Lecture 18

Data Structures I:
LinkedLists

nnnnnnnnnnnn £2023 11107123 0/60

11/7/2023

Outline

e Linked Lists
» Stacks and Queues (next lecture)

» Trees (next lecture)

» HashSets and HashMaps (next lecture)

Linked Lists

m—vm
Tribute 1 Tribute 2 Tribute 3 Tribute 4

,,,,,,,,,,,,,,,,,,,,,,,,,, 2/60

Whatis a LinkedList? (1/2) [W

*i

* Collection of nodes stored anywhere in memory linked in a “daisy
chain” to form sequence of elements

head

tail

o as with Arrays and ArrayLists, it can represent an unordered setor an

ordered (sorted) sequence of data elements

¢ A linkedList holds a reference (pointer) to its firstnode (head) and
its last node (tail) — internal nodes maintain listvia their references to
their next nodes

Andries van Dam 2023 11107123 3/60

11/7/2023

What is a LinkedList? (2/2) tail

o e o O

+ Eachnode holds an element and a reference to next node in list

* Most methods will involve:

o ‘“pointer-chasing” through the LinkedList (for search and finding correct place to insert
or delete)

o breaking and resetting the LinkedList to perform insertion or deletion of nodes

+ But there won't be data movement! Hence efficient for dynamic collections

Andries van Dam 2023 11107123 4/60

Note that this is an
Ex: HTA LinkedList e Gy, buee 1

has specific values!

LinkedList<HTA> //note generic

Node<HTA> head Node<HTA> fail

—

¥
Node<HTA> ‘ LNode<HTA>

Node<HTA> H Node<HTA>TTT\10de<HTA>
b 4 > b

Node<HTA> next Node<HTA> next Node<HTA>next Node<HTA> next Node<HTA> next
HTAdata element HTAdata element HTAdata element HTAdata element HTAdata element
Allie Anastasio Cannon Lexi Sarah
Andres van bam 62023 1117123 5/60

When to Use Different Data Structures for
Collections (1/2)

* ArraylLists gettheirname because theyimplement
Java’s List interface (defined soon) and are
implemented using Arrays

* LinkedLists alsoimplementthe List interface and
are an alternative to ArrayLists thatavoid data
movement forinsertion anddeletion

o uses pointer manipulation rather than moving elements in an
array

Andries van Dam 62023 11107123 6/60

11/7/2023

When to Use Different Data Structures for
Collections (2/2)

* How to decide between datastructures?

o choose based on the way data is accessed and stored inyour
algorithm

o access and store operations of different data structures can have
very different impacts on an algorithm’s overall efficiency—recall
Big-O analysis

o even without N very large, there can be significant performance
differences

o roughly, Arrays if mostly static collection, ArrayLists if need
more update dynamics while retaining easy accessibility, and
LinkedList if more updates than accesses

am ©2023 11107123 7160

Data Structure Comparison

. . o
Array ArrayList LinkedList
Indexed (explicit| ® Indexed (explicitaccessto | ® Not indexed — to access the
access to i i item) nt element, must start at the
item) * Indices of successor items beglnnln}g and go to thi next
If user moves automatically updated node n times — no random
elements during following an inserted or access!

insertion or deleted item * Can grow/shrink dynamically
deletion, their ® Can grow/shrink ® Uses nodes and pointers
indices will dynamically instead of Arrays

change) ® Javauses an Array as ® Can insert or remove nodes
correspondingly underlying data structure anywhere in the list without
Can't change (and does data shuffling data movement through the
size dynamically| itself) rest of the list

Andries van bam £2023 11107123 8/60

Linked List Implementations (1/2)

¢ Find java.util implementation at:

* To learn list processing, we’ll make our own implementation of this

data structure, MyLinkedList (MLL):

o difference between MLL and Java's implementation is that Java
uses something like our MLL to build a more advanced data
structure that implements Java's List interface

o while there is overlap, there are also differences in the methods
provided, and their names/return types

o in CS200, you will use L%Tkedhisgg,,‘niﬂyour own programs 9060

11/7/2023

Linked List Implementations (2/2)

* MyLinkedList (MLL)isageneral building blockformore
specialized data structureswe’ll build: Stacks, Queues,
Sorted Linked Lists...

