Big-O and Sorting

Lecture 17

1/63

11/2/23

1
Outline
. i . .
. Runti !
+ [Bubble Sort.
* Insertion Sort
» Selection Sort
* Merge Sort
2

Importance of Algorithm Analysis (1/2)
e Performance of algorithm refers to how quickly it executes and
how much memory it requires
o performance matters when amount of data gets large!

o can analyze and observe performance, then revise algorithm to improvd

e Algorithm analysis and sorting/searching data structures are
crucial to computing and will be a central topic in CS0200!

3/63

Importance of Algorithm Analysis (2/2)

+ Factors that affect performance
o computing resources
o language
o implementation
o size of data, denoted n
number of elements to be sorted in alphanumeric order
number of elements in ArrayList to iterate through

much faster to search through list of CS15 students than list of Brown
students

+ This lecture: a brief introduction to Algorithm Analysis!
+ Goal: maximize efficiency and conserve resources

4163

11/2/23

Outline

* |mportance of Algorithm Analysis

* Runtime

+ Bubble Sort.

* |nsertion Sort
+ Selection Sort
+ Merge Sort

5063

Performance of Algorithms

e How fast will recursive Fibonacci(N) run relative to N?
o Fib(N) = Fib(N-1) + Fib(N-2);
Fib(N-1) = Fib(N-2) + Fib(N-3), etc.
o using recurrence relations, proportional to 2N
e How fast will Towers of Hanoi run relative to the number of disks?
o also proportional to 2N for N disks
e How fast will N! run relative to N ?
o NI will take exponentially longer as N increases, even faster than 2
o not a problem with small N but we care about large inputs
e One algorithm could take 2 seconds while another could take 1 hour
to accomplish the same task
6/63

http://cs.brown.edu/courses/cs015/demos/Hanoi.jar

Runtime (1/2)

In analyzing an algorithm, runtime is the total number of times
"the principal activity" of all steps in that algorithm is performed
o varies with input and almost always grows with input size N

o measured as a function of N (N, Nlog(N), NA2, 2*N, etc.)

In most of computer science, we focus on worst case runtime
o easier to analyze and important for unforeseen inputs

Average case is what will typically happen; best case requires
least amount of work and is the best situation you could have

o average case is important; best case is interesting, but not insightful
7163

11/2/23

Runtime (2/2)

« How to determine runtime?

- inspect pseudocode (or actual code if it is small enough)
and determine number of elementary operations in all
statements executed by algorithm as a function of input size

- allows us to evaluate approximate speed of an algorithm
independent of hardware or software environment
memory use may be even more important than runtime for
embedded devices

8/63

Elementary Operations

Algorithmic “time” is measured in numbers of elementary operations
math (+,-,*,/, max, min, log, sin, cos, abs, ..)

comparisons ==, >, <=, ...

function (method) calls and value returns (body of the method is separate)

variable assignment

variable increment or decrement

aray allocation (declaring an array) and array access (retrieving an array from memory)
creating a new object (careful, object's constructor may have elementary ops tool)

For purpose of algorithm analysis, assume each of these operations takes

same time: “1 operation”
o onlyinterested in “asymptotic performance” for large data sefs, .., as N grows large

small differences in performance don't matter when your data sets are bilions or even tillons of
items — e.g...indexing all the words on the WWW!

9/63

Example: Constant Runtime

public int addition(int[] a) {
return a[@] + a[1]; //4 operations
}
e 4 operations — 1 addition, 2 array element
retrievals, 1 return statement
e How many operations are performed if the input
list had 1000 elements? 100,000?

e Runtime is constant

11/2/23

10/63
//find max of a set of positive integers o Worst case varies
public int maxElement(int[] a) { proportional to the size

ssignment, 1 op of the input list: 6N + 3
int max = 0; o How many if
112 u;.;s p%‘r‘ 1Lt.-r'aL|on + \ itial of n the array had 1,000
for (int i=0; i<a.length; i++){ lements?

//2 ops per iteration

i (ali] > max) { o We'll run the for loop

//2 ops per iteration, sometimes proportionally more
max = alil; times as the input list

} grows
¥ e Runtime increase is

eturn, 1 of proportional to N, linear
return max;
) 11/63

Example: Quadratic Runtime

public void printPossiblesums(int[] a) {
for (int i = @; i < a.length; i++) { //2 ops per iteration
ignore op to init i
for (int j = @; j < a.length; j++) { //2 ops per iteration
System.out.printin(a[i] + a[j]); // 4 ops per iteration

Requires about 8N2 operations (it is okay to approximate!)

