Lecture 15

Design Patterns and Principles: Part 2

vl s o
g st

)

1/63

10/26/2023

Overview

e Enums

e Factory Pattern
e Testing

e |Interfacesv. Inheritance

e Method Overloading

Back to Our Snake Program
* Specifications
o playermoves snake via key input around

board of squares with goal of eating pellets to
increase score
o snake can pivot left or right but not 180°
o gain score by eating pellets — different colors twinning! 0
yield different scores
* Represent snake as ArraylList of BoardSquares
and delegate to a wrapper Snake class
* Represent board as 2D amay of BoardSquares
and delegate to a wrapper Board class
* Today, we'll cover details about snake movement

Significantrevisiors o Srake codebyformer HTAS
and food Adam, Brandon,and Naafi 3 / g3

https://xkcd.com/974/

Overview

e Enums
e Factory Pattern
e Testing

e [nterfacesv. Inheritance

e Method Overloading

4163

10/26/2023

Snake Movement (1/3)

Snake keeps moving inthe same direction until a key is pressed,
which triggers change in direction
Direction in which the snake moves is a property or piece of state
What have we learnt so far that we can use to represent a property
or piece of state for a class?

o instance variables!
Need to indicate whether direction the snake is moving is up, down,
left, or right
What type should our instance variable be?

5/63

Snake Movement (2/3)

Can use Strings to store current public class Snake {

direction of snake movement : . : .
private String currDirection;

Pro: easy to read and understand
public Snake() {
this. currDirection = “up”;

Con: value of strings can be

anything! }
o e.g., the north direction can be

represented as “up”, “‘upward”, }

“UP”, “upside” and many more

can be confusing. It's easy to

mistype a string causing

runtime bugs

o

6/63

Snake Movement (3/3)

Alternatively, use integers to store current
direction of snake movement public class Snake {

Pro: it is less likely to mistype an integer . R . .
compared to a string private int currDirection;

Con: the numbers used are arbitrary public Snake() {
o eg., 1 can mean anything. If 1isup, is this. currDirection = 1;
down -1 or 2? }
o somebody reading your code wouldn't
immediately understand what these }
numbers mean
Neither of the choices so far are good enough
Can think of directions as constants e.g., the
cardinal points of acompass

o need an easier way to store current
direction from aset of constants

7163

10/26/2023

Introducing Enums

* Enums are aspecial data type used to represent a group of related
constants

o e.g., the cardinal directons: north, south, east, west
o can create a Directionenum for this (nextslide)

* The value of an enum can be any of the constants pre-defined for it
o the value ofthe Direction enum would be any of 4 drections

* Inour program, use enums to represent the cardinal directions of snake
movement

8/63

Declaring and Defining an Enum

* Declare it as enum rather than class or
interface

D_ecla_re the set of oonstarts,i_nthis case the 4 }
directions, separafingthem with commas

Because they are constants, enum fields

should be in dl UPPER_CASE letters

To access the enum constarts, use the dot

syntax:

Direction up = Direction.UP;

Frums,just like classes, have their own .java

ile.

public enum Direction {
WP, DOWN, LEFT, RIGHT;

o this file would be Direction. java
o inIntelliJ, an enumfile wil be shown by the
lettericon E

9/63

Using Enums: Snake Movement (1/3)

Can use a Direction enum in Snake
to store direction of movement

public class Snake {

. . N N . ivate D: t Di tion;
- notice currDirection’s type is private birectin currbirection

the enum Direction. Not String public Snake() {
or int this.curirection = Direction.RIGHT;
}
o currDirection is initialized to
right public void changeDirection(Direction newir) {
this.curirection = newDir;

Like any type in Java, enums can be }
used as parameters to methods

o changeDirection sets cument }
direction to whatever is passed in

Notice how intuitive the value of
currDirection is compared to when
we used strings and integers!
10/63

10/26/2023

TopHat Question

Given the enum below, which of the following is a correct way to
initialize the paused v ariable?

public enum Status {
PAUSED, RUNNING, STOPPED;

}

A. Status paused = new Status(PAUSED);
B. Status paused = Status(PAUSED);

C. Status paused = Status.PAUSED();
D. Status paused = Status.PAUSED;

11/63

Using Enums: Snake Movement (2/3)