* We'll start by defininga Singly Linked List forboth
unsorted and sorted items, then we’ll define a Doubly
Linked List— users of these data structures don’t see any
of these internals!

o will implement MLL as a Singly Linked List in next few slides

Andries van Dam 2023 11107123 10/60

Singly Linked List (1/3)

© MLL doesn'timplement full List Pubicclass Mitidkediistecasm

interface private Node<CSISTA> tail;
. private int size;
* Linked listis maintained by head . i X
and tail pointers; intemal public WLikediist() {
structure changes dynamically this.tail = null;
N N this.size = ©;
+ Constructor initializes instance y iesizes @
variables . L public Node<CS15TA> addFirst(QS15TA el) {
o head and tail areinitially set to
null

)
N public Node<CS15TA> addLast(CSELSTA el) {
o sizesettoO

¢ addFirst() appends Node to front
of list and updates head to

reference it }
. Generic. —we lierally code “<Type>" as @
addLast () appends Node to end of placehoder for the type chosen by the user of this
list and updates tail to reference it data stucture (ex: My inkedlistcCSISTAS, Java
subsiutes CSISTA with whatever Type)
Andies van Dam ©2023 11/07/23 11/60

http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

Singly Linked List

¢ removeFirst()
remov es first Node
and returns element

¢ removelLast()
remov es last Node
and returns element

« Remove() removes
first occurrence of
Node containing
element el and
returns it (implicit
search)

(2/3)
public Node<CS1STA> removeFirst() {

}

public Node<CS15TA> removelast() {

}

public Node<CS15TA> remove(CSISTA el) {

}

Note:we havealigredmethodsof L inked. istand

ArrayListwheepossble with metodsdifleingasthe daa
r (i, ArrayL is

you can getlastelemertwith index=lengh-1)

Andries van Dam 2023 11107123 12/60

11/7/2023

S|

* search() findsand

ngly Linked List

(3/3)

public Node<CS15TA> search(CSISTA el) {

returns Node containingel
« size()returns sizeof list ~ public int size() {
e isEmpty() checksiflistis }
empty (returns boolean) public boolean isEmpty() {
« getHead/getTail() }
return ref erence to public Node <CS15TA> getHead() {
head/tail Node of list }
public Node<CS15TA> getTail() {
)
Andries van Dam ©2023 11107123 13/60

Singly Linked List Summary

public class MyLinkedlist<CS1STA> {
private Node<CS15TA> head;
private Node<CS15TA> tail;
private int size;
pulic Mylinkedlist() {
}
public Node<CSISTA> addFirst(CSISTA el)
}
pulic Node<CSISTA> addlast(CSISTA el) {
}
public Node<CSISTA remveFirst() {
}

pblic Node<CSISTA remvelast() {

pwblic Node<CS15TA> remove(CS1STA el) {
y
pblic Node<CS15TA> search(CS15TA el) {
}
pwlic int size() {
oy
pwblic boolean isEmpty() {
}
public Node<CSI5TA getHead() {
}
public Node<CSISTA getTail() {

¥
i

3 Andries van bam £2023 11107123 14/60

The Node Class

. Also uses generics; user of MLL
specifies type and Java substitutes
specified type in Node class’ methods

« Constructor initializes instance
variables element and next

. Its methods are made up of accessors

and mutators for these variables:
o getNext() and setNext()
o getElement() and setElement()

. Type is a placeholder for whatever
object Node will hold

Node<Type>

public class NodedTyper {

private Node<Type> next; .