Number of operations executed grows quadratically!

If one element added to list, element must be added with every other element in list
Notice that linear runtime algorithm on previous slide had only one or loop, while
this quadratic one has two nested for loops, a typical N2pattern

12/63

12

Big-O Notation

o Used to abstract from by ignoring

o O(N) implies runtime is linearly proportional to number of elements/inputs in
the algorithm (constant operations per element)
o (N elements) * (constant operations/element) = cN operations => O(N)
o O(N?) implies each element is operated on N times
o (Nelements) * (N operations/element) = N: operations; cNe => O(N¢)
o O(1) implies that runtime does not depend on number of inputs
o runtime is the same regardless of how large/small input size is

« Only consider “asymptotic behavior” i.e., when N >> 1
o Nistiny when compared to Ne for N >> 1

11/2/23

13/63

13

Big-O Constants

e Important: Only the largest N expression without constants matters

e We are not concerned about runtime with small numbers of data
— we care about running operations on large amounts of inputs

o

3N2 and 500N2are both O(N?) because the larger the input, the less the “500" and
the “3” will affect the total runtime

N/2is O(N)

o

o 4N2+2Nis O(N?2)
e Useful sum for analysis:
14243+ -+ N=3XF_; k =N(N+1)/2, which is O(N?)

14163

14

Social Security Database Example (1/3)

[coCIAL SECURT Ty |
7

000~ 000000

THIS NURGEK HAS BEEN CSTAGLISHED FoR

JOHN DOE

F AL pa

Hundreds of millions of people in
the US have a number associated
to them

If 100,000 people are named John
Doe, each has an individual SSN

If the government wants to look up
information they have on John
Doe, they use his SSN

15/63

15

Social Security Database Example (2/3)

Say it takes 104 seconds to perform a

constant set of operations on one SSN

o running an algorithm on 5 SSNs willtake
5x10 seconds, and running an algorithm
on 50 will only take 5x10°* seconds.

000'- 000000

THIS NURGER HAS BEEN CSTABLISHED FOR

JOHN DOE

o both are incredibly fast, difference in
runtime might not be noticeable by an
interactive user

o this changes with large amounts of data
ie. the actual SS Database

11/2/23

16/63

16

Social Security Database Example (3/3)

Say we want to scale this algorithm to

every SSN (300+ million)

o to perform algorithm with O(N) on 300
million people wil take 8.3 hours.

00 - 00 -0000

THIS NURBER HAS BEEN ESTABLISHES FOR

JOHN DOE

o O(N?) takes 285,000 years

With large amounts of data,
differences between O(N) and O(N?)
are HUGE!

17/63

17

N
160
140
120
f(N) on a small scale — 100
Ze0

N

e - logN

0 20 40 60 80 100 120 140
18/63

N

18

Graphical Perspective (2/2) — Log Plot

e f(N)on a larger scale —
e For 10 million items (N = 107)...

o and O(log1oN) runtime, perform roughly
7 operations

°

and O(N) runtime, perform roughly 10
million operations

°

and O(N2) runtime, perform roughly
100 trillion operations

e really try to stay sub-quadratic!!

19/63

11/2/23

19

TopHat Question (1/3)

What is the big-O runtime of this algorithm?

public int sumArray(int[] array){
int sum = @;
for (int i = @; i < array.length; i++){
sum = sum + array[i];

return sum;

A) O(N) B)O(N) C)O(1) D)O(2Y)

20/63

20

TopHat Question (2/3)

What is the big-O runtime of this algorithm?
Consider the getLetter() (or equivalent) method from TicTacToe:

public String getLetter(){
return this.letter;

¥

A) O(N) B)O(N2) C)O(1) D)O(2M)

21/63

21

TopHat Question (3/3)

What is the big-O runtime of this algorithm?

public int sumsquareArray(int[1[] a){
int sum = @;
for (int i = 0; i < a.length; i++){
for (int j = @; j < a[0].length; J++){
sum = sum + a[3]1[i];
}
}
return sum;

}

11/2/23

A) O(N) B)O(N) C)O(1) D)oY

22

Outline

* |mportance of Algorithm Analysis

* Runtime

23/63

23

Sorting
» We use runtime analysis to help choose the best

algorithm to solve a problem

» Two common problems: sorting and searching
through a list of objects

* We will analyze different sorting algorithms to find
out which is fastest

24/63

24

Sorting — Social Security Numbers

o Consider an example where run-time influences

your approach

o How would you sort every SSN in the Social
Security Database in increasing order?

