9/14/2023

/9%

Lecture 3

Introduction to Parameters/ Math

2/96

Review of Inter-Object Communication

Note: Object is used
* Aclass provides a blueprint for instances of that class | loosely for both class
and instance. We tiy

* Instances send each other messages to minimize our use o
* Instances respond to a message via a method this overloaded term
* Format of messages is <instance>.<method> ();

o e.g., samBot.moveForward(3);
* Sometimes an instance want to send a message to itself, using a

method defined in its own class: this.<method>() ;
* this means “me, myself’ AND the method is defined in this class

o Choreographer tells dancer: dancer3.pirouette(2);

o Dancer tells themself: this.pirouette(2);

o Note: we've not yet leamed how to create new instances of any class

3/96




This Lecture:

» Mathematical functionsin Java

» Defining more complicated methodswith inputsand outputs
» The constructor
» Creating instancesof a class

» Understanding Java flow of control

[ pp—— 4/96

9/14/2023

Defining Methods

e We know howto define simple methods

e Today, we willdefine more complicated methodsthat have
both inputs and outputs

e Along theway, we will learn the basics of manipulating
numbersin Java

5/96

BookstoreAccountant

o We will define a
BookstoreAccountant class that
models an employee in a
bookstore, calculating certain costs

o finding the price of a purchase,

calculating change needed, etc.

Each of theaccountant’s methods
will hav e inputs (numbers) anda
single output (number)




9/14/2023

Basic Math in Java

e First, we'll talkabout
numbersand
mathematical
expressionsin Java

Vo= [xwxh

7196

Integers

e Anintegerisawhole number, positive or negative,
including 0

-

L]
A F A &4 B

HH S

L]

- =

L]

e Dependingon size (humber of digits) of the integer,
you can use one of four numerical basetypes
(primitive Javadata types): byte, short, int, and
long, inincreasing order of number of bitsof precision

e Bit: binary digit,0or1l

8/96

Integers

Base Type Size Minimum Value Maximum Value

byte 8 bits 128 (27) 127 (27 - 1)

short 16 bits 32,768 (-215)

32,767 (215 - 1)

int 32 bits -2,147,483,648 (-231) 2,147,483,647 (231 -1)

long 64 bits -9,223,372,..,808 (-263) | 9,223,372,...,807 (263 - 1)

In CS15, almostalwaysuse int - good range and we’re not
as memory-starved aswe used to be so don’t needbyte

9/96




Foating Point Numbers

e Sometimes, need rational and irrational numbers, i.e.,
numbers with decimal points

e Howtorepresentpi=3.14159...7
e Floating point numbers
o called “floating point” because decimal point can “float’- no fixed
number of digits before and after it — historical nomenclature

o used for representing numbers in “scientific notation,” with decimal
point and exponent, e.g., 4.3 x 10-5

e Two numerical base types in Java represent floating point
numbers: float anddouble

9/14/2023

— 10/96
Floating Point Numbers
Base Type Size
float 32 bits
double 64 bits
Feel free to use both in CS15. Use of double is
more common in modern Java code
s 11/96
Operators and Math Expressions (1/2)
e Example expressions:
Operator Meaning
o 4 + 5
+ t
additon 3.33 * 3
- subtraction 11 % 4
* multiplication 3.0 / 2.0
/ division 3 / 2
% remainder
12/96




Operators and Math Expressions (2/2)
e Example expressions:
4 + 559
e Whatdoeseach of 3.33 %3999

; 11 % 4 - 3
these expressions )
evaluatepto? why??? 3 9 / 2.0— 1.50

13/96

9/14/2023

Be carefulwith integerdivision!

e Whendividing two integer ty pes,
result is “rounded down” to an int
after remainder is dropped

e 3/2evaluatestol 3
e |f either numberinvolvedis 3
floating point, result is floating 3

3

point: allows greater “precision,”
i.e., fractional portion.

o 10 /3-3
o 10 / 3.0 - 3.3333.. (more precise)

o called mixed-mode arithmetic
14/96

Evaluating Math Expressions

e Java follows the same evaluation
rules that you learned inmath class
years ago — PEMDAS (Parentheses,
Exponents, Multiplication/Division, 2+4 %3 -7 57
Addition/Subtraction)

e Evaluation takes place left to right, (2 +3) + (11 /12) »5
except:
3+ (2-(6/3)) —3

o expressions in parentheses
evaluated first, starting at the
innermost level

o operators evaluated in order of
precedence/priority (* has priority

over +)
15/96




TopHat Question

What doesx evaluate to?

intx= (5 /2) *3) +5);