Remember the handleKeyPress method — Private vold handlekeypress(keyCode code) {
itch d
from lab4 & Cartoon? st (pde) ¢

case P:
o JavaFX provided it with aguments that :g;iéiiz:-azj‘lem’“’““"
corresponded 1 Left, Right, or Space keys break;
o these KeyCodes were ENUMs! case DOWN:
. this.snake.changeDirection
* Again, use a switch and call (Direction.DOWN);
changeDirection in each case, passing in e LE”F":E“
the corresponding direction this. snake. changeDirection
* Butwait! There's one specification with (Direction. LEM);
snake movement we’ve ignored case RIGHT:
0 : o this.snake.changeDirection
o snake canpivat rlgh f)r left, but not 180 (Direction ntamys
o thus check new direction passed from key break;
input is not the opposite of currentdirection defﬁulb“ .
reak;

12/63

Using Enums: Snake Movement (3/3)

Can use a series of if-else pu
statements to check that newDir is

not the direction opposite
currDirection

Results in complicated code; need
a simpler solution
o given a direction, can wefind its
opposite?
o how can we have this functionality
be part of the enum so that snake
can use it?

g,

blic class snake {

public void changeDirection(Direction newir) {
if (rewDir == Direction.UP &&
this.arrbirection != Direction.DOWN) {
this.currDirection = newir;
} else if (newDir == Direction.DOWN &&
this.arrbirection != Direction.UP) {
this.currDirection = newir;
} else if (newDir == Direction.LEFT &&
this.arrbirection != Direction RIGIT) {
this.currDirection = newir;
}else if (newDir == Direction.RIGT &
this.arrbirection != Direction LEFT) {
this.currDirection = newir;

13/63

10/26/2023

Introducing Enum Methods (1/3)

* Enums in java act like classes inthat We ,,p1ic enun pirection {

can define methods and other instance
variables within its body

UP, DOW, LEFT, RIGHT;

public Direction opposite@irection current) {

o not a class, no constructor because values Switch gurrert) {

already enumerated in the declaration

Can add a method, opposite, in our
enum, that retums the opposite direction of
the current direction
But need to know what current direction
(initialized in Snake’s constructor) is

o can pass it toopposite as aparameter.

Anything wrong with this?

o repetitive since Snake woudcall:

currDirection.opposite(currDirection);

case UP:
return DOWN;
case DOMWN:
return UP;
case LEFT:
return RIGHT;
case RIGHT:
return LEFT;
}

}

14/63

Enum Methods (2/3)

« Caninstead pass this to
switch statement
o i.e.,, the value of Direction we
call opposite on:
current.opposite();
o related to other uses of this
* If current is
Direction. LEFT, what
would current.opposite ()
return?

o Direction.RIGHT

this is the current value of
direction. When opposite() is
called, we check said current direction
and return its opposite

public enum Direction {
UP, DOWN, LEFT, RIGHT,

public Direction/Opposite () {
switch (this) {
case UP:
return DOWN;
case DOWN:
return UP;
case LEFT:
return RIGHT ;
case RIGHT:
return LEFT;

15/63

Enum Methods (3/3)

* Back in Snake, can now check that public class saake {
direction passed in from key input
is not the opposite of current

private Direction currDirection;

direction pblic Snake() {
* Use the != comparator to compare this currirection = Direction RIGHT;
two enum values ¥
* Notice how much simpler our code plic wid changedirection(Direction newdir) {
looks compared to the tower of if- e ririon Sty OPeiteO) €
else statements? y)
¢ Adding methods to enums makes
them more robust and a useful data ?}
type to have ina program
16/63

10/26/2023

TopHat Question

Giv en the enum below, which of the following could be a method
in Operator?

public enun Operator {
ADD, SUBTRACT, MILTIPLY, DIVIDE;

}
A B. C.
public int calc(int a, int b) { public int calc(int a, int b) { public int calc(int a, int b) {
svitch(a, b) { svitch(this) { svitch(this) {
case ADD: case 1t case ADD:
retrn a + b; return a + b; return a + b;
case SUBTRACT: case 2 case SUBTRACT:
return a - b; return a - b; return a - b;
case MILTIPLY: case 3t case MILTIPLY:
return a * b; returna * b; return a * b;
case DIVIDE: case 4: case DIVIDE:
return a / b; return a / b; returna / b;
} } }
} } }

17/63

Overview

18 /63

Representing the Food (1/3)

Goal isto grow the Snake as much as

possible without moving it off screen

or into itself

Snake grows by eating pellets which

are located on random positions on

the board

In our version of the game, want to

model different types of the pellets
o each with a different color and

yielding different scores
How can we generate these distinct
types of pellets?

