Lecture 5

Working with Objects: Part 2
)

1/81

9/21/2023

Review Topics at the end of the deck

Please make sure you understand what we have covered so far

2/81

mo o wp»

TopHat Question Join Code: 504547

. . public class App {
Which of the following most public static void main(String[] args) {
accurately describes the new Farm();

containment relationships in ~; *
this program?

public class Farm {
. private House farmHouse;
App contains a Farm private Pig wilbur;

App contains aHouse, a Pig, private Cow bessy;
and multiple Cows private Cou betty;
Farm contains aHouse, a Pig, public Farm() {

; this.farmHouse = new House();
and multiple Cows this.wilbur = new Pig();
A and C this.bessy = new Cow();
A, B,and C this.betty = new Cow();
}
¥
res o 0223 521 3 / 81

TopHat Question Join Code: 504547

public class App {
What visualization most P Lot 1¢ yold main(stringl] args) {
accurately describesthe y !
containment relationships)
public class Farm {

in thisprogram? private House farmHouse;
private Pig wilbur;
private Cow bessy;
private Cow betty;

public Farm() {
this.farmHouse = new House();

Take a minute to sketch on this.wilbur = new Pig();
s this.bessy = new Cow();
yourown, then we’ll show this.betty = new Cow();

optionson the nextside. ,
4781

9/21/2023

TopHat Question Join Code: 504547

What visualization most accurately describes the containment relationships
inthe program?

0 0 7
| Farm |

e |

Farm

Pig Farm
|H0use " Pig " Cow | |H0use|| Pig " Cow |
A B
5/81
Outline

e Accessors and Mutators

e Association
o Component-Container Association
o “Many-to-One” Association
o Two-way Association

6/81

Accessors / Mutators

All instances of a class have the same instance variables (properties) but their
own values

Instance variables hold the instance’s private properties: encapsulation

But a class may choose to allow other classes to have selective access to
designated properties

o e.g., Dog can allow DogGroomer to access its furlength property

To do this, the class can make the value of an instance variable publicly
available via an accessor method

These accessor methods typically have the name convention get<Property>
and have a non-void retumn type

The retumn type specified and value returned must also match!
Let's see an example

9/21/2023

- 7181
Accessors / Mutators: Example
public class Dog {
e Let's make Dog’s furLength
property publicly available private int furlength;
e getFurLength is an accessor public Dog() {
method for furLength this. furLength = 3;
}
e Can call getFurLength on an
instance of Dog to return its curent public int getFurlength() {
furLength value return this. furLength ;
}
e DogGroomer can now access this
value. We will see why this is useful)
in afew slides
8/81

Accessors / Mutators

A class can give other classes even greater permission by allowing
them to change the value of its properties/instance variables
o eg., Dog can allow DogGroomer to change the value of its

furLength property
To do this, the class can define a mutator method which modifies
the value of an instance variable
These methods typically have the name convention set<Property>
and have void return types
They also take in a parameter that is used to modify the value of
the instance variable

9/81

Accessors / Mutators: Example (1/6)

® Let's define a mutator method,
setFurLength, in Dog that sets
furLength to the value passed in

® DogGroomer can call setFurLength
on an instance of Dog to change its
furLength value

® In fact, DogGroomer can use both
getFurLength and setFurLength
to modify furLength based on its
previous value. Stay tuned for an
example

public class Dog {

private int furLength;

public Dog() {
this.furlength = 3;

}

public int getFurLength() {
return this.furlength;

}

public void setFurLength(int myFurLength)

this.furLength = myFurLength;

10/81

9/21/2023

Accessors / Mutators: Example (2/6)

® Fill in DogGroomer’s trimFur
method to modify the furLength of
the Dog whose fur is being trimmed

® When a DogGroomer trims the fur
of a dog, itcalls the mutator
setFurLength on the Dog and
passes inlas an argument. This
will be the new value of furLength

public class DogGroomer {
public DogGroomer() {
}

public void trimFur (Dog shaggyDog) {
shaggy Dog. setFurLength(1);
}
}

11/81

Accessors / Mutators: Example (3/6)
Check that trimFur works by printing out the Dog's furLength before and

after we send it to the groomer

public class Petshop {
private DogGroomer greomer;

public Petshop() {
this.groomer = new DogGroomer () ;
this. testGroomer () ;