9/14/2023

A.12.5
B.11
C.13
D. 10
E. 12
[ —— 16/96
BookstoreAccountant
e BookstoreAccountants should be ableto find the price
of a set of books
e When we tell a BookstoreAccountant to calculatea
price, we want it to perform the calculatonandthentell
us theanswer
e Todo this, we needto learnhow to write a method that
returns avalue —inthiscase, a number
wate o o e wwn 17/96
Return Type (1/2)
public class Robot {
e The return type of a method is the public void turnRight() {
kind of data it gives back to
whomever called it '
e Sofar, we have only seen return public void moveForward(int numberOfSteps) {
type void N
e A method with aretum type of public void turnleft() {
void doesn’t give back anything this.tunRight();
when it's done executing this.tunRight();
this.turnRight();
e void just means ‘this method does ) ’
not retum anything”
[ — 18/96




Return Type (2/2)

o If wewant a method to return
something, replace void with

A silly example:

the type of thing we want to retutg ype
return public int giveMeTwo() {
e If method should return an )

integer, specify int return type

e When return type is not void,
we have promised to end the
method with a return
statement

o any code folloningthe return
statement will

return statement

Return statements always take the form:

return <something of specified return type>;

9/14/2023

19/96
Accountant (1/6)
public class Books toreAccountant {

e Let's write a silly method for

BookstoreAccountant called

priceTenDollarBook () that finds public int priceTenDollarBook () {

the cost of a $10 book , return 10;
e It will return the value “10” to

whoever called it

the return type, int !

o Wewill generalize this example

soon... 3

o o e i 20/96

Accountant (2/6)

e What does it meanfor a method to“return a value to whomever
calls it"?
e Another objectcancall priceTenDollarBook() ona

BookstoreAccountant from somewhereelse in our program and
use the result

e Forexample, consider a Bookstore class that has an accountant
named myAccountant

e We will demonstrate how the Bookstore cancall the method and
use the result

21/96




Accountant (3/6)

myAccountant.priceTenDollarBook();
We started by just calling
priceTenDollarBook()
This is fine, it will retum 10, but we are not
doing anything with that result!

Let’s use the retumed value by printing it
to the terminal

public class Books toreAccountant {

public int priceTenDollarBook() {
return 10;

}

22/96

9/14/2023

Aside:System.out.println

e System.out.println() is anawesome tool for testing and

debugging y our code — learn to useit!

e Helps the user seewhat is happening in your code by printing out

values tothe terminal as it executes

e NOT equiv alent to return, meaning other methods cannot see/use

what is printed

e If Bookstoreprogramis not behaving properly, can test whether
priceTenDollarBook() is the problem by printing its return value to
v erify thatit is “10” (yes, obvious in this trivial case, butnotin

general!)

23/96

Accountant (4/6)

In a new method, manageBooks(), print
result

“Printing” in this case means displaying
a value to the user of the program

To print to terminal, we use
System.out.println (<expression to
print>)

println() method prints out value of
expression you provide within the
parentheses

public class Books toreAccountant {

public int priceTenDol larBook() {
return 10;

}
public void manageBooks() {

Sys tem.out .print1n (
this.priceTenDollarBook());

24/96




Accountant (5/6)

e We hav e provided the expression
this.priceTenDollarBook()to be
printed to the consde

e This information given tothe
println() method is called an
argument; moreon thisin a few
slides

e Putting one method call inside
another is called nesting of method
calls; more examples later

public class BookstoreAccountant {

public int priceTenDol larBook() {

return 10;

}

public void manageBooks() {
Sys tem.out .print1n (

this.priceTenDollarBook());

25/96

9/14/2023

Accountant (6/6)

e When this line of codeis evaluated:

o println() is called with argument
of this.priceTenDollarBook( )

o priceTenDollarBook () is called on
this instance of the
BookstoreAccountant, returning 10

o Println() gets 10 as an argument,
10 is printed to terminal

public class Books toreAccountant {

public int priceTendol larBook() {

return 10;

}

public void manageBooks() {
Sys tem.out .print1n (

this.priceTenDollarBook());

argument of printin

26/96

Accountant: A More Generic Price Calculator (1/4)

e Now your accountant can get the

price of a ten-dollar book — but public class BookstoreAccountant {

that's completely obvious

e For a functional bookstore, we'd
need a separate method for
each possible book price!

}

public int priceTenDollarBook() {
return 10;

public int priceBeoks(int numCps, int price) {
x

e Instead, how about a generic } I
method that finds the price of 7 .

any number of copies of a book,
given its price?

o useful whenthe hookstore needs
to order new books

27/96




Accountant: A More Generic Price Calculator (2/4)

Method answers the question:
given a number of copies and a
price per copy, how much do all
of the copies cost together?