19/63

10/26/2023

Representing the Pellets (2/3)

* Can use interface and create different Pellet classes that
implement it?
* However, in the version of Snake we're making, there’s very little
difference between Pellet types
o only difference is color and score which are properties of the class! No
difference in functionality (methods)
* Important to keep in mind project specifications when designing
because they affect our design choices
o only if there were different actions associated with each pellet, might
we want to use an interface

20/63

Representing the Pellets (3/3)

Can use inheritance and factor out common implementation to super
class e.g., graphically remove pellets from board once eaten?
But in our program, there is only method (eat()) in Pellet. No need
for super classes and sub classes

o like using a sledgehammer to crack a nut!
Even if we extended functionalities of Pellet so that the class had
more capabilities, may need to override methods which can be
dangerous (see addendum at end of deck!)

Any other option?

o recall how we generated different types of Scarfs in the Math and
i isi lecture

o want to do something similar with Pellets

21/63

https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.3.23.pptx.pdf
https://cs.brown.edu/courses/cs015/lecture/pdf/CS15.Lecture_8_Math_and_Making_Decisions.10.3.23.pptx.pdf

Factory Pattern (1/2)

» Canuse Factory Pattern to create one Pellet class and
specify parametersto itsconstructor that will configure its
type,i.e., score andcolor

o allows us to instantiate different types of Pellets without caring
about creation logic

o areally useful pattern when creation logic is more complicated,
e.g., if each type of Pellet had a different shape. Or even with
Tetris pieces (coming up soon!)

22/63

10/26/2023

Factory Pattern (2/2) Pell‘et Constructor!

public Pellet (Pane gamePane, Color color, it score
it row, int col)

* Key features: a switch

statement plic wid spawnfod () {
o in this case uses a random Beardsquare tile - this Jget RandonenptyT ile();
number generator Food foad;

int rand = (int) (Matf.randon() * 3)
sutch () {

o used on Fruit Ninja to
generate fruits/bombs

. Feod = rew Fellet(this. gmpare, Golor D, 10,
_— ry tile. getRan(), tile.get®l());
vy case 1t
- food = new peuet(tms gamePane, Golor. »,
tile.getRow(), tile. getcnl()),
break;
default:
Food = rew Rellet (this. guerane, Golor. REN, S0,
e.getRon(), tile.get®l());
break;

)
tile. addFood(fod);
23/63

Overview

24 /63

Testing Our Program (1/2)

Testing involves checking that the
actual behavior ofa program
matches it's expected behavior
(you’ve dore this by playing your

Analysis

Typically testat multiple
stages of development!

25/63

10/26/2023

Testing Our Program (2/2)

You already test your programs all the time — by playing them!

As we scale in complexity, we can incrementally test logic of our program
beyond playing the game

Unit Testing is useful for verifying that specific parts of our program work
(ex. a method)

o Arocket scientistwoud wantto check her calculations and simuate takedff before
launching!

How could we test our snake program without even running it?
o e.g., check individual methods, such as isEmpty() method
= retums false when either pellet or snakeis on tile
= retumns true if no pellet or snake is on tile

o How to test our methods (along with printins, stacktrace, and
debugger)?

o Isolate, isolate, isolate the problem!. 26163

Introducing JUnit Testing

A framework for writing and running tests

JUnit allows individual methods and edge cases to be tested in a controlled
environment, a test suite

o what if you need to test the end condition of a game that takes 100 hours to complete?
o what if a bug only happens one every 1000 tries? Can't manually simulate!
Unit Testing in CS15 has the following pattem:
set up testing class
o instantiate essential objects required to test method(s)
o use assertion methods to validate a boolean expression
* Assertion methods are JUnit methods we use to test

o assertTrue(boolean condition) wil pass if the boolean expression inside is
true

o assertFalse(boolean condition) will pass if the boolean expression inside is

® You wil get set up with JUnit in next weeks lab!!

27163

® Trivial example: test the following Public class Calculator {

code that adds two integers:
® What steps do we take to test? public int add(int x, int y){

return x+y ;
}

‘ @Test tells compiler this is a uritts#
® 1) Set up testing class public class CalculatorTestingSuite {
® 2) Instantiate essential objects @rest

required to test method(s) public void testAddNumbers(){

® 3) Use assertion functions to

JUnit Testing: Naive Example

Calculator calc = new Calculator();
; . assert True (calc.add (2,2) == 4);
validate a boolean expression

28/ 63

10/26/2023

How does IntelliJ help?