Multiple known algorithms for sorting a list

o these algorithms vary in their Big-O runtime

25/63

11/2/23

25

Bubble Sort (1/2)

e lterate through sequence,
comparing each element to its 49 2 36 55 4 72 23
right neighbor Before a pass

e Exchange/swap adjacent ANy .
elements if necessary; largest 2 l36[49]55[4]72|23
element “bubbles” to the right ‘Middle of first pass

o End up with sorted sub-array on i S
the right. Each time we go through 2 |36/49| 4 155 23|72
the list, need to switch at least After one pass
one item fewer than before

26/63
26

Bubble Sort (2/2)

Iterate through sequence, comparing
each element to its right neighbor

Exchange adjacent elements if
necessary; largest element “bubbles” to
the right

End up with sorted sub-array on the left.
Each time we go through the list, need
to switch at least one item fewer than
before

More efficient version: keep track of last
largest element inserted so we don't
have to go all the way over the right

int i = array.length;

boolean sorted = false;

while ((i > 1) & (lsorted)) {
sorted = true;

for(int J = 1; 3 < i; j#+) {

if (a[3-1] > a[3]D) {
int temp = a[j-1];
a[j-1] = alil;
a[j] = temp;
sorted = false;

27/63

27

11/2/23

Bubble Sort - Runtime

Worst-case analysis:
® while loop iterates N-1 times

o while i > 1andi = array.length
® Inner for loop iterates N-1 times

o j<iandi=array.length
Total:
® (N-1)(N-1) = O(N?)

Remember!

big-O!

Small operations and constants don't majorly
affect runtime, so we can ignore them when

int i = array.length;
boolean sorted = false;
while ((i > 1) 8& (lsorted)) {

sorted = true;
For(int § = 1; < 15 J+4) {
if (al3-1] > al3]) {
int temp = a[3-1];
a(3-1] = alil;
alj] = temp;
sorted = false;

29/63

29

Outline

* |mportance of Algorithm Analysis

* Runtime

« Bubble Sort

« |nsertion

+ Selection Sort
+ Merge Sort

30

10

Insertion Sort (1/2)

® Like inserting a new card into a partially sorted hand
by bubbling to the left in a sorted subarray
o close to bubble sort but less brute force because we

don't start always from the rightmost entry

® Add one element a[i] at a time

® Find proper position, j + 1, to the left by swapping
with neighbors on the left (a[i-1], a[i-2], ...,
a[j+1]) to the right, until a[3] < a[i]

® Move a[i] into vacated a[j+1]

® Afteriteration i < a.length, original a[@] ... a[1]
are in sorted order, but not necessarily in final
position, depending on what comes after a[1]

(2] 4]z6[ss]

<Z
[2[] [sees]7z[zs

I
N

11/2/23

2|4|9]|36|55|72|23

j o+

31763
31
Insertion Sort (2/2)
for (int i = 1; i < a.length; i++) {
¢ : 72| 23]
int toInsert = a[i];
int j = i-1;
while ((j >= @) && (a[j] > toInsert)){ 72]23]

a[j+1] = a[jl;
3-=
}

a[j+1] = toInsert;

(24T o [ao[ss]72]]

j o+

32/63

32

11

Insertion Sort - Runtime

o while loop inside our
o)) for loop
for (int i = 1; i < a.length; i++) { o while loop calls N-1
int toInsert = a[i]; operations
nt § i1 o for loop calls the
J ; while loop N times
while ((j >= @) && (a[j] > toInsert)){
o O(N?) because we have

11/2/23

BI[Z'I*l] = a[jl; to call on a while loop
J--3 with ~N operations N
3} different times
a[j+1] = toInsert; e Reminder: constants do
} NOT matter with Big-O!
34763
Outline
* |mportance of Algorithm Analysis
* Runtim
< B I It
« |[nsertion rt
35/63

Selection Sort (1/2)

e Find smallest element and put it in a[0]
e Find 2n¢ smallest element and put it in a[1], etc.