}

public void testGroomer() {
Dog effie = new Dog();
System.out.println(effie.getFurlength());
this. groomer . trinFur (effie);
System.out println(effie.getFurlength());
¥
}

public class DogGroomer {
public Dogroaner() {
¥

public void trimFu(Deg shaggylog) {
shaggylog. setFurLergth (1);
¥
}

We use the accessor getFurLength to
retrieve the value effie stores in its

furLength instance variable
12/81

Accessors / Mutators: Example (4/6)[cusrommeves
o What values print out to the console? slide!
—t— I

pubTic class Petsnop {
private DogGroomer groomer;
public class DogGroomer {
public Petshop() {

this. groomer = new DogGroomer () ; public Dogsroaner() {
this. testGroomer () ;

} }

public void testGroomer() { public void trimFur(Dog shaggyDog) {
Dog effie = new Dog(); shaggylog. setFurLength(1);
System.out println(effie. getFurlength()); }
this. groomer. trinFu (effie); }

System.out.println(effie. getFurlength());

o first, 3is printed because that is the initial value we assigned tofurLength
in the Dog constructor (slide 10)

9/21/2023

o next, 1 prints out because groomer just seteffie’s furLength to 1 13/81

Accessors / Mutators: Example (5/6)

e What if we don’t always want to trim a Dog's fur to a value of 1?
e When we tell groomer to trimFur, let’s also tell groomer the length to trim the Dog’s fu

public class PetShop { public class DogGroomer {
public void testGroomer() { public void trimFur(Dog shaggyDog int furLength)
Dog effie = new Dog(); shaggy Dog. setFurLength(fyrlength);
thi s.groomer .trimFur(effi e,zh————}/’*
} 3} The groomer will trim the fur o
} a furLength of 2!

e trimFur will take in a second parameter, and set Dog’s fur length to the passed-in
value of furLength (note for simplicity Dog doesn’t error check to make sure that
furLength passed inis less than current value of furLength)

e Now pass in two arguments when calling trimFur so groomer knows how much
furLength should be after timming fur 14/81

Accessors / Mutators: Example (6/6)

e What if we wanted to make sure the value of furLength after timming is aways less than thq
value before?

e When we tell groomer the length o trimthe Dog’s fur, let's specify alengthless than the
current value of furLength

public class PetShop { public class DogGroomer {
public void testGroomer() { public void trimFur(Dog shaggybog, int furlength)
Dog effie = new Dog(); shaggyDog.setfurLength(fungength) ;
int newlen = effie.getFurLength()

this.groomer. trimFur (effie, newLen);/‘ } decrease furLength by 2

e We could eliminate the local variable newLen by nesting a call o getFurLength as the
second parameter:

this.groomer.trinfur(effie, effie.getFurlength() - 2);
15/81

Summary of Accessors/Mutators

e Instance variables should always be declared private for safety
reasons

o If we made these instance variables public, any method could

change them, i.e., with the caller in control of the inquiry or change —
this is unsafe

e |Instead, the class can provide accessors/mutators (often in pairs, but
not always) which give the class control over how the variable is
queried or altered. “For example, a mutator could do error-checking on
the new value to make sureitis in range

e Also, an accessor needn’t be as simple as returning the value of a
stored instance variable — itis justa method and can do arbitrary
computation on one or more variables

e Usethem sparingly — only when other classes need them

N—— 16/81

9/21/2023

TopHat Question Join Code: 504547

Which of the following signatures is
correct for an accessor method in

m? public class Farm {

private House farmHouse;
A public void getFamHouse() {

return this. famhouse;
} pwblic Fam() {

this. famhouse = new House();

B public House getFarmHouse() { }
return this. famhouse; }
}
c public House getFarmHause(Farmtouse myFarmHouse) {

this.famhouse = myFarmhouse;
}

D public House getFarmHouse(Farmrouse myFarmbouse) {
return this.myfarmiouse

}
[17/81

Outline

e Association

o Component-Container Association
o “Many-to-One” Association
o Two-way Association

18/81

Association

® We've seen how a container instance can call methods on any contained instances
it “newed”, but this relationship is not symmetric: the contained instance cannot
communicate with its container!