¢ Ourtest(s) from the last slide looklike thisin IntelliJ:

Can run individual tests, or the
whole class (the ‘testing suite”)
with green play buttons

Pressing the top play button, gets
us the following output in IntelliJ:

29/63

JUnit Testing: Snake Example

How can we apply this framework
to test our Snake code? public class SnakeTestingSuite {

. i @Test
Set up testing dass public void testTileUpdates(){

® Instantiate essentia objects required

to test method(s)) Pane gamepane = new Pane () ;
® Use assertion functions to validate Board board = new Board(gamePane);
boolean expression(s) Pellet pellet = new Pellet(gamePane,

Color.RED, Constants.SCORE, 1, 1);
. . . ; . ile = board.til :
You will get practice wriingtests like this poardsquare tile = board teAt(L, 13
in next weeks lab tile.addPellet(pellet);
))) - assertFalse(board. tileAt(1,1).isEmpty());
® Testing will be required for a mini-

proj ect alongside Tetris (after you tile.addSnake(); //eats pellet, but adds snake
learn more in lab}) but not Doodle assertFalse(board. tileAt (1,1).isEmpty());
Jump

tile.reset(); // removes snake

® vou will leama lot more about assertTrue(board. tileAt(1,1).isEmpty());

testing in CS200!' ©)

30/ 63

10

Recap Snake Design Process

¢ Assignment specifications can be daunting
¢ Start at very high level: how to separate components of the program

o

which classes can | use to model different objects in my
program?

o

what functionalities can | delegate to those classes?
how would those classes interact with each other?
how can you test these components?

is my design scalable?

o

o

o

o

repeat and revise!

31/63

10/26/2023

Intermission

* Have seen how to design mock CS15 project from scratch

o need to go through similar design discussions for the projects in
the remainder of the semester

o code for the different designs of Snake can be found on GitHub

* For remainder of lecture, will cover additional discussions around
design that will be useful in the future

32/63

Overview

33/63

11

https://github.com/brown-cs15-2023/snake

Interfaces vs. Inheritance

* When deciding between interfaces and inheritance, need to consider
trade-offs between the two
interfaces + composition/containment offer more flexibility compared to
inheritance
= ex. wrapper classes, likea “smart square”

o

o

can implement several interfaces but only extend one super-class

while inheritance allows sub-classes to inherit functionality from parent,
there’s risk of unintended consequences when oveniding methods

* Note that while interface (coupled with composition) is often favored

over inheritance, there are use cases which can really take advantage
of inheritance, e.g., cars and animals

o

34 /63

Case 1: Problems with Inheritance

* Let's return to our Race example from the Inheritance lecture

. s , and have many identical capabilities
and share a lot of the same components
o start/stop engines
* We created a Car superclass
o Car contains instances of Engine, Brake, etc.
o 3 , and extend from Car

10/26/2023

Extending Our Design

* Assume now that we add an class to the program
o but doesn'tuse the standard Engine inherited from Car
o can just override Car’s methods that make use of Engine?
Anything wrong with that?
can do this but could be dangerous (see appendix)
when you subclass Car, its this.engine, is hidden from you
aparents private variables siay privae
you inherit methods that use this.engine, but implementation is hidden
you do notknow which methods use this . engine, letalone how they dothat

= and you still have the now useless this.engine via pseudo-inheritance

36 /63

12

Case 2: Inheritance vs. Interfaces + Composition

* But how, if atall, areinterfaces with composifion any better?
o let's consider the case below where we wantto animatea clock

public class AnimateClock {
private Clock myClock;

public AnimateClock(Clock c) {
this.myClock = c;
this.setUpTimeline() ;

}

private void setUpTimeline() {
KeyFrame kf = new KeyFrame(Duration.seconds(1),

(ActionEvent e) ->

this .clock.tick());

37163

Inheritance vs. Interfaces + Composition
* Will both of these solutions work if we pass in a GrandfatherClock object to
AnimateClock(..) in the previous slide? GrandfatherClock only adds a Ding
public interface Clock {
pblic void tick();
public class Clock { i
pwlic Clock () } public class GrandfatherClock implements Clock {
pwlic void tick() { private HoaurHand hourHand;
private Minutedand minuteHand;
}
Sublic class GrandfatherClock extends Clock { pwlic GrandFatherClock() {
pwlic GrandfatherClock () { } 3
@override .
plic void tick() { @override
Swer.tick(); pblic void tick() {
if (this.isEvenHour()) { this.minutetand. move () ;
this. playDing(); this.hourtand.move();
) if (this.isEvenHour()) {
N this.playbing();
} }
R 38/63