To put this in algebraic terms, we

want a method that will

correspond to the function:
fx,y)=x*y

“x” represents the number of

copies; “y” is the price per copy

public class BookstoreAccountant {

public int priceTenDollarBook() {
return H

}
public int priceBooks(int nurCps, int price) {

Y

28/96

9/14/2023

Accountant: A More Generic Price Calculator (3/4)

Mathematical function:

fx,y) =x*y

1

inputs  output

name

EquivalentJava method:

name x inputs
public int priceBooks(int numCps, int price) {
) return (numCps * price);

output

o o o3 ww 29/96

Accountant: A More Generic Price Calculator (4/4)

Method takes in two integers from
caller and gives appropriate answers
depending on those integers

When defining a method, extra
pieces of information that the method
needs to take in (specified inside the
parentheses of the declaration) are
called parameters

priceBooks() is declared to take in
two parameters, “numCps” and
“price” —these, like variable names,
are arbitrary, i.e., your choice

public class BookstoreAccountant {

public int priceBooks(int numCps, int price) {

return (numCps * price); \ /

parameters

o om o3 aiwn 30/96

10



Qutline

L]

e Definingmore complicated methods withinputs and outputs
e The constructor

e Creating instances of a class

e Understanding Javaflow of control

e o 53 319%

9/14/2023

Parameters (1/3)

e General form of method you are defining that takes in parameters:
<visibility> <returnType> <methodVame>(<typel> <amel>, <type2 <name2...) {

<body of method>
}

e Parameters are specified as comma-separated lists oftype-name pairs

o for each parameter, specify type (for example, int or double), and then name (“x”
“banana’... whatever you want!)

e In basic algebra, we only deal with numbers and freely mix their types. In
programming, we use many different types, not just numbers, but also class names,
and must tell Java explicitly whatwe intend

o Javais a “strictly typed” language, i.e., it makes sure the user of a method passes the right
number of parameters of the specified type, in the right order — if not, compiler error! In
short, the compiler checks for a strict one-to-one correspondence
wae o o wws 32/96

Parameters (2/3)

The following methods are completely

i equivalent:
Dummy name of each parameter is q 15 parameta 2% Parameter

completely up to you, but... hype—name]m
o Java naming restriction: needs to start
with a letter public int priceBooks(int numCps, int price) {

return (numCps * price);
o refer to CS15 style guide for naming }
conventions
public int priceBooks(int bookNum, int pr) {

Itis the name by which you will refer return (bookNum * pr);

to the parameter throughout method }

Note again that each parameter is a

) ¢’ public int priceBooks(int a, int b) {
pair: type and name

return (a * b);

e om o wwn 33/96

11


https://docs.google.com/document/d/1olSJxbrhuIystA_kVbmKu4V8JfN7HE-eDzM5blkoeFw/edit?usp=sharing

Parameters (3/3)

last lecture?

numberOfSteps

e Follows sameparameter
format: type, then name

RememberRobot class from

Its moveForward method took in
one parameter — an int named

type name

public void moveForward(int numberOfSteps) {

9/14/2023

We Want Human-readable Code

e Try to come up with descriptive names for parameters that make
their purpose clear to anyone reading your code

e Robot’s moveForward method calls its parameter “numberOfSteps”,

not “x” or “thingy”

o Weused “numCps” and “price”

e Try to avoid singledetternames for anything thatis not strictly
mathematical; be more descriptive

35/96

Accountant (1/2)

e Give BookstoreAccountant
class more functionality by
defining more methods!

e Methods to calculate change
needed or how many books a
customer can afford

e Each method will take in
parameters, perform operations
on them, and return an answer

o Wechoose arbitrary but helpful
parameter names

public class BookstoreAcuntant {

public int
return

¥

public int
return

}

public int
return

}

priceBooks(int nurCps, int price) {
(nunCps * price);

calcChange(int amtPaid, int price) {
(amtPaid - price);

calcMaxBks(int price, int myMoney) {
(myoney / price);

36/96

12



Accountant (2/2)

public class BookstoreAccuntant {

o calcMaxBks takes in price of a public int priceBooks(int nurCps, int price) {

book (price) and an amount of retrn (nnCps * price);

money you have to spend '

(myMoney), tells you how many

books you can buy public int calcChange(int amtPaid, int price) {
e calcMaxBks works because when return (amtPaid - price);

we divide 2 ints, Java rounds the }

result down to an int!

o Java always rounds down public int calcMaxBks(int price, int myMoney) {

e $25 /$10 per book = 2 books | rewn (e / price);

37/9%

9/14/2023

TopHat Question: Declaring Methods

We want a new method getSalePricethatreturns aninteger and
takes in two parameters, one integer that represents the original
price of a purchase and oneinteger that represents the percent
discount offered. Which method declaration is correct?

A. public void getSalePrice() { B. public int getSalePrice(int price, int discount) {
// code elided // code elided

} }

C. public int getSalePrice(price, discount) { 5’; P“blitc) V(Did getSalePrice(int price, int
// code elided iscoun )
} // code elided

on emm s 38/96

Calling (i.e.,using) Methods with Param eters (1/3)

o Nowthatwe defined priceBooks(), calcChange(),
and calcMaxBks() methods, we can callthemonany
BookstoreAccountant instance

e When we call calcChange() method,we musttell itthe
amount paid forthebooksand how muchthe bookscost

e Howdo we call a methodthat takesin parameters?