11/7/2023

private Type element; Node<Type>
Type element

pwlic Node(Type element) {
! o

this.next = null;
this.element = element;
}

public Node<Type> getNext() {
return this.next;
}

public void setNext(Node<Type> next) {
this.rext = next;

}

public Type getElement() {
return this. element;

i

public void setElenent(Type elanent) {
this.element = element;

¥
sniis van oum Ja023 11107123 15/60
Ex: A pile of Books
« Beforeimplementing LinkedLists Book
internals, let’s see howtouse one
to model a simple pile of Books -
o ‘userhere is another programmer using Str\}ng a'fthor\
the MyLinkedList we're making String title
int isbn
. E(I)%nlgents in our pile will be of type getAuthor()
o each has title, author(s), date and ISBN getTitle()
(Intemational Standard Book Number) getISBN()
o want list that can store any Book
Andios van bun 2023 11107123 16/60

Book Class

* Book’s constructor stores
author, date and ISBN
number of Book asinstance
variables

» For each property, get
method returnsthat
property’s value

o ex. getISBN() returns isbn
}

public class Book {

private String author;
private String title;
private int isbn;

public Book (String author,
Sstring title, int isbn) {
this.author = author;
this.title = title;
this.isbn = isbn;

public int getISBN(){
return this.isbn;

Andries van bam £2023 11107123 17/60

EX: MyLinked List< Book> ‘ Note: all this machinery hidden from user!

MyLinkedList<Book> books

lode<Book> head

Node<Book> tail \

Note: The LinkedList is the instance with
head and tail references in it + the set of
linked Nodes distributed in memory

11/7/2023

null —

int size = 4

Node<Book> By Node<Book> Node<Book> Node<Book>
Node<Book> next Node<Book> next Node<Book> next Node<Book> next |
Book element Book element Book element Book element

Book Book Book Book
‘his author = “Rodd Dahl" this author = “JonKrakawer| | this author =“SuzanneCdiirs’ | | this author =“JR.R.Tolkeri
this fite = “The BFG" his iite = *Into The Wild" this fite = “CatchingFire this.fite =*The Hobbit
this isbn = 0142410381 this isbn = 0385486804 this isbn = 9780645225117 this isbn = 0345330631
Andries van Dam 2023 11107123 18/60

Implementation: addFirst —empty list

« If listis empty, head and tail MyLinkedList<Type> null
are null
o let's only show list pointers Nmmyj'gﬂamd
Nmie<Ty¥>'all .I\/
« Create new -
Node<ElementType>
Node<Type>
* Update new node’s next
variable to where head points No“eqype)ne/ new Node
to, which is null in this case Type element
o constructor already had null A

— we're accounting for
general case

.

Update head and tail
variables to new node

For simplicity we elide
initialization of eLement
and showing what it
points to

emaen
Andries van Dam 2023 11107123 I—, 19/60

addFirst —non empty | Node<eer | ey Node

» Construct newNode

» Update its next variable to
current head (in this case,
some previously added
Node that headed list)

head Nnde<Type>nsTt

Type element

v
Node<Type>

A
head Node<Type> next
Type clemen |

v
* Update MLL's head v ariable
to the new Node
Node<Type>
tai l Node<Type> next = null
Type element 20060

Constructor and addFirst Method (1/2)

» Constructor—as shown bef orepublic MyLinkedList Type>() {
o initialize instance variables this.head = null;

this.tail = null;
: this.size = 0;
+ addFirst method y e
o increment size by 1
o create new Node ((S15: public Node<Type> addFirst(Type el) {
] this.size+t;
const@ctor stores el in element, Node<Type> newNode
null in next) = new Node<Type>(el);
o update newNode’s next to first newNode. setNext (this .head);
Node (pointed to by head) this.head = newNode;
o update MLL's head to point to if (size = 1) {
newNode this.tail = newNode;

o ifsizeis 1, tail mustalso point }
to newNode (edge case)
o return newNode

return newNode;
sniis van oud 2023 11107123 21/60

11/7/2023

Constructor and addFirst Runtime (2/2)

public MyLinkedList () {
this.head = null; // 1 op
this.tail = null; // 1 op

this.size = @; // 1o0p
X - constructo o)

public Node<Type> addFirst(Type el) {

this.size+t; // 1 0p
Node<Type> newNode = new Node<Type>(el); // 1 op
newNod e. set Next (this .head); // 1 op
this.head = newNode; // 1 op
if (size == 1) { // 1 0p
this.tail = newNode; // 1 op
return newNode; // 1 0p
} > addFirst(Type el) is O(1)
Andries van Dam 2023 11107123 22/60

addLast Method (1/2) [rewe<tpe-

«— head
Node<Type> next
* MLL's tail already points Typeelement
to the last Node in the list v
* Create a new Node<Type>
Node<Type> tail
¢ Update tail’s node’s next Node<Types next—— nul
pointer to the new node Type element |
¢ Then, update tail to the Node<Type> |«—tail
new Node <—new Node