Different Implementations, Same Result

® Both of these implementations result in a GrandfatherClock
animating correctly

o insolution 1, Clock is a superclass
o insolution 2, Clock is an interface
o both can be used polymorphically

® But pros and cons to each solution

39/63

10/26/2023

13

Inheritance Design: Pros and Cons

Pros: Cons:
* Better code reuse ® Less flexible
o methods are automatically o forced to accept superclass
inherited in subclasses, so properties and methods, may have
no need to re-implement to (partially) overide concrete
functionality tick(). In methods, but overiding may have
this case, tick() unintended consequences

delegates most of the
responsibility to a
MinuteHand and
HourHand and their

o because you don’t know how
hidden functionality in superclass
will affect your code

10/26/2023

move() methods, but o and superclass can change
tick() could be arbitrarily implementation and accidentally
complex effect you (see appendix!)
. 40/63
Interfaces + Composition
X . public interface Clock {
® Solution 2 uses a combination of an veid tick();
interface and composition to
delegate functionality to a puoLLe i inplanents
MinuteHand and HourHand private HourHand hourHand;
private MinuteHand minuteHand;
. pwlic O 1
® GrandfatherClock signs the ,
contract (thus has to implement)
tick() functionality) but delegates e veid tick() ¢
most of the responsibility to ;xz:zt:::":o'v"zgo
MinuteHand and HourHand if(this.istvertour () {
this.playDing();
}
[’ 41/63

Interfaces + Composition Design Pros

* Very flexible
o we completely control GrandfatherClock, and if we want to write a
CuckooClock or DigitalClock class, it's easierto implement that
functionality
o noovemiding — no unintended consequences

* Easy to use classes written by others
o if someone else wrote MinuteHand and HourHand, you can still
delegate to it without knowing their code details
o could also easily swap them out with different component classes that
you wrote

42163

14

Interfaces + Composition Design Cons

* Cons
o both inheritance and interface use composition (i.e., delegate to

other objects)

- with inheritance you automatically get concrete methods
from the superclass
when you use composition, you must invoke the methods
you want on the objects to which you have delegated — thus
more control but more responsibility

43 /63

10/26/2023

Case 3: Multiple Interfaces

* Have seen how interfaces provide us with more flexibility because no
unintended consequences
* Interfaces offer us even more flexibility because can implement
several interfaces
o why is this useful?
* Imagine we're making a game with the following classes

FlyingSuperhero SlimeMonste
o fly() o scareCitizens()
o savelives() o oozeSlime()
StrongSuperhero Robber
o liftCars() o scareCitizens()
o savelLives() o robBank()
; 44163
Interfaces vs. Inheritance
® There are some similarities in implementation
and both have a
savelives () method
o and both have a scareCitizen ()
method
o can abstract this up into superclasses!
45/63

15

Initial Design
scareCitizens()

‘ oozeSlime() ‘ ‘ robBark () ‘

‘ fly() ‘ ‘ liftCars() ‘

46 /63

10/26/2023

Extending Our Design

* We want to add a monster who flies
o
fly()
- scareCitizens()
* Where do we fit this into our inheritance diagrams?
o itcan fly, but itdoes not save lives — can't use methods defined in
Hero superclass to scareCitizens()
o could extend Villain superclass so that it can use
scareCitizens(), but would need to reimplement code for fly()

47163
Revised Design
scareCitizens()
‘ oozeslime() ‘ ‘ robBark () ‘
fly() ‘ ‘ liftcars() ‘
48/ 63

16

Can we do better?

® Separate classes by their capabilities
o FlyingSuperhero: flier + lifesaver
o StrongSuperhero: carlifter + lifesaver
o SlimeMonster: slimer + scarer
o FlyingMonster: flier + scarer
o BankRobber: + scarer
* Inheritance: model classes based on what they are
* Interface: model classes based on what they do
o inthis case, prefer interface over force-fitting inheritance

49/63

10/26/2023

Better Design: Mix and Match Using Interfaces

O—L Flier FlyingMonster
Flier FlyingSuperHero
O—,i Scarer

Lifesaver
R

Scarer

CarLif ter StrongSuperHero .