39/96

13



Calling Methods with Param eters (2/3)
e You already know how to calla method that takesin one

parameter!
e RemembermoveForward()?

public void moveForward(int numberofSteps) {

9/14/2023

¥
40/96
Calling Methods with Param eters (3/3)
e When we call amethod, we pass
it any extra piece of information it
needs as an argument within
parentheses
e When we call moveForward we
must supply oneint as argument samBot.mov eForward (4);
o samBot .moveForward() ; samBot. tur nRight() ;
is NOT correct samBot..mov eForward (1) arguments
samBot.tur nRight() ;
e Do NOTspeclfylype of argument samBot .mov eForward (3§
when calling a method
o samBot .moveForward(int 4);
is NOT correct
41/96

Arguments vs. Parameters

parameter

public void moveForward(int number0fSteps) {

samBot.. moveForward(4)F——argument

} samBot. turnRight();
samBot . moveForward(1) ¥ argument

e In defining a method, the parameter is a samBot. turnRight();
dummy name picked by the author used samBot . moveForward(3)————argument

by a method to refer to a piece of
information passedinto i, e.g.“x” and‘y”
in the function f(x,y) = x+y
e Incalling a method, anargument is the
?Ctual)value passed in, e.g. 2 and 3 in
-> 5

2, 3

42/96

14



Calling Methods That Have Param eters (1/9)

e When we call
samBot.moveForward (3), we
are passing 3 as an argument samBot.move Forward (3) ;

o When moveForward() executes,

its parameter is assigned the
value of argument that was

passed in public void moveForward(int numberOfSteps) {

e Thus moveForward() here
executes with numberOfSteps= 3 ¥

9/14/2023

Calling Methods That Have Param eters (2/9)

« When calling a method that takes in
parameters, must provide a validargument
for each parameter
o analogy: When each district selects 2 tributes to

compete in the Hunger Games, they must be one
male and one female, and from that district.

« Means that number and type of arguments
must match number andtype of parameters

« One-to-one correspondence: same number
of arguments, givenin the same order, of the
same matching type

Calling Methods That Have Param eters (3/9)

public class BookstoreAcuntant {

public int priceBooks(int nurCps, int price) {

e Each of our accountant’s methods retrn nurcps * price;
takes in two ints, which it refers to
by different names (also called
identifiers) public int calcChange(int amtPaid,
return amtPaid - price;

e Wheneverwe call these methods, '

must provide two ints — first, desired

int price) {

value for first parameter, then desired public int calcMaxBks(int bookPr, int myMoney) {

value for second return myMoney / bookPr;
¥

15



Calling Methods That Have Param eters (4/9)

e Let's go back to ourinstance of
BookstoreAccountant named
myAccountant

e When we call a method on
myAccountant, we provide a
comma-separated list of arguments .
(in this case, ints) in parentheses myAccountant.priceBooks(2, 16);

myAccountant.calcChange(18, 12);

e These arguments are values we
myAccountant.calcMaxBks(6, 33);

want the method to use for the first
and second parameters when it runs

arguments

46/96

9/14/2023

Calling Methods That Have Param eters (5/9)

o Note: calcChange(8, 4)isn’'t
calcChange(4, 8) — order matters!

o calcChange(8, 4) - 4

o calcChange(4, 8) - -4 public int calcChange(int amtPaid, int price) {
return amtPaid - price;

}

47/196

Calling Methods That Have Param eters (6/9)

myAccountant.priceBooks(2, 16);

e Java does “parameter passing” by:

o first checking that one-to-one
correspondence is honored (this
includes type checking!),
public int priceBaoks(int numCps, int price) {
o then substituting arguments for return (numCps * price);

parameters, )

o and finally executing the method
body using the arguments

16



Calling Methods That Have Param eters (7/9)

myAccountant.priceBooks(2, 16);

e Java does “parameter passing” by:

o first checking that one-to-one
correspondence is honored (this
includes type checking!),
public int priceBaoks(int numCps, int price) {

o then substituting arguments for return (numCps * price);

parameters,
o and finally executing the method
body using the arguments

9/14/2023

- 49/96
Calling Methods That Have Param eters (8/9)
myAccountant.priceBooks(2, 16);
e Java does “parameter passing” by:
o first checking that one-to-one
correspondence is honored (this
includes type checking!), L .
o then substituting arguments for public int priceBooks(2, 16) {
o and finally executing the method i
b sing the arguments .
oy using o 32 is returned
o o ot s 50/96
Calling Methods That Have Param eters (9/9)
System.out.println(myAccauntant.priceBooks(2, 16));
e If we want to check the result
returned from our method call, use public int priceBooks(int numCps, int price) {
System.out.println to printit to return (nurCps * price);
the console ¥
e We'll see the number 32 printed out!
51/96

17



TopHat Question

Which of the following containsargumentsthat satisfy the
parametersofthe method calcChange() belowin the
BookstoreAccountant class?