e Less data movement (no bubbling movement)

Jj Y
36[55] 5] 72[23
i min

36/63

36

12

What we want to happen:
int n = a.length;

for (int i = @; i < n; i++) {

Selection Sort (2/2)

int n = a.length;
for (int i = @; 1 ¢ n-1; i++) {
int min

find minimum element a[min]
in subsequence a[i...n-1]

for (int § = i+ 1; 3 <n; 3+) {
if (a[j] < a[min]) {
min = 3;

}

b e
« [EEwls[3] 2l

i min

swap a[min] and a[i]| }

}

11/2/23

temp = a[min];
a[min] = a[i];
a[i] = temp;

37/63

37

* Most executed
instructions are in if
statement in inner for
loop

Each instruction is
executed (N-1) + (N-2) +
.. +2+ 1times

Time Complexity: O(N?)

o nested loops!

Selection Sort - Runtime

for (int i = @; 1 < n-1; is+) {
int min

for (int j = i +1; j < n; j++) {
if (a[j] < a[min]) {
min = 3;

1

temp = a[min];
a[min] = a[il;
a[i] = temp;

}

39/63

39

13

11/2/23

Comparison of Basic Sorting Algorithms

e Differences in Best- and Selection Insertion Bubble
Worst-case performance Best n2j2 n n
are based on current order

. " Comparisons

of input before sorting of data Average | n/2 n2/4 n2/4
® Selection Sort wins on data Wl || o wha || e

movement

Best 0) 0

)

For small data, even the Movements |, ... N - -

worst sort — Bubble (based of data

on comparisons and Worst n n2j2 n2/2

movements) — is fine!

40/63

40
Outline
* |mportance of Algorithm Analysis
* Runtime
< B I r
« |[nsertion r
. lection I
+ Merge Sort
41

Merge Sort

42/63

42

14

Recap: Recursion (1/2)

® Recursion is a way of solving problems by breaking them down into
smaller sub-problems, and using results of sub-problems to find the
answer

® Example: You want to determine what row number you're sitting in,
but you can only get information by asking the people in front of you

o

they also don't know what row they're in, must ask people in front of them
people in first row know that they're row 1, since there is no row in front (base case)
they tell people behind them, who know that they're 1 behind row 1, so they are row
2,etc.

this “unwinds” the recursion

o

o

o

43/63

11/2/23

43

Recap: Recursion (2/2)

public int findRowNumber(Row myRow) {

if (myRow.getRowAhead() == null) { // base case!
return 1;
} else {

// recursive case - ask the row in front

int = this.fi myRow. get head());

/1 number is one e than the row ahead’s number

ny
Y

return rowAheadNum + 1;

44/63

44

Recursion (Top Down) Merge Sort (1/7)

e Let's say you don't know how to sort n elements, but you have a
friend who can sort any number less than n. How can you use the
results to do your work? (like auditorium row number problem)

o one answer s to sort n-1, then just slot the last element into the sorted
order (insertion sort)

o another answer is to pick the smallest single entry, then give
remaining elements to your friend to sort and add your element to the
beginning of her results (selection sort)

o what f your friend can only sort things of size n/2 or smaller? She can
sort the two pieces... can we quickly make a sorted list from what's
left? (merge sort!)

45/63

45

15

Recursion (Top Down) Merge Sort (2/7)

e Partition sequence into two
sub-sequences of N/2 elements

e Recursively partition and sort
each sub-array

e Merge the sorted sub-arrays

46/63

11/2/23

46

Recursion (Top Down) Merge Sort (3/7)

e Partition sequence into two o 5’2 41630
sub-sequences of N/2 number of G Vo
elements [1524 ;

\ !

e Recursively partition and sort ;
each sub-array :

e Merge the sorted sub-arrays v

split

Figure: Merge sort vide phase

47/63

47

Recursion (Top Down) Merge Sort (4/7)

public ArraylistcInteger> mergesort(ArrayList<Integers 1isd) {

if (list.size() == 1) {
return list

)

int middle = list.size() / 2;

ArrayList<Integers left =

this.mergeSort(list. sublist(0, middle));
ArrayList<Integer> right =

this.mergeSort(1ist.sublist(niddle, list.size()));
return this.merge(left, right);