o Orchestra creates a new instance of a Conductor
o The Conductor instance is a component of the Orchestra
o The Orchestra can now call methods on the Conductor

o But what if the Conductor needs to communicate with the
Orchestra?
o We need additional code to allow this symmetry
® We will tell the Conductor about the instance that created it, in this case, an
Orchestra instance. We want to associate the Conductor with the Orchestra
o The easiest way is to pass the Orchestra instance as a parameter

to the Conductor’s constructor
19/81

o How?!? Jop——

9/21/2023

Example: Setting up Association (1/4)

e Let's write a program that models an

orchestra .
public class Orchestra {

o define anOrchestra class which can
contain different instrumentalists and private Conductor conductor;
the conductor

e The play method wil be used to start and public Orchestra() {
direct the musical performance .
this .conductor = new Conductor();

e The Conductor has the capabiities to do this this.play ();
so an instance of Conductor is contained in }
Orchestra. We say Conductor is a
component of Orchestra public void play() {
e The Orchestra can tell the Conductor to this .conductor. startperformance ();
start performance because it created it as a }
component }

o This is another example of delegation:

from the Orchestra to the Conductor 20/81

Example: Motivation for Association (2/4)

e Butwhatif the Conductor needs to cal
public class Conductor {
methods on the Orchestra?

te Orchestr hestra;
o the conductor probably needs to know private Oriestra archestra
several things about the orchestra. E.g., how
many instrumentalists are there? Which ones public Conductor(Orchestra myOrchestra) {
are present? When is the next rehearsal?.. this.orchestra = myOrchestra;
}
e We can set up an association so the
Conductor can communicate with the
Orchestra }

public void startPerformnce() {

e We modify the Conductor’s constructor to
take an Orchestra parameter
o and record it inan instance variable
o but where do we get this Orchestra?
21/81

Example: Using the Association (3/4)

® Back in the Orchestra class, public class Orchestra {
what argument should private Conductor conductor;
Conductor’s constructor be
passed? public Orchestra() {

o the Orchestra instance that

this .conductor = new Conductor(this);
created the Conductor

e How? public void play() {
. X this .conductor. startPe rformance () ;
o by passing this as the }
argument
m ie, the Orchestra tells the }

Conductor about itseff
2281

9/21/2023

Example: Using the Association (4/4)

e The instance variable, orchestra, public class Gonductor {
stores the instance of Orchestra of private Orchestra orchestra;
which the Conductor is a component
public Condictor@rchestra myOrchestra){
e orchestra points to same Orchestra this.orchestra = myOrchestra;
instance passed to the Conductor’s

constructor public void startPerformce() {

e After constructor has been executed

and can no longer reference parameter ’

myOrchestra, any Conductor method putlic void endPerformance() {
can still access same Orchestra this.orchestra.bow();
instance by the name orchestra }
o thus can call bow on orchestrain 3
endPerformance
23/81
Containment/Association Diagram
Orchestra <> “contains one
instance of”
“contains
——<@» more than one
instance of”
L, ‘knows about’is
Conductor associated with
24181

TopHat Question Join Code: 504547

Which of the following statements is correct, given the code below that establishes an association from
Teacher to School?

9/21/2023

public class School { public class Teacher {
private Teacher teacher; private School school;
public School() { public Teacher(School mySchool) {
this.teacher = new Teacher(this); this.school = mySchool;
//additional methods, some using //additional methods, some using
//this.teacher //this.school
} ¥
A. School can send messages to Teacher, but Teacher cannot send messages to School
B. Teacher can send messages to School, but School cannot send messages to Teacher
C. School can send messages to Teacher, and Teacher can send messages to School
D. Neither School nor Teacher can send messages to each other
I 25/81
public class School{ public class Teacher{
private Teacher teacher; private School school;
public School () { public Teacher(School mySchool) {
this .teacher = new Teacher (this); this .school = mySchool ;
//additional methods, some using //additional methods, some using
//this.teacher //this.school
} }

e Does School contain Teacher?
o yes!School instantiated Teacher, therefore School contains a Teacher.
Teacher is a component of School
e Can School send messages to Teacher?
o yes!School can send messages to all its components that it created
e Does Teacher contain School?
o no! Teacher knows about School that created it, but does not contain it
o but can send messages to Schgg})‘bgsgyse it “’knows about” School 26/81