Node<Type> next=—t9 null
Type element

Andries van bam £2023 11107123 23/60

addLast Method (2/2)

public Node<Type> addLast(Type el) {

Edge Case Node<Type> newNode

o iflistis empty, update head and = new Node<Type>(el);
tail variables to newNode if (this.size == 0) {

11/7/2023

this.head newNode;
this.tail = newNode;
* General Case }1 .
else
o updatg next‘ofAcurre‘m‘Iast Node this.tail.setNext(newNode);
(to which tail is pointing - this.tail = newNode;
“‘update tail’s next”) to new }h tail
this.sizer+;
lastNode return newNode;
o update tail to that new last 3 e
Node o
) Node<Type> Node<Type>
o new Node’s next variable
already points to null Node<Type> next Node<Type>next
Y P Type element Type element ~Ppyl
null
Anries van bam 2023 11107123 newnode 24/60
public Node<Type> addLast(Type el) {
Node<Type> newNode = new Node<Type>(el) // 1 op
if (this.size == @) { // 1 op
this.head = newNode; // 1 op
this.tail = newNode; // 1 0p
else {
this.tail.setNext(newNode); // 1 op
this.tail = newNode; // 1 op
this.size++; // 1 0p
return newNode; // 1 0p

- addLast(Type el)is O(1)

Andries van Dam 2023 11107123 25/60

size and isEmpty Methods and Runtime

public int size() {
return this.size; // 1 op

¥
> size() is O(1)

public boolean isEmpty() {
return this.size == @; // 2 ops

> isEmpty() is O(1)

-

Andries van bam £2023 11107123 26/60

removeFirst Method (1/2)

Remov e reference to
original first Node by
setting head v ariable to
second Node, i.e., first
Node’s successor Node,

Node<Type>

garbage- < head
Nodeollgptechext
Type element |

viafirst's next Node<Type>
head
. Node<Ty >
Node to remove is Typo slement |
garbage-collected after l
termination of method
Andries van Dam ©2023 11107123 27/60

11/7/2023

removeFirst Method (2/2)

Edge case for empty list

o println is optional, just one way to
handle error checking; caller should

check for null in any case

Store data element from first Node
to removed

Then unchain first Node by resetting
head to point to first Node's
successor

If listis now empty, update tail to
null (what did head get set to?)
Node to remove is garbage-
collected at method's end

public Type removeFirst() {

—

if (this.size == {
Sy stem. out. print In(“List is empty”)
return null;

}

Type removed = this. head .getElement() ;
this.head = this.head.getNext();

if (this.size == @) {
this.tail = null;

return removed;

Andries van Dam 2023 11107123 28/60

removeFirst Runtime

public Type removeF irst() {
if (this.size ==

{
Sy stem. out. print In(“List is empty”);

return null;

}

Type removed = this. head .get Element() ;
this.head = this.head.getNext();
this.size--;
if (this.size ==0) {

this.tail = null;

return removed;

//10p
// 1o0p
// 1 op
// 1 op
//10p
// 1o0p
// 1 op
// 1 0p

1op

- removeFirst() is O(1)

Andries van bam £2023 11107123 29/60

10

Review: Accessing

Nodes Via Pointers
this.head.getNext();

This does not get next field of head, which
doesn’t have such a field, being just a
pointer

Instead, read this as “get next field of the
node head points to”

What does this.tail.getNext()
produce?