Lifesaver

Scarer 50/63

Interfaces and Our Design

® As you can see, there are a lot more classes in this design
o however, we have extreme flexibility

- could make a flying, strong, scary, bank robbing monster
without changing or force-fitting our new class into the current
design
although you still have to implement the methods of the
interface in vour new class

Iv‘%

51/ 63

17

The Challenges of Design (1/2)

Design a solution to a problem such that it solves the problem efficiently, but
also makes it easy to extend the solution if additional functionality is required
o only define the capabilities that you know you will need to solve the
problem at hand
Your job in creating an interface/superclass is precisely to figure out the right
abstractions
o decision making under uncertainty —you do the best you can. And
frankly, opinions may differ on what is ‘the best solution”
o experience (practice) really matters
Extensibility is important, but only to a degree
o you cannot design a program that solves every problem a user thinks of

52 /63

10/26/2023

The Challenges of Design (2/2)

® CS32 (Software Engineering) goes deeper into design decisions and
tradeoffs, as well as software engineering tools
o you can take it after you've completed CS0150 and CS0200!

53/63

Overview

54 /63

18

Method Overloading (1/3)

Can define multiple methods of same name within aclass, as long
as method signatures are different

* Method signature refers to name, number, types of parameters and
their order

® Signature does NOT include return type

* Two methods with identical signatures but different return types (and
different bodies) will yield a compiler error — why?

o compiler (and you, the reader) can’t distinguish between two
methods with the same signature and different return types when
an instance calls those methods — method name and argument
types passed in are the same! So, signature is just name and

parameter list 55/63

10/26/2023

TopHat Question

Which of the following is true of a class that contains an

ov erloaded method? The class has...

A. Two methods that are absolutely identical

B. Two methods that are the same, except in their return ty pe

C. Two methods that hav e the same name, but dif f erent
parameters

D. Two methods that are the same, except one contains an error

v G 02 W 56 / 63
Method Overloading (2/3)
* Example: java.lang.Math
* static method max takes in two
numbers and retums the greater
of the two public class Math {
* There are actually three max pwlic static int max(int a, int b) {
methods— one for ints, one for
floats, one for doubles '
pwlic static float max(float a, float b) {
* When you call an overloaded
method, the compiler infers ¥
which method you mean based piblic static double max(double a, double b){
on types and nqmber of)
arguments provided)
57 /63

19

Method Overloading (3/3)

* Be careful not to confuse overloading and overriding!

o Overriding an inherited method in a subclass: signatures and
return types must be the same

o Overloading methods within the same class: names are the same
but the rest of the signatures (i.e., the parameters) must be different so

the compiler can differentiate; the return types may also differ (see
max)

* Using same signatures and return ty pes in dif ferent classes is
OK because the compiler can dif f erentiate by class/type of
instance on which the method is called

10/26/2023

. 58/63
Method Overloading: Constructors
* Even constructors can be
Camifougfer Lommary
overloaded!
¢ Already seen this with [P —
JavaFX shapes Eaireriar Rl BHIAPRL
¢ Can instantiate a rectangle [F—
with any of the constructors!
(RS . v
Rectangle rect = new Rectangle (); (= -I. - -
rect = new Rectangle (120, 360); & -
rect = new Rectangle (0, 0, 126, 120); - ! *
rect = new Rectangle (0, o, e - - L
Color.BLUE); [T " v bt
59 /63!

Method Overloading: Example

¢ Can call an overloaded method on other overloaded methods

public class Hallaveen {

public Halloveen(HalloveerShop shop) {
Hat hat = shop. getHat () ;
this.wearCostune(hat) ;

}

public wid wearCostume (Hat hat) {
Gown gown = hat .getMatchingGown () ;
this.wearCostune(hat, gawn);

pwblic wid wearCostume (Hat hat, Gown gown) {

}

60 /63!

20

Announcements

* Snake Code on GitHub — can discuss design decisions with other students, or

TAs at hours
* DoodleJump Information
Early handin: Monday 10/30
On-time handin: Wednesday 11/01
Late handin: Friday 11/03
Check out

o

o

o

o

o

info soon!