Outline

e Association

27181

“Many-to-One” Association

e Multiple classes, say Aand B, may need to communicate with the same instance of another
(peer) class, say C, to accomplish a task. Let's consider our PetShop example

® Ourgoal istoset up asystem that allows PetShop employees, in this case DogGroomer, to log
in hours worked and the Manager to approve worked hours and make necessary payment

® Manager can keep track of the DogGroomer's worked hours in its class, in addition to its other
functionalities

® Alternatively, the Manager can delegate these tasks to another class

o doesnt need toknow how employee’s working hours are tracked as long as they are
tracked

® DogGroomer and Manager would need to “know about” this class in order to send messages to
its instance

e We're adding complexity to our design by adding another class, but making the Manager less
complex —like many things in life, it is a tradeoff!

28/81

9/21/2023

“Many-to-One” Association

* If we define a TimeKeeper class as this third, peer class, bath the DogGroamer and
Manager need to be associated with the sameinstance of TimeKeeper

@ 9 :
ﬁ Log in Hours Worked C:l Get hours worked)
Ll T a0 T — e

DogGroomer Manager

* What would happen if they weren't associated?

29/81

Example: Motivation for Association (1/9)

e If DogGroomer and Manager were associated with different instances, our
communication would fail!

Login Hours
Worked

._) —_

DogGroomer

Gethours
~, worked
B —

‘\. -

Manager

e Still abstract? Let's see how this looks like with code!
30/81

10

Example: Motivation for Association (2/9)

public class Timekeeper {

9/21/2023

e Let's create a simple
TimeKeeper class and define
some of its properties and
capabilities

e setStartTime and setEndTime
record the start and end times of
a working period

e computeHoursWorked

calculates amount of hours
worked

private Time start;
private Tine end;

public Timekeeper() {
) /finialize st
public void setStartTine(Tine tine) {
) 5

public void setEndTine(Time tine) {
, Bisend = ting

public Tire conputetoursiorked() {
return this.end - this.start;

ad end to @

31/81

Example: Motivation for

DogGroomer needs to send messages to an instance
of TimeKeeper in order to keep track of their worked
hours

Thus, set up an association between DogGroomer
and TimeKeeper

Modify DogGroomer's constructor to take in a
parameter of type TimeKeeper. The constructor will
refer to it by the name myKeeper

DogGroomer now needs to track time spent trimming
fur so call TimeKeeper's setStartTime

setEndTime methods inside the simple trimFur, the
one that takes in just a Dog

Even though DogGroomer was passed an instance of
TimeKeeper in its constructor, how can DogGroomer’s
other methods access this instance?

Association (3/9)

public class DogGroomer {
public DogGroomer (Jifiekeeper mykeeper)

}
}

public void trimFur(Dog shaggyDog) {

shaggybog.setFurlength(1);

32/81

Example: Motivation for

o Modify DogGroomer to store its knowledge
of TimeKeeper in an instance
variable

e Declare an instance variable keeper in
DogGroomer and have constructor initialize
it to the passed parameter

e keeper now records the myKeeper instance
passed to DogGroomer’s constructor, for use
by its other methods

e Inside trimFur, can now tell this.keeper
to record start and end time

o we use Java's built-in method
Instant.Now();

Association (4/9)

public class DogGroomer {
private TimeKeeper keeper;

public DogGroomer(TimeKeeper mykeeper) {
this.keeper = myKeeper;
}

public void trimFur(Dog shaggyDog) {
this keeper.setStartTine (Instant.Now());
shaggybog.setFurLength(1);
this.keeper. setEndTime(Instant.Now());

33/81

11

Example: Motivation for Association (5/9)
e Back in our PetShop class, we B e pers

need to modify how we instantiate o .

the DogGroomer i eapen < myveepon 1/ o e

e What argument should we pass in
to the constructor of DogGroomer? Luic ciass retsnop ¢
) . private bogs rooner groorer;
o anew instance of TimeKeeper
public Petshop() {
this. groomer = new DogGroomer (New TimeKeeper());
this. cest Grooner ()3
}
public void testGroomer() {