What does this.tail.getElement()
produce?

note we can access a variable by its unique

11/7/2023

Node<Type> -— head
Node<Type> next
Type element |
Node<Type>
Node<Type>next
Type element | .
v tail
—L last nude\
Node<Type>
Node<Type>

Node<Type>next —

null

T [it Ly
name, index, contents, or here, via a pointer ey ;‘;;’::m’:;"e” -
s van oam ©2029 1110723 30/60
TopHat Question
Givenalinked List of Nodes,
A->B->C->D

where head points to node A, what is this.head .getNext() .getNext()?

A. Nothing, throwsa NullPointerException
B. B
C. C
D. D
Andries van Dam ©2023 11107123 31/60
removeLast Method| Noe<type> |~ po0 g
* Aswith removeFirst, remove Node<Type>next
. Type element |
Node by removing any references
toit. Need to know predecessor, | node<Type>
but no pointer toit!
. “Pointer-cha’se" in a_loop'until $y°:§:m:">‘"ex|‘ tail
predecessor’s nextis tail and v -
reset predecessor’s next
instance v ariable to null —L st node
o very inefficient-stay tuned Node<Type> |
« Update tail ¥ Node<Type>
. Node<Type> next
« Last Node is thereby garbage- Type slement pog bage, |l
collected! i Type element
P a 1011 32/60

11

removeLast Methodsw:c v o

Edge case(s)

o can't delete from empty list

o ifthere’s only one Node, update
head and tail references to null

General case

o iterate (“pointer-chase”) through
list— common pattern using
pointers to current and previous

node in lockstep

o

curr will point to last Node

after loop ends, prev will point to
Node just before last Node and

ype removed
if (this.size
System.out.println(“List is empty”);
} else if (this.size == 1) {
removed = this.head.getElement();
this.head = null;
this.tail = null;
this.size = @;
} else {
Node curr = this.head;
Node prev = null;
while (curr.getNext() != null) {

ull;

prev = curr;
curr = curr.getNext();

}

removed = curr.getElement();

prev.setNext(null);

this.tail = prev;

this.size-

return removed;

Andts van bum 2029 1107120 33/60

11/7/2023

removelLast Method puic Ty renoetast

null

prev
Node<Type> < head
Vi «~— curr
Node<Type> next
Type clement «— prev
Node<Type> prev
+~—— curr
Node<Type> next t
Type element

il
—

ype removed
if (this.size == @) {

System.out.println(“List is empty”)

L
} else if (this.size == 1) {
removed = this.head.getElement();
this.head = null;
this.tail = null;
this.size--;
} else {
Node curr = this.head;

Node prev = null;
while (curr.getNext() != null) {

prev = curr;
curr = curr.getNext();

i

last node
. removed = curr.getElement();
Node<Type> Node<Type> prev.setNext(null);
Node<Type> next —) e |_wnull this.tail = prev;
Type clement | Nesibotechet this.size--;
Type ele
return removed;
nul Aniries van Dam £2023 1307123 34/60

removelLast Runtime

public Type removelast() {

Type removed = null; /1
if(this.size = @) /11 ®
System.out.println(“List is empty”); /11
}
else if(this.size == 1) { /11
removed = this.head.getElenent(); /1w
this.head /1
this.tail /1
this.size-; // 1w
¥
lse(-> removelast()
Nade rr = this.head; /71 @ | isO(n)
Node prev = null; /1
while (curr.getNext() != null) { Lln cps
prev = curr; /1@
curr = curr.getNext(); /11 ®
ranoved = curr.getElement (); /1
prev. setNext (null); /11
this.tail = prev; /1w
this.size--; /1w
return remved fnites van oam w2523 10728 [t 35/60

12

TopHat Question

Given that animals is a Singly Linked List of n animals, what is node pointing to?

curr = this. head;
prev = null;
while (curr.getNext().getNext() != null) {
prev = curr;
curr = curr.getNext();

node = curr.getNext () ;