A. myAccountant.calcChange(20, 14.50)
B. myAccountant.calcChange(10)

C. myAccountant.calcChange(20, 10)

D. None of the above

public int calcChange(int amtPaid, int price) {
return amtPaid - price;

}

e om0 52/96

9/14/2023

But wheredid myAccountantcome from?!?

e We know howto send messagesto an instance of a classby
calling methods

e So far, we have called methodson samBot, an instance of
Robot, and myAccountant, an instance of
BookstoreAccountant...

e Where did we get these objectsfrom? How did we make an
instance of BookstoreAccountant?

e Next: howto use a class as a blueprint to actually build
instances!

53/96

Qutline

+ The constructor
« Creating instancesofa class
« Understanding Java flow of control

18



Constructors (1/3)

Bookstore Accountants can
priceBooks(), calcChange(), and
calcMaxBks ()

Can call any of these methods on
any instance of
BookstoreAccountant

But how did these instances get
created in the first place?

Define a special kind of method in
the BookstoreAccountant class: a
constructor

Note: everyclass must have a
constructor

public class BookstoreAcuntant {

public int priceBooks(int nunCps, int price) {
return (nnCps * price);

}

public int calcChange(int amtPaid, int price) {
return (amtPaid - price);

}

public int calcMaxBks(int price, int myMoney) {
retrn (mponey / price);

i o S3 0w 55/96

9/14/2023

Constructors (2/3)

A constructor is a special kind of
method that is called whenever an
instance is to be “bom,” i.e., created
— see shortly how it is called

Constructor's name is always same
as name of class

If class is called
“BookstoreAccountant,” its
constructor must be called
“BookstoreAccountant.” If class is
called “Dog,” its constructor had
better be called “Dog”

public class BookstoreAccuntant {

public BookstoreAccowtant() {

}

public int priceBooks(int numCps, int price) {
return (nunCps * price);

}

public int calcChange(int amtPaid, int price) {
return (amtPaid - price);

}

public int calcMaxBks(int price, int myMoney) {
return (myMoney / price);

n o wun 56/96

Constructors (3/3)

Constructors are special methods:
used to create an instance stored in
an assigned memory location

When we create an instance with the
constructor (example in a few slides!),
it provides a reference to the location
in memory, which is “retumed”

We never specify a return value in its
declaration

Constructor for
BookstoreAccountant does not take
in any parameters (notice empty
parentheses),

o constructors can, and often do, take in
parameters — stay tuned for next lecture

public class BookstoreAcuntant {

public BookstoreAccowntant() {

}

public int priceBooks(int nunCps, int price) {
return (nnCps * price);

}

public int calcChange(int amtPaid, int price) {
return (amtPaid - price);

}

public int calcMaxBks(int price, int myMoney) {
return (money / price);
}

n cmm wwn 57/96

19



TopHat Question
Which of the followingisnot true of constructors?

A. Constructors are methods
B. Constructors always have the same name as theirclass
C. Constructors should specify a return value
D. Constructors can take in parameters

[ T

58/96

9/14/2023

Qutline

+ Creating instancesof a class
¢ Understanding Java flow of control

wae o o wws 59/96

Creating Instances of Classes (1/2)

o Nowthat the BookstoreAccountant class has a constructor, we
can create instances of it!

e Hereis howwe create a BookstoreAccountant in Java:
new BookstoreAccountant();

e This means “usethe BookstoreAccountantclass as a blueprintto
create a new BookstoreAccountant instance”
BookstoreAccountant() isa call to BookstoreAccountant’s
constructor, so any codein constructor will be executed as soon as
y ou create a BookstoreAccountant

60/96

20



Creating Instances of Classes (2/2)

e Wereferto“creating” an instance as instantiating it
e \Whenwe say:
new BookstoreAccountant();

e ... We're creating an instance of the BookstoreAccountant class,
a.k.a. instantiating a new BookstoreAccountant

o Where exactly does this code getexecuted?

e Stay tuned for the nextlectureto see how this constructor is used by
another instanceto create a new BookstoreAccountant!

61/96

9/14/2023

Aside: Another Example of Nesting (1/2)

e Our calcChange() method takes intwo
ints — the amount the customer paid,
and price of the purchase

e Our priceBooks() method finds the
price of the purchase

What if we want to use result of priceBooks() as an argument to
calcChange()?