* Debugging code-along—Check Ed!

o Mostimportant of the year!! Will save you hours on Tetris/Final Project

* HTA office hours on Friday 10/27 @3pm in CIT 210

Chance for a Code Debrief after you hand in the project! Will send more

61/63

10/26/2023

Socially Responsible Computing

Social Media & Misinformation

CS15 Fall 2023

How do you receive your news?

iy, e B Y SRS e b WA p— || S———

TSR S B G B T R

S . VI GRS - PRl

‘:! . .|

Source: Pow Research Canter

21

https://github.com/brown-cs15-2023/snake
https://docs.google.com/document/d/1paII6DUfQDK9XpJrA_HC_BpxIJfQge8vYxAEUSi8gjs/edit?usp=sharing

Misinformation / Disinformation

Disinformation

4
& <' %y,
g %
§ 2,
£ Lsfalseinfo s .isbasedon 3
B that spreads deliberately fact but taken S5
s - regardless created to out of context S
of intent to harm, to mislead,
mislead manipulate, or harm, or
others mislead. manipulate.

Image credit: WIT Schumann Library
Definitions coined by Prol. Claire Wardle, codiector of Brown's Information Futures Lab

10/26/2023

Misinformation / Disinformation

® July 2021: Biden: Facebook is
‘killing people’ because of vaccine

hesitancy
How much is FB to blame?

® July 2023: Louisiana judge rules
that gov. agencies cannot
communicate w/ social media
platforms about deletion of posts

Anti-vax Facebook groups

Source: NYTimes

Why is this content popular?

* Social network algarithms tend to reward
extreme content!

* Shock — more engagement — more revenue

* Confirmation bias

* Filter bubble: when anintemet user
encounters only infa/opinions that reirforce
their own beliefs

* AKA “echo chamber”

* Contrary evidence can harden abelief: “post-

truth” world of altemative facts

Result: tribalism, dvisiveness, polaizationin
the US, decline of civic responsibility Map of the 2020 electoral college. For the most part:
Coasts are bive, midde is 16q. Credt Wikipeda

22

Social Media Can Rew ard Sharing Fake New's

- In a study of 2,476 Facebook users, u....,..r-....n.-h....-.‘...\.....-\-.;'
30%+ of the false news shared was sty o duisa
due to the 15% most habitual news

sharers - ;
Proceedings ofthe National Academy of Sciences

- Social media has a rewards system r
(likes, etc.) that encourages users
to keep posting attention-grabbing
content — like a video game

10/26/2023

X (formerly Tw itter) Discussion

® Jan 2021: Trump permanently banned
from Twitter & other platforms

® Nov 2022: Elon Musk ends Trump’s ban
after posting a poll asking if Trump
should be allowed back

Musk’s X Cuts Half of Election Integrity

Team After Promising to Expand It

,,,,,,
The Information 2023)

Moderating the Spread of Terrible News

Graphic war videos go viral, lesting social
media’s rules

Isrmel-Hamas war: Tech platforms under scrutiny
over spread of False, graphic posts

Sources: Washington Post, ABC

23

We can benefit from algorithmic
detection and throttling + human
content moderation...

but ultimately, harmful content isn’'t only a
technical problem; it stems from the
social problem of factions that want to
spread mis- and dis-information.

10/26/2023

Information Futures Lab @Brown

P TR T ey i A

%
At
S W e 5
s b T — — e
sites.brown.edu/informationfutures/ W mer miet pinsey W T e, fed i

Appendix on Method Overriding!

72163

24

Unintended Consequences of Overriding (1/3)

public class Gar {

® Assume Car uses its private Ergine engine;
private Brakes brakes;

method revEngine() pwblic car() { public void ergage() {
(which uses Engine’s this.brakes = new Brakes();

PN this.engine = new Engine(); ¥
rev()) inside its)

definition of drive

pulic void revEngine() {
this.brakes. ergage(); }

this.engine.rev(

¥

public void drive() {

this.revEngine()

this. brakes . disengage (); piblic void rev() {

public class Brakes {

public void disengage() {

)5 }

public class Engine {

¥

73163

10/26/2023

Unintended Consequences of Overriding (2/3)

* Now we overide revEngine in

o notice revEngine no longer calls
brakes.engage ()

Recall that drive() calls revEngine; if
you call drive() on , itwill
call Car’s inherited drive() thatuses

’s revEngine
implementation

public class Gar {
piblic void drive() {

this.revEngine();
this.brakes.disengage();

}

public class ElectricCar extends Car {
private Battery battery;

pwlic O 1

this.battery = new Battery();
}

@override

public void revengine() {
this.tattery.usePower ();

}

' 74163

Unintended Consequences

of Overriding (3/3)

* This could pose a problem
o drive() relies on revEngine to
engage the brakes, so that drive()
can disengage them, but you don’t
know that — hidden code

public class Gar {

public void revEngine() {
this. brakes . engage () ;
this.engire.rev();

}

public void drive() {
this. revErgine();

o sowhen overmides this.brakes.disengage();
revEngine(), itmesses up drive())
o also has 2 engines now |t
- its own Battery and the pseudo- "“bl;fj.sizsmtw bm;’;‘_e“ co {
inherited engine from Car piblic .