11/7/2023

A. Nothing useful, throws a NullPointerException
B. Points to the last node on the list
C. Points to the second node on the list
D. Points to the head of the list
fntiios van bam 2023 11107123 36/60
search Method for MyLinkedList
* Loopsthrough listuntil pusiic nedectypes search(Type e1) {
element iSfOUnd Orend Node<Type> curr = this.head;
isreached (curr==null) while (curr 1= null) {
, i if (curr.getElement().equals(el)) {
¢ Ifa Node’s elementis , et arrs
same as the argument, curr = curr.getNext();
return curr }
11;
* Ifnoelementsmatch, , ™*™™
return null
Andios van bun 2023 11107123 37/60
search Runtime
public Node<Type> search(Type el) {
Node<Type> curr = this.head; // 1 0p
while (curr != null) { [/ nops
if (curr.getElement().equals(el)) { // 1 op
return curr; // 1 0p
}
curr = curr.getNext(); // 1 0p
}
return null; // 1 op
}
- search(Type el) is O(n)
38/60

13

remove Method

* We have implemented methodsto remove firstand last
elements of MyLinkedList

* Whatif we want to remove any element from
MyLinkedList?

» Let’s write a general remove method
o think of it in 2 phases:
- asearch loop to find correct element (or end of list)
- breaking the chain to jump over the element to be removed

11/7/2023

39/60

sndries van Dam £2023 11107723

prev

remove Method \
« Loop through Nodes until an e LINOde<Type>
element matches itemToRemove prev % Nude<Type>nex’

Type element

“Jump over” Node by re-linking

i i Node<Type>
pret:!ecessor of_ Node (again using curr _‘ﬁ_ to renove
loop’s prev pointer) to successor N""Q&;Tevéﬁeené@e“

oL curr = nul L | Type'e
of Node (via its next reference)

Node<Type>

With no more reference to Node, it

is garbage collected at termination Node<Type> next
of method Type element
Andios van bun 2023 11107123 40/60
public Type remove(Type itemToRemove){
if (this.isEmpty()) {
remove M eth Od System.out.println(“List is empty”);
return null;
}
Edge Case(s) if (itemToRemove.equals(this.head.getElement())) {

o again: can't delete from empty list return this.renovefirst();

o if removingfirst ittm or last item, if (itemToRemove.equals(this.tail.getElement())) {
delegate to return this.removelast();
removeFirst/removelast)

Node<Type> curr = this.head.getNext();

General Case Node<Type> prev = this.head;

. - P while (curr !=null) {

o iterate ov_erllstunu! itemToRemove 1f (curr.getElement() . equals (itemTRemove)) {
is found in ptr-chasing loop prev.setNext (curr. getNext());

o again: need prev, so we can re-link ;gzrf“ﬁw it lement();
predecessor of curr.Node is GC'd N & ;
upon return. prev = curr;

curr = curr.getNext();
Note:caller ofremove can find outifitem was lmm null;
successfully found (ard removed) bytesting for) ’
!= null Andies van Dam ©2023 11/07/23 41/60

14

remove Runtime

public Type remove(Type itenToRemove){
if (this.isEmpty()) { /11
System.out.printIn(“List is empty”); /1w
return null;

}
if (itemToRemove.equals(this.head.getElement())) {// 1 @
return this.removeFirst(); i

}
if (itemTcRemove.equals(this.tail.getElement())) {// 1 o
return this.removelast(); £/0(n) painter chase till list end
)y
Node<Type> curr = this.head.getNext(); // 1 op

Nade<Type> prev = this.head; // 1o
while (curr 1= null) {

if (itemTcRemove.equals(curr.getElement())) { ,// 1 o | remove(Type
prev.setNext (curr.getNext()); 1 o | itemToRemove) is O(n)
this.size--; // 1
retum cur.getElement(); /111

}

prev = cumr; /1o

curr = curr.getNext(); /11 o

return null; /1@
¥ Anries van bam 2023 11107123 42/60

11/7/2023

TopHat Question

Given that animals is a Singly Linked List of n animals, curr points to the
node with an animal to be removed from the list, that prev points to curr’s
predecessor, and that curr is not the tail of the list, what will this code
fragment do?

prev.setNext(curr.getNext()) ;

curr = prev.getNext ();

System .out .println(curr. getElement()) ;