Say we have got 3 copies of an $11 book. We also have $40 in cash to
pay with. priceBooks() will tell usthat purchase costs $33. We want to
use this as “price” parameter for calcChange()

e How do we do this? Nesting!
o o e i 62/96

Aside: Another Example of Nesting (2/2)

e myAccountant.priceBooks(3, 11) returns “33”
o we want to pass this numberinto calcChange()

e We cannest myAccountant’s priceBooks() method within
myAccountant’s calcChange () method:

myAccountant.calcChange(40, myAccountant.priceBooks (3,11));

—

returns 33
|

myAccountant.calcChange (40, 33);

e And calcChange() returns 7! Always, evaluate inner parentheses first
w0 sz wwn 63/96

21



TopHat Question

You have an instance of BookstoreAccountant,
accountant, with the methodsgivenfrom before.

Whatisthe properway to calculate the change youwill
have if you pay with a $50 bill for 5 booksat a cost of $8
each?

A. accountant.priceBooks(5, 8);

B. accountant.priceBooks (8, 5);

C. accountant.calcChange(50, accountant.priceBooks(5, 8));
D. accountant.calcChange(accountant.priceBooks(5, 8));

i o S3 0w 64/96

9/14/2023

Important Techniques Covered So Far

e Defining methodsthat take in parameters asinput
e Defining methodsthat return something asan output
e Defining a constructor fora class

e Creating aninstance of a classwith the new keyword

Up next: Flow of Control

65/96

Qutline

« Understanding Java flow of control

66/96

22



What Is How of Control?

e We've already seenlots of examples of Java code in lecture

e But howdoes all of this code actually get executed, and in
what order?

e Flow of controlor control flow is the order in which
individual statements in a program (lines of code) are
executed

e Understanding flow of control is essential for hand simulation
and debugging

i o S3 0w 67/96

9/14/2023

Overview: How Programs Are Executed
e CodeinJavaisexecutedsequentially, line by line
e Thinkofan arrow “pointing” to the current line of code

e Where doesexecutionstart?

o inJava, first line of code executed is in a special method
called the main method

68/96

The Main Method

e Every Javaprogram begins at firstline of code in main methodand
ends after last line of code in mainis executed — youwill see this
shortly!

e You will see this methodin every projector lab stencil, typicaly in
App.java(the App class)

o by CS15 convention, we start our programs inApp
e Program starts when you run filethat contains mainmethod

e Every other part of application is invoked from main

e v o <> 14 69/96

23



Method Calls and Constructors

Ignore this
parameter for
. now, we'll
When a method is called, discuss It later
execution steps into the method this semester
o nextline to execute will be first 4
line of method definition public static void main(String[] args) {

) Sys tem. out.println(“first line”);

Entire method is executed —}} System. out.println(“last line”);
sequentially
o when end is reached (when

method returns), execution retums

to line following the method call

70/96

9/14/2023

Example: Baking Cookies

e Some of your TAsare trying to
bake cookiesfora grading
meeting

o they ve decided to make mystery
flavored cookies, to surprise the
HTAs

o Let'swrite a program that will

have a baker make a batch of
cookies!

on emm s 71/96

The makeCookies() Method

e First, let's definea methodto make cookies, in theBaker class
o public void makeCookies()
e What are the steps of making cookies?
o combine wet ingredients (and sugars) in one bow!
= mix this
o combine dry ingredients in another bowl, and mix
o combine wet and dry ingredient bowls
o form balls of dough
o bake for 10 minutes
o sometime before baking, preheat oven to 400°

e Order is not fixed, but some steps must be done before others
e Let’s write methods for these steps and call themin order in
makeCookies()

o om o wiem 72/96

24



Defining the Baker Class

e First, here are more methods of the Baker class — method definitions are
elided. Method definitions can occurin any order in the class

public class Baker { public void combireAlllngredients() {

public Baker() { ¥

} public void fomDaughBalls (int numBalls) {
public void makeCookies() { ¥

} public void bake(int cookTime) {

public void combineWetIngredients() {
}

public void combineDryIngredierts() {

}

public void preneatoven(int temp) {

}

9/14/2023

73/96
The makeCookies() Method
public void makeCookies() {
this.preheatOven(400);
this. combineWetIngredients();
this. combineDryIngredients();
this. combineAllIngredients();
this.formDoughBalls(24);
this.bake(10);
i o e 74/96
TopHat Question
Using the Baker class from before, is the following method correct for creating cookie dough?
Why or why not?
public class Baker {
public void createDough() {
this .combineWet Ingredients ();
this .combineAllIngredients ();
this .combineDryIngredients ();
}
A. Yes, it has all the necessary methods in proper order
B. No, it uses this instead of Baker
C. No, it has the methods in the wrong order
D. No, itis inefficient
75/96

25



Flow of Control lllustrated

e Each of themethods we call in makeCookies() has various
sub-stepsinvolved
o combineWet Ingredients() involves adding sugar, butter, vanilla, eggs, and
mixing them together
o bake(int cookTime) involves putting cookies in oven, waiting, taking them out

e Incurrent code, every sub-step of combineWetIngredients()
is completed before combineDryIngredients()is called
o execution steps into a called method, executes everything within method
o both sets of baking steps must be complete before combining bowls, so these
methods are both called before combineAllIngredients()
o could easily switch order inwhich those two methods are called