ArrayList list is the sequence to
sort, a sequence of ints

Base caso: return the list when you
get to its Jast element

Elso, rocur on both halves of the
list and merge the sorted lists

48/63

48

16

Recursion (Top Down) Merge Sort (5/7)

public class Sorts {

public Arraylist<Integer> mergeSort(ArrayList<Integer> list) {
if (lst.size() == 1) (aaar[w[
return 1ist;

)

int middle = list.size() / 2;

ArrayListcIntegers left =
this.mergeSort(list.subList(@, middle));

ArraylistcIntegers right =
this.mergeSort(list.subList(middle, list.size()));

return this.merge(left, right);

11/2/23

) 49/63

49

Recursive (Top Down) Merge Sort (6/7)

public ArvayList merge(ArrayListcIntegers A, ArrayListclnteger B)
rayList<Integer> result = new ArrayList<Integer>();
ot vinden o

int bindes - o; .
wglle (alndex < A.size() 8& bIndex < B.size()) { Add elements from the two

)
iF (bIndex < B.size()
et adinl1 (5, ubList (bIndex, 8.512¢));

3
Peturn result;

if (A.get(alndex) <= B.get(bIndex)) { sequences in increasing order
result.add(A.get(alndex));
alndexes;
} else {
result.add(s. get (bIndex)) ; o Ifthere are elements left that
bindex you haven't added, add the
N o
Yt (atndex < Asize()) € remaining elements to your
result.addAl1(A.sublist(alndex, A.size())); result

50/63

50

Recursive (Top Down) Merge Sort (7/7)

@ Recursion to get down to base case is just halving
each subarray: O(logzN)

\ M][]
® Unwinding the recursion: Each level of the tree
performs N operations to merge and sort the B ”\“\ 1 G "M
subproblems below it)

® Each time you merge, you must handle all the \“\n M \
elements in the sub-arrays you're merging, hence
O(N) \aHnHuH;
@ There are log2N number of merge passes, thus,] \
O(logzN) + O(N)(logzN) = O(N)(log2N) ‘:1‘:3 :\u‘
o

o way better than O(N2)
) [l
o drop base (2) and say O(NlogN), ignore constants

® Learn much more about how to find the runtime of M. 10 21 u[u 82

these types of algorithms in CS200! 51163

51

17

Iterative (Bottom Up) Merge Sort

M rt can also be implemented
torativety... nonrecursivel L7121 [3][8][e][4][1][e]

Loop through array of size N, sorting 2\, /
items each. Loop through the array 72‘—'7
again, combining the 2 sorted items into =~
\\
X
23

sorted item of size 4. Repeat, until there
is a single item of size N!

Number of iterations is logzN, rounded
up to nearest integer. 1000 elements in AN /
the list, only 10 iterations! \ /
Iterative merge sort avoids the nested
method invocations caused by recursion! 52/63

52

11/2/23

Comparing Sorting Algorithms

Bubble Sort - O(N?) Insertion Sort - O(N?) Merge Sort - (NlogzN)

Click here to download interactive sorter

54/63

54

18

about:blank

TopHat Question

Which sorting algorithm that we have looked at is the
fastest (in terms of worst-case runtime)?

A. Bubble Sort

B. Insertion Sort

C. Merge Sort

D. Selection Sort

55/63

11/2/23

55

That’s It!

e Runtime is a very important part of algorithm analysis!
o worst case runtime is what we generally focus on
o know the difference between constant, linear, and quadratic run-time
o calculate/define runtime in terms of Big-O Notation
e Sorting!
o runtime analysis is very significant for sorting algorithms
o types of simple sorting algorithms - bubble, insertion, selection, merge sort
o fancier sorts perform even better, but tough to analyze, e.g., QuickSort

o different alg have different per and time

56/63

56

What’s next?

® You have now seen how different approaches to solving
problems can dramatically affect speed of algorithms

o this lecture utilized arrays and loops to solve most problems

® Subsequent lectures will introduce more data structures

beyond arrays and arraylists that can be used to handle
collections of data

® We can use our newfound knowledge of algorithm analysis
to strategically choose different data structures to further
speed up algorithms!