A. List is unchanged, prints out removed animal

B. List is unchanged, prints out the animal after the one that got removed

C. List loses an animal, prints out removed animal

D. List loses an animal, prints out the animal after the one that was removed

Andries van Dam 2023 11107123 43/60

Doubly Linked List (1/3)

» Is there an easier/fasterway to getto previousnode
while removing a node?
o with Doubly Linked Lists, nodes have references both to next
and previous nodes

o can traverse list both backwards and forwards — Linked List still
stores reference to front of list with head and back of list with
tail

o modify Node class to have two pointers: next and prev
o eliminates pointer-chasing loop because prev points to
predecessor of every Node, at cost of second pointer

o classic space-time tradeoff!
44/60

15

Doubly Linked List (2/3)
@@ e@=@=E

« For Singly Linked List, processing typically goes from first to last
node, e.g. search, finding place to insert or delete

« Sometimes, particularly for sorted list, need to go inthe opposite
direction
o e.g., sort CS15 students on their final grades in ascending order. Find
lowest numeric grade that will be recorded as an “A”. Then ask: who
has a lower grade butis closerto the “A” cut-off, i.e., in the grey area,
and therefore should be considered for “benefit of the doubt™?

Andries van Dam 2023 11107123 45/60

11/7/2023

Doubly Linked List (3/3)

» Thiskind of backing-up can’t easily be done with the
Singly Linked Listimplementation we have so far

o could build our own specialized search method, which would scan from
the head and be, at a minimum, O(n)

+ ltissimplerfor Doubly Linked Lists:
o find student with lowest “A” using search

o use prev pointer, which points to the predecessor of a node (O(1)), and
back up until hit end of B+/A- grey area

Andries van Dam 2023 11107123 46/60

Announcements

» Tetris is out!

o early handin: Saturday 11/11
o on-time handin: Monday 11/13
o late handin: Wednesday 11/15
0]

Tetris Code-Along 11/08 7:00pm Friedman Hall
- Recording on Website
HTA hours in Friedman 101 Friday 3pm-4pm

o come and chat about course registration, the upcoming final project
or any other concerns you may have ©

Andries van bam £2023 11107123 47/60

16

Cybersecurity and the
Future of Warfare

CS15 Fall 2023

7'

CTBERSELEAITE

11/7/2023

Cybersecurity: A Brief History

Andy with IBM Graphics Display Unit, 1968

What is Cybersecurity?

“Cybersecurity is the art of protecting networks, devices, and data from unauthorized access or

criminal use and the practice of ensuring confidentiality, integrity, and availability of
information.”

— United States Cybersecurity & Infrastructure Security Agenc
I P "
[Ugrad] Phishingicam message sbout sumimer break research

Fusar, Wathi

Flat Icon.

17

ChatGPT’s Popularity
Leveraged to Spread Malware

‘ https://google.drive.com/u/0/uc..
Link to malware

Threat actors using Adam Erhat, a
well-known YouTuber market strategist
to eamn trust and facilitate this
campaign

How Hackers Use Data: Ransomware

“Ransomware is a type of malware that locks a victim’s data or device and threatens to
keep itlocked—or worse—unless the victim pays aransom to the attacker.”

Server Infected

vulnerabilties websites Online Ads

Scam emails

Source: Federal Trade Commissiol

Case Study: Colonial Pipelines Ransomware Attack

Colonial Pipeline system map

= Pipeline system — Sublines
® Main weekend delivery locations

Linden,
us New Jersey
Greensboro
-
2 Charlotte
Attanta) w Spartanburgh
Example ransom message from DarkSide, the
group that hacked Colonial Pipelines Fouston, 200km
o 200 miles
Source: Colonial Pipeline Company jeleic]

Source: B8C, CISA Reuter

11/7/2023

18

By Sergiu Gatlan

Brown University hit by cyberattack, some systems still offline

11/7/2023

Apil2, 20 04071 PA
Anatomy of a phish:
— o
Special_Events@brown.edu Do 4 .
A new d: B
You deets has been obtain by viper crewz https://
[0 ascom/Beedl Bixe/ecs cav]