= also messes up its functionality
* It might be fine if you write all your own
code and know exactly how everything
works

O A
this.battery = new Battery();
)

@verride

pwlic void revEngine() {
this.battery.usePower();

}

o butusually not the case!

25

	Slide 1: Lecture 15
	Slide 2: Overview
	Slide 3: Back to Our Snake Program
	Slide 4: Overview
	Slide 5: Snake Movement (1/3)
	Slide 6: Snake Movement (2/3)
	Slide 7: Snake Movement (3/3)
	Slide 8: Introducing Enums
	Slide 9: Declaring and Defining an Enum
	Slide 10: Using Enums: Snake Movement (1/3)
	Slide 11: TopHat Question
	Slide 12: Using Enums: Snake Movement (2/3)
	Slide 13: Using Enums: Snake Movement (3/3)
	Slide 14: Introducing Enum Methods (1/3)
	Slide 15: Enum Methods (2/3)
	Slide 16: Enum Methods (3/3)
	Slide 17: TopHat Question
	Slide 18: Overview
	Slide 19: Representing the Food (1/3)
	Slide 20: Representing the Pellets (2/3)
	Slide 21: Representing the Pellets (3/3)
	Slide 22: Factory Pattern (1/2)
	Slide 23: Factory Pattern (2/2)
	Slide 24: Overview
	Slide 25: Testing Our Program (1/2)
	Slide 26: Testing Our Program (2/2)
	Slide 27: Introducing JUnit Testing
	Slide 28: JUnit Testing: Naïve Example
	Slide 29: How does IntelliJ help?
	Slide 30: JUnit Testing: Snake Example
	Slide 31: Recap Snake Design Process
	Slide 32: Intermission
	Slide 33: Overview
	Slide 34: Interfaces vs. Inheritance
	Slide 35: Case 1: Problems with Inheritance
	Slide 36: Extending Our Design
	Slide 37: Case 2: Inheritance vs. Interfaces + Composition
	Slide 38: Inheritance vs. Interfaces + Composition
	Slide 39: Different Implementations, Same Result
	Slide 40: Inheritance Design: Pros and Cons
	Slide 41: Interfaces + Composition
	Slide 42: Interfaces + Composition Design Pros
	Slide 43: Interfaces + Composition Design Cons
	Slide 44: Case 3: Multiple Interfaces
	Slide 45: Interfaces vs. Inheritance
	Slide 46: Initial Design
	Slide 47: Extending Our Design
	Slide 48: Revised Design
	Slide 49: Can we do better?
	Slide 50: Better Design: Mix and Match Using Interfaces
	Slide 51: Interfaces and Our Design
	Slide 52: The Challenges of Design (1/2)
	Slide 53: The Challenges of Design (2/2)
	Slide 54: Overview
	Slide 55: Method Overloading (1/3)
	Slide 56: TopHat Question
	Slide 57: Method Overloading (2/3)
	Slide 58: Method Overloading (3/3)
	Slide 59: Method Overloading: Constructors
	Slide 60: Method Overloading: Example
	Slide 61: Announcements
	Slide 62
	Slide 63
	Slide 64: Misinformation / Disinformation
	Slide 65: Misinformation / Disinformation
	Slide 66: Why is this content popular?
	Slide 67: Social Media Can Reward Sharing Fake News
	Slide 68: X (formerly Twitter) Discussion
	Slide 69: Moderating the Spread of Terrible News
	Slide 70: We can benefit from algorithmic detection and throttling + human content moderation…
	Slide 71
	Slide 72: Appendix on Method Overriding!
	Slide 73: Unintended Consequences of Overriding (1/3)
	Slide 74: Unintended Consequences of Overriding (2/3)
	Slide 75: Unintended Consequences of Overriding (3/3)