76/96

9/14/2023

Putting it Together (1/2)

e NowthatBakers havea  Public class A {

method tobake cookies, public static void main(String[] args) {

let’sput an app together ¥
to make them do so y

e Javalaunchesourapp
App initsmain method

o Generally, use App class to
start our program and have it
do nothing else

77196

Putting it Together (2/2)

. bli 1 Ay
o First, weneed a Baker public class App {

public static void main(String[] args) {

e Calling new Baker() will new Baker();
execute Baker’s constructor } |

e How do we get our Baker to !
bake cookies? instantiates a Baker

o call the makeCookies () Baker’s constructor

method from its constructor! public Baker() {
o this is not the only way — stay this.makeCookies();
tuned for next lecture ¥

78/96

26



Following Flow of Control ... . s tven 7 ) ¢

mmmmp // code to preneat oventud temp
}
public class App { public void combinedetIngredients() {
mmmmppublic static void main(String[] args) { ) // code to mix eggs, sugar, butter, vanilla
— nt Baker (); ’
} ¢— public void combinedryIngredients() {
} ) // code to mix flaur, salt, baking soda
}
public class Baker {
public Baker() { public void combineAlllngredients() {
) this.makeCookies(); mmm) // code to combine wet and dry ingredients

} }
public void makeCaokies() { blic vold formoughBal1s(TE RETE]] {
) public void formoughal Ls(fIrt mum
. S11s o
— this.conbimwetl%ems(); - /1 code to fom balls B
) this .comineDryIngredients();
— this COMimeALl Ingredierts (); miblic void take(TFE caoknd] (
m—) this.fomDaughBalls(24)]; — //code 1o bake atd remve from oven
i H ¥

— this.ba
} } // end of Baker class

79/96

9/14/2023

Modifying Flow of Control

e InJava, various con;rol flow statements modify
sequence of execution

o these cause some lines of code to be executed multiple times, or
skipped over entirely

e We’ll learn more about these statementsin Making
Decisions and Loops lectureslater on

wae o o wws 80/96

Important Concepts Covered

o Numbers represented as integers (e.g., int type) or floating-
point (e.g., double type)

e Definingmethods thattake in parameters asinput

e Definingmethods that return somethingas an output
e Using System.out.println to test and debug code
e Defininga constructor for aclass

e Creating an instance of a class with the newkeyword
e Following Java’s sequentia flow of control

o om o wiem 81/96

27



Announcements (1/2)

* Getlab0 checked off by Saturday
o if youre having issues with IntelliJ setup or running code or
want to get lab checked off come to Conceptual Hours!

« Rattytouilledue Saturday, 9/16 @ 11:59pm

» Code-Alongsto cover Javasyntax
o hands-on opportunity to code alongwith a TA in a group
o Tomorrow and Sunday at 7pmin Macmillan117!
o check Ed post / emai for all the specific dates and times

82/96

9/14/2023

Announcements (2/2)

¢ Fill out Mentorship fom by tonightat 11:59: mandatory for all
freshmen, fill out during lab/section (or using the link on Ed)

¢ Permanent Lab/Section Swap formup on Ed.

* Temporary Swaps will be dealt with by emailing your
lab/section TAs and the TAs of the lab/section youare
switching into, atleast the Monday of the week.

83/96

Socially Responsible
Computing: Intro to Al

CS15 Fall 2023

-‘\

MTIRU IELSERE

28


https://docs.google.com/forms/d/e/1FAIpQLScHNDpfWkLvpONBYwG9eHmX6Edc8V6yVxaLXN-agarohNmGhQ/viewform?usp=sf_link

ChatBPT ircial

@) DALLE Intelligence

- " .
Toadints’ Gon apaah A ponw sMar yint
Seath, 16 NSt et

Nafi, Applthe Comersaton,Deep Mind, blendabot, e il £ 85/96

Ll

9/14/2023

What is Artificial Intelligence? (approximately!)

[Artificial Intelligence

The ability of amachineto perform ‘intelligent’
tasks (predictingoutcomes, classifyinginputs,
learning, planning, perception, robotics..)

Machine Learning

The ability of amachineto "learn”/ gain
takeaways from datausingstatistical/
mathematical methods (pattern recognition,
image discrimination, query analysis)

86/96

Current Final Project: Othello, uses mini-maxalgorithm!

87/96

29



History of Al

Increased explosive

Pty growth due to GAl
aplosiva
-
[R——
rlated
"
i witar
- At |
1 I YT WD 2023
image source: actuaiedigtal eephind, ot O 88/96

9/14/2023

Language and mage recomnition cagabilities of Al systems banve improved rapldiy -

GAI

2000 2008 210 b 1) 23 2023

89/96

ChﬂtG PT More on large language models next lecture!