~500,000 email addresses were compromised in the

2021 cyberattack — this is the message leaked emails
would receive

provided to ca1 with questions

Source: BleepingComputer, Gol ocal fov, Brown Univers|

Case Study: SolarWinds Cyber Attack

“As of today, 9 federal agencies and about 100 private sector companies were
compromised.” —Anne Neuberger, Deputy National Security Advisor

U.S. DEPARTMENT OF

ENERGY

Wational Nuclear Security Adminisiration

N
UG,

< o
£AXD S50

on_U
Ty

%

Source: White House, Mgosoft CN

Cybersecurity + International Affairs

©030

J

As cyberattacks become more common...

...cybersecurity groups work together
globally!

Groups that helped neutralize the Russian
malware “Snake,” a cyber-espionage malware
found in over 50 countries

19

11/7/2023

Executive Order on Improving the
Nation’s Cybersecurity

Source: NY Times, The White Hous|

Cybersecurity at Brown Coursesat Brown:

CSCI 1040: The Basics of
Cryptographic Systems

CSCl 1360: Humans Factors in
Cybersecurity

CSCl 1660: Introduction to
Computer Security

G

BROWN Office of Infarmation Technology
o

CSCI 1800: Cybersecurity and
International Relations

— i

Cybérsecurity

CSCI 1870: Cybersecurity Ethics

CSCI 2660: Computer Security

20

	Slide 0: Lecture 18
	Slide 1: Outline
	Slide 2: Linked Lists
	Slide 3: What is a LinkedList? (1/2)
	Slide 4: What is a LinkedList? (2/2)
	Slide 5: Ex: HTA LinkedList
	Slide 6: When to Use Different Data Structures for Collections (1/2)
	Slide 7: When to Use Different Data Structures for Collections (2/2)
	Slide 8: Data Structure Comparison
	Slide 9: Linked List Implementations (1/2)
	Slide 10: Linked List Implementations (2/2)
	Slide 11: Singly Linked List (1/3)
	Slide 12
	Slide 13: Singly Linked List (3/3)
	Slide 14: Singly Linked List Summary
	Slide 15: The Node Class
	Slide 16: Ex: A pile of Books
	Slide 17: Book Class
	Slide 18: Ex: MyLinkedList<Book>
	Slide 19: Implementation: addFirst – empty list
	Slide 20: addFirst – non empty
	Slide 21: Constructor and addFirst Method (1/2)
	Slide 22
	Slide 23
	Slide 24: addLast Method (2/2)
	Slide 25: addLast Runtime
	Slide 26: size and isEmpty Methods and Runtime
	Slide 27: removeFirst Method (1/2)
	Slide 28: removeFirst Method (2/2)
	Slide 29: removeFirst Runtime
	Slide 30: Review: Accessing Nodes Via Pointers
	Slide 31: TopHat Question
	Slide 32: removeLast Method
	Slide 33: removeLast Method
	Slide 34: removeLast Method
	Slide 35: removeLast Runtime
	Slide 36: TopHat Question
	Slide 37: search Method for MyLinkedList
	Slide 38: search Runtime
	Slide 39: remove Method
	Slide 40: remove Method
	Slide 41
	Slide 42: remove Runtime
	Slide 43: TopHat Question
	Slide 44: Doubly Linked List (1/3)
	Slide 45: Doubly Linked List (2/3)
	Slide 46: Doubly Linked List (3/3)
	Slide 47: Announcements
	Slide 48: Cybersecurity and the Future of Warfare
	Slide 49: Cybersecurity: A Brief History
	Slide 50: What is Cybersecurity?
	Slide 51: Chat GPT’s Popularity Leveraged to Spread Malware
	Slide 52: How Hackers Use Data: Ransomware
	Slide 53: Case Study: Colonial Pipelines Ransomware Attack
	Slide 54
	Slide 55: Case Study: SolarWinds Cyber Attack
	Slide 56: Cybersecurity + International Affairs
	Slide 57: Future of cybersecurity
	Slide 58

