (2/2)
• A wrapper class exposes

just the info that needs to be
public and no more!
o generally via setter and getter

methods

• To show snake moving
across board, one way is to
change color of square to
Black
o so we add a setter for Color

public class BoardSquare {

 private Rectangle square;
 private Pellet pellet;
 private Color originalColor;

 public BoardSquare(Pane pane, Boolean odd) {
 // constructor body elided
 }

 public void setColor(Color color) {
 this.square.setFill(color);

 }
}

48

10/24/23

17

49 / 82
A ndries van D am © 2023 10/24 /23

Keep Class Relationships Simple! (1/2)
• Is setColor the best we can do

to abstract away internals of the
square?

• For our game, we want:
o square to turn black when

snake goes over it
o square to return to original

color when snake moves
off it

• With setColor, programmer
could make square any
arbitrary color – that shouldn’t
happen!

public class BoardSquare {

 private Rectangle square;
 private Pellet pellet;
 private Color originalColor;

 public BoardSquare(Pane pane, Boolean odd) {
 // constructor body elided
 }

 public void setColor(Color color) {
 this.square.setFill(color);

 }
}

49

50 / 82
A ndries van D am © 2023 10/24 /23

Keep Class Relationships Simple! (2/2)
• Instead, let’s have two separate

methods
o one method for snake

moving onto square
o one method for snake

leaving square
• Trade-off: this produces more

code but makes relationship
between classes simpler (looser
coupling)

• Key Point: Strive for simpler class
relationships – that may not
always mean fewer methods!

public class BoardSquare {

 private Rectangle square;
 private Pellet pellet;
 private Color originalColor;

 public BoardSquare(Pane pane, Boolean odd) {

 // constructor body elided
 }

 public void addSnake() {
 this.square.setFill(Color.BLACK);

 }

 public void reset() {
 this.square.setFill(this.originalColor);
 }
}

50

51 / 82
A ndries van D am © 2023 10/24 /23

Containment over Inheritance
• Wrapper classes are a good example of a generally

agreed-upon design principle that containment is
preferred to inheritance, unless the inheriting class should
publicly expose all methods inherited

• In our Snake example, our wrapper class is designed so
BoardSquare has-a Rectangle as opposed to
BoardSquare is-a Rectangle

51

10/24/23

18

52 / 82
A ndries van D am © 2023 10/24 /23

TopHat Question
Which of the following is NOT true about wrapper classes?

A. The goal of a wrapper class is to make a class’s set of
public methods as simple as possible

B. Wrapper classes are an example of using encapsulation
C. Wrapper classes add a layer of abstraction around

some contained class
D. Wrapper classes use inheritance rather than

composition

52

53 / 82
A ndries van D am © 2023 10/24 /23

Representing the Snake (1/2)
• Let’s consider how to use
ArrayList to represent the snake

• What should the ArrayList hold?
o BoardSquares – hold whichever

squares that snake is on top of
o type will be
ArrayList<BoardSquare>

53

54 / 82
A ndries van D am © 2023 10/24 /23

Representing the Snake (2/2)
• ArrayList could be an instance variable in SnakeGame

class… or could delegate it!
o delegate for higher cohesion

• Snake class will act as wrapper class for
ArrayList<BoardSquare> and only expose method to
move and changeDirection
oso much simpler than including all Rectangle methods

• Important note: This decision means SnakeGame class
won’t have direct access to ArrayList so it can’t mess
with contents of list directly (encapsulation!)

54

10/24/23

19

55 / 82
A ndries van D am © 2023 10/24 /23

Representing the Board
• We model our static board with a 2D array BoardSquare[][]
• Once board is created, the only editing to it will be to change

state of individual BoardSquare
• Delegate to a Board class that acts as wrapper of
BoardSquare[][]?
o definitely high cohesion since Board would only handle board

contents
o no major benefit of delegating to Board as a wrapper since likely

the only method would be a getter
▪ public BoardSquare tileAt(int row, int col)

o could argue for or against having separate Board class – both
solutions are on GitHub!

55

56 / 82
A ndries van D am © 2023 10/24 /23

Recap of Design Brainstorming So Far (1/2)

Class Purpose Important Instance Variables Important Methods

App Starts the application n/a n/a

PaneOrganizer Organizes the high-
level graphical
organization of the
program

BorderPane root n/a

SnakeGame Handles high-level
logic of game via
timeline and key input

Pane gamePane ,
Snake snake ,
Board board

updateGame (called on
timeline),
handleKeyInput
(called on key press)

56

57 / 82
A ndries van D am © 2023 10/24 /23

Recap of Design Brainstorming So Far (2/2)

Class Purpose Important Instance Variables Important Methods

Snake Represents
snake moving
around the board

ArrayList<BoardSquare> snakeSquares ,
Board myBoard , // to store association
Direction currDir
// Direction enum – Thu’s lecture!

move ,
changeDirection

Board Represents
board of squares

BoardSquare[][] board tileAt

BoardSquare Represents one
square on the
board

Rectangle boardSquare,

Color originalColor,
Pellet pellet

addSnake ,
reset,
isEmpty

57

10/24/23

20

58 / 82
A ndries van D am © 2023 10/24 /23

Containment/Association Diagram
App

PaneOrganizer

SnakeGame

Board

BoardSquare

Snake

via ArrayList
via 2D array

58

59 / 82
A ndries van D am © 2023 10/24 /23

Class Diagram
App

PaneOrganizer

+ updateGame() : void
+ handleKeyInput(KeyEvent e) : void

SnakeGame

+ tileAt(int row, int col) : BoardSquare

Board

+ addSnake() : void
+ reset() : void
+ isEmpty() : boolean

BoardSquare

- snakeSquares : ArrayList<BoardSquare>
- currDirection : Direction

Snake

- root : BorderPane

- board : BoardSquare[][]

+ move() : BoardSquare
+ changeDirection(Direction dir) : void

- square : Rectangle

Note: There is subtlety here around the
BoardSquare. Board creates
BoardSquares, and Snake gets
BoardSquare instances from Board to
store in its ArrayList; Snake does not
contain its own BoardSquares, it only
stores references to BoardSquares
already instantiated by Board.