57/63

57

19

11/2/23

Announcements
o DoodleJump late deadline tomorrow 11/3 @ 11:59pm
e DoodleJump Code Debriefs Coming Up

o Keep an eye on your email to see if you were selected
o If you are selected and miss this debrief you will
receive a minus four deduction on your final grade!!!!

e Tetris out Saturday!!!
o you do NOT want to procrastinate on this assignment!
o the earlier you start, the shorter the lines at debugging hours ©
o Please reference the collaboration policy when working on Solo Tetris!!

58/63

58

Socially Responsible Computing

Dark & Addictive Design

CS15 Fall 2022

SOFTWARE DESIEN

59

Definition

Dark patterns are features
of interactive design crafted
to trick users into doing
dark patterns things they might not wish
= to do, but which benefit the
business in question.

Term coined by Harry Brignull
(UX Specialist) in 2010

Image source: Evan Puschak, 2018

60

20

Nudging
users to
give up
privacy

Source: Meta

61

Allow Instagram to
use your app and
website activity?

nalized

Make Ads More Personalized

Using terms like
“personalized”
instead of “targeting”
or “tracking”

More intuitive to tap
on the blue box

11/2/23

More intuitive to tap
the big, dark box

Manipulating user
chol

Source: Florsheim Shoe Compan

ENJOY 18% OFF

v

Manipulating User Psychology

62

Variable rewards/slot machine
tactic: not knowing what you will
get when you swipe

Infinite scrolling/Auto-loop
feature encourages you to
passively engage with the app &
makes it hard to stop

Restricts user choice by limiting
the ways in which you can
interact with the app, so you can
only scroll

Source: Ankit Sherke Design

Addictive patterns in action: TikTok

Hick's Law:
The more choices a
user has, the less
likely they are to
make one

63

21

Infinite scrolling to stimulate
“stickiness” ...

11/2/23

S ——
oY1 U —
the same chemical released with drug/alcohol usage ‘Abnormal White Matter Integrity in

Adolescents with Internet Addiction
Disorder: A Tract-Based Spatial
Statistics Study

8) isTacham amago
callcg, haratail 2 iespacsonves e yout
.

Unravelling the Enigma: How
Behavioural Addictions Alter the
Developing Child Brain?

3) wsmacram

Source: NIH (2012, 2023)

&) woracham
oo Internet addiction in children leads to:
inhibited capablities in brain regions
responsible for reward processing and
inhibitory control

- impairments in the network that
allows for communication between
different areas of your brain

@) nsTacram
tsaraeme it

INSTAGRAM
jlianaweberso, jaymes0811 and 8 waiteren Pe
your photo.

Source: Apple Tool 8lox blog

65

Meta Lawsuit

States Sue Meta Alleging Harm to
Young People on Instagram, Facebook
More than 40 attorneys general filing suits in federal and state courts
seek changes to product features

Source: WS) (October 2023)

- States accuse Meta of damaging mental health with “dopamine-
manipulating” features, including likes and infinite scrolling

- As evidence, plaintiffs cite internal Meta documents made public
by whistleblower Frances Haugen

- Legal experts say Meta is likely to invoke Section 230

66

22

Regulation

FTC Report Shows Rise in Sophisticated Dark Patterns
Designed to Trick and Trap Consumers

Tactics Include Disguised Ads, Difficult-to-Cancel Subscriptions, Buried Terms,
and Tricks to Obtain Data

s | 068 The California
o icson o Age Appropriate
Design Code

Source: Center for Humane Technology (2022)

11/2/23

67

FTC Regulation

$245 million FTC

ortnite owne

cttlement al ipic G

used digi patterns to charge players for unwanced in-

Source: FTC.gov (2022)

FTC Sends Nearly $100 Million in Refunds to Vonage
Consumers Who Were Trapped in Subscriptions By Dark
Patterns and Junk Fees

0oo

Source: FTC.gov (2023)

68

“All design has a level of
persuasion to it. The
Issue with difference is, if you're

. . designing to trick people,
defining dark you're an asshole.”

patterns

Seven Psychological Principles of Persuasive
Design (2016)

Victor Yocco, author of Design for the Mind:

23

El Join Dash!

‘What s Dash?
MERN stack web application (MongoDB, Express, React,
Nodes), hypertext/hypermedia system
produce, annotate, and consume digital documents

Interest form:

‘What would you be doing?
using Dash and providing feedback
becoming familiar with the system, codebase, and
technologies used

‘complete the starter project to join as full member

work on Dash as an independent study, building your
very own feature!

70/63

11/2/23

70

24