Prompt: Write a funny

limerick about a Brown

CS TAwho dies in the
Hunger Games

90/96

30



91/96

9/14/2023

Projected Generative Al Revenue Growth

= Lamar it A2 Eavaman
e wrivs Al oo 8 N o Tousl Techaabogy Sl

I " |||| |

=] o

i' B

-
% o Vet Torhensliagy Sgssd

B
-]

2

Al Startups in Different Market Sectors

-cwo P —

o == =

= =~ T — N
—_ —_— L e — ——
- - — - = o—

93/96

31



Positive Use Cases of Al

Hacinl Hias Foumm in o Major How China’s Police Used Phones and
Health € Bisk Algoeithan Faces to Track Protesters

BueFeed Is Quictly Publishing Whale  Pdecators Battle Plaglarism
= As £9% Of Students Admit

Al fuurwratl:d Articles, Mot Just To Using OpenAl’s ChatGPT
Chieses For Homework

95/96

9/14/2023

96/96

32



	Slide 1
	Slide 2: Lecture 3
	Slide 3: Review of Inter-Object Communication
	Slide 4: This Lecture:
	Slide 5: Defining Methods
	Slide 6: BookstoreAccountant
	Slide 7: Basic Math in Java
	Slide 8: Integers
	Slide 9: Integers
	Slide 10: Floating Point Numbers
	Slide 11: Floating Point Numbers
	Slide 12: Operators and Math Expressions (1/2)
	Slide 13: Operators and Math Expressions (2/2)
	Slide 14: Be careful with integer division!
	Slide 15: Evaluating Math Expressions
	Slide 16: TopHat Question
	Slide 17: BookstoreAccountant
	Slide 18: Return Type (1/2)
	Slide 19: Return Type (2/2)
	Slide 20: Accountant (1/6)
	Slide 21: Accountant (2/6)
	Slide 22: Accountant (3/6)
	Slide 23: Aside: System.out.println
	Slide 24: Accountant (4/6)
	Slide 25: Accountant (5/6)
	Slide 26: Accountant (6/6)
	Slide 27: Accountant: A More Generic Price Calculator (1/4)
	Slide 28: Accountant: A More Generic Price Calculator (2/4)
	Slide 29: Accountant: A More Generic Price Calculator (3/4)
	Slide 30: Accountant: A More Generic Price Calculator (4/4)
	Slide 31: Outline
	Slide 32: Parameters (1/3)
	Slide 33: Parameters (2/3)
	Slide 34: Parameters (3/3)
	Slide 35: We Want Human-readable Code
	Slide 36: Accountant (1/2)
	Slide 37: Accountant (2/2)
	Slide 38: TopHat Question: Declaring Methods
	Slide 39: Calling (i.e., using) Methods with Parameters (1/3)
	Slide 40: Calling Methods with Parameters (2/3)
	Slide 41: Calling Methods with Parameters (3/3)
	Slide 42: Arguments vs. Parameters
	Slide 43: Calling Methods That Have Parameters (1/9)
	Slide 44: Calling Methods That Have Parameters (2/9)
	Slide 45: Calling Methods That Have Parameters (3/9)
	Slide 46: Calling Methods That Have Parameters (4/9)
	Slide 47: Calling Methods That Have Parameters (5/9)
	Slide 48: Calling Methods That Have Parameters (6/9)
	Slide 49: Calling Methods That Have Parameters (7/9)
	Slide 50: Calling Methods That Have Parameters (8/9)
	Slide 51: Calling Methods That Have Parameters (9/9)
	Slide 52: TopHat Question
	Slide 53: But where did myAccountant come from?!?
	Slide 54: Outline
	Slide 55: Constructors (1/3)
	Slide 56: Constructors (2/3)
	Slide 57: Constructors (3/3)
	Slide 58: TopHat Question
	Slide 59: Outline
	Slide 60: Creating Instances of Classes (1/2)
	Slide 61: Creating Instances of Classes (2/2)
	Slide 62: Aside: Another Example of Nesting (1/2)
	Slide 63: Aside: Another Example of Nesting (2/2)
	Slide 64: TopHat Question
	Slide 65: Important Techniques Covered So Far
	Slide 66: Outline
	Slide 67: What Is Flow of Control?
	Slide 68: Overview: How Programs Are Executed
	Slide 69: The Main Method
	Slide 70: Method Calls and Constructors
	Slide 71: Example: Baking Cookies
	Slide 72: The makeCookies() Method
	Slide 73: Defining the Baker Class
	Slide 74: The makeCookies() Method
	Slide 75: TopHat Question
	Slide 76: Flow of Control Illustrated
	Slide 77: Putting it Together (1/2)
	Slide 78: Putting it Together (2/2)
	Slide 79: Following Flow of Control
	Slide 80: Modifying Flow of Control
	Slide 81: Important Concepts Covered
	Slide 82: Announcements (1/2)
	Slide 83: Announcements (2/2)
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