Key

Class

- instance variables

+ methods

59

60 / 82
A ndries van D am © 2023 10/24 /23

Announcements (1/2)
• Snake code on GitHub – check it out to see contrasting

design decisions, and example of large program
implementation
o don’t worry if some of it doesn’t make sense, we will continue

during Thursday’s lecture

• 1D Arrays, ArrayLists, and Loops Section this week!
o be sure to complete mini-assignment and send to section TAs

prior to section

• DoodleJump Released Today!!
o early handin: Monday 10/30
o on-time handin: Wednesday 11/1
o late handin: Friday 11/3
o do not underestimate this assignment! start early!

60

https://github.com/brown-cs15-2023/snake
https://docs.google.com/document/d/1zr4K6RVu8_thkw92lZXmvZrHX71EuPzUL02G5XKkAyc/edit

10/24/23

21

61 / 82
A ndries van D am © 2023 10/24 /23

Announcements (2/2)
• Code-Along: Debugging and GitHub

o Wednesday October 25th

o Sunday October 29th

61

62 / 82
A ndries van D am © 2023 10/24 /23

DoodleJump: Getting Started
• What classes should you represent in DoodleJump? What should

their containment/association relationships be?

• How can you leverage “wrapper classes” to wrap some JavaFX
elements you use to represent components of the program?

• How can you model properties like game score and doodle
velocity? Which classes are those properties of?

• What do the different platforms have in common, and how are
they different? How can you leverage polymorphism to make it so
that the game doesn’t need to know the actual type of each
platform it moves?

62

63 / 82
A ndries van D am © 2023 10/24 /23

Software Development: A 5-Step
Process

63

10/24/23

22

64 / 82
A ndries van D am © 2023 10/24 /23

Software Development: A 5-Step
Process Analysis has been done for us

via assignment specification.

Implementation is
when you code!

Testing, in CS15, typically
means playing your game.

Maintenance isn’t as
applicable in CS15.

Design is where
we’re focusing today!

64

Extra Credit Discussion Results!
Should targeted
advertising be

allowed under the
ADPPA?

Should
whistleblowers be
protected under

the ADPPA?

Should the ADPPA
override state
privacy laws?

65

Surveillance
Capitalism

CS15 Fall 2023

66

10/24/23

23

C

Surveillance
Capitalism

“I describe surveillance capitalism
as the unilateral claiming of
private human experience as free
raw material for translation into
behavioral data. These data are
then computed and packaged as
prediction products and sold into
behavioral futures markets.”
 – Shoshana Zuboff (retired Harvard Business School Professor
and author of The Age of Surveillance Capitalism), 2019

Image source: HBS

Surveillance capitalism is when companies

 gather our private information, analyze it, and
 then sell insights about our behavior to other

 businesses.

67

Industrial capitalism

Production

Sales

Profit

R&D

68

Origins of Surveillance Capitalism

User Input

Rendered
Behavior

Analytics

Service
Improvements

Customer!

Adapted from The Age of Surveillance Capitalism by Shoshana Zuboff. Image source: Adobe Stock.

Product!

69

10/24/23

24

Origins of Surveillance Capitalism

User Input

Rendered
Behavior

Analytics

Service
Improvements

Data Exhaust
(Grammar, typos, punctuation…)

Adapted from The Age of Surveillance Capitalism by Shoshana Zuboff. Image source: Adobe Stock.

70

Origins of Surveillance Capitalism

User Input

Rendered
Behavior

Analytics

Service
Improvements

Data Exhaust
(Grammar, typos,
punctuation…)

(Used to generate
predictions on user’s
education backgrounds,
emotions…)
(… which help
businesses with
targeted advertising…)

New customer!

Diagram adapted from The Age of Surveillance Capitalism by Shoshana Zuboff. Image source: Adobe Stock.

New product!

71

How Companies Identify Users

Device ID

Email Address

Phone
Number

IP Address

Digital
Fingerprint

Tracking
Cookie ID

Diagram adapted from Cracked Labs, 2017

72

10/24/23

25

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

1,000,000,000

73

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

250,000,000

74

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

50,000,000

75

10/24/23

26

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

5,000,000

76

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

5,000

77

1. Platform (4)

2. Color Depth (5)
3. Screen Resolution (10)

4. CPU class (100)

5. Full list of installed fonts
(maintaining their order, which increases the entropy) (5000)

6. Timezone

7. UserAgent
8. Language

9. Has session storage or not

10.Has local storage or not
11.Has indexed DB

12.Has IE specific ‘AddBehavior’
13.Has open DB

All numbers in parentheses above are approximations, and the animations assume an even distribution, which is of course not the case.

1

78

10/24/23

27

Incentive one: gather “better” data

Image source: Meta

79

Incentive two: gather more data

More time users
spend…

…more data
collected…

…more accurate
predictions and

hence profit

Incentive for addictive design and sensationalist content

80

So what if predications are accurate?

learn predict influence

Source: Texas A&M University (2019)

81

10/24/23

28

Image source: New York Times (2018)

82

What happens now?

Sources: Slate, CNBC, Wired

83