Dog effie = new Dog(); // local var
this.groomer .tri nFu r(ef e);

34 /81

9/21/2023

Example Cont.: Setting up Association (6/9)

Manager

Log in Hours Worked '- _ Get hours worked

il — a0 —

DogGroomer

e Remember that the Manager, who deals ~ Pblic cas Marager {
with payments, and the DogGroomer: public tanager() {
use the TimeKeeper as an intermediary)

o The Manager’s makePayment () needs A
to know the hours worked by the plic wid nakeaymrt () {
DogGroomer
o the TimeKeeper keeps track of '
such information with its properties
(See slide 31) i

35/81

Example Cont.: Setting up Association (7/9)

public class Manager {

¢ We can set up a second private TimeKeeper keeper;

association so the Manager can
retrieve information from the public Manager(YifieKeeper myKeeper)
TimeKeeper as needed {

e Following the same pattern as
with DogGroomer, modify the
Manager’s constructor to take in public void makePayment() {
an instance of the TimeKeeper
class and record it in an }
instance variable }

} this.keeper = myKeeper;

36 /81

12

Example Cont.: Set

e Call TimeKeeper's

computeHoursWorked method

inside makePayment to
compute the total number of

ting up Association (8/9)
public class Manager {

private TimeKeeper keeper;
private int rate;

hours worked by an employee public Manager(TimeKeeper myKeeper) {

and use that to calculate thei
total wages

r
}

public int makePayment() {
int hrs = this.keeper.computeHourshorked();
int wages = hrs * this.rate;
return wages;

371781

9/21/2023

Example Cont.: Using the Association (9/9)

e Backin PetShop class, add pwiic s retshop ¢

a new instance of Manager

and associate it with
TimeKeeper

e Manager makes payment

private DogGroomer groomer;

public PetShop() {
Tirekeeper keeper = new TimeKeeper () ;
this. groomer = new DogGroamer (keeper) ;
Marager marager = new Manager(keeper);
this .testGroaner ();
nanager. makePayment();

after groomer trims fur)
. piblic wid testGroaner() {
e Note: groomer and manager Tog et fie < rew bogl); // local var
referto the same this groamer trirfur (effie);
. N }
TimeKeeper instance)
o o €208 w21 38 / 81
bl class petshon bl class Hanager {
private Dogsroomer groone rivate Tiseremp n kespers
Jubli ¢ P etsh of public Manager(TimeKeeper myKe eper) {
ke K agper = o Tinekceper() 11 this is the consiructort
R e ke eper = teopor;
this. groomer /= new Dog Groo mer (ke N }
th is. test Grglome r();
g o skl oyt 03 bl class Dogar ooer
) rivate Tieekeap o keeprs
Petshop's naming local varable keeper is st degroonn(Tinekeeper mytesper) €
} completely arbitrary and independentof this.kecper = myKeeper;
formal parameter names myKeeper in }
Manager and DogGroomer - pure }
coincidence! in memory...
39/81

13

Association: Under the Hood (2/5)

9/21/2023

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in
memory and PetShop's constructor initializes all its instance and local variables 40/ 81!

Association: Under the Hood (3/5)

W

publli ¢ ¢ pe

private DogG room

publli c Petshop() {
Timek eepe r keeper = new Timek eeper() ;

Hanager nana \Qw vana ger (kee per);
new g Groo mer: (ke per);

this. groomer

The PetShop instantiates a new TimeKeeper, Manager and DogGroomer, passing the same TimeKeeper
instance in as an argument to the Manager's and,DogGroomer’s constructors 41/81

Association: Under the Hood (4/5)

pri

publi c Petshop() {
Timekeepe r keeper = new TimeKeeper() ;

Manager manager = new Manager (keepgr);

When the DogGroomer’'s and Manager's constructors are called, their parameter, myKeeper, points to the same
TimeKeeper that was passed in as an argument by the caller, i.e., the PetShop 42/ 81!

14

Association: Under the Hood (5/5)

publli e tshoy

private Tinekee per keeper;

public Managen (Tin ekeeper myke eper) {
publi ¢ Petshop() {
Time eepe r keeper = new Ti nek eepe r() ; this.keeper = myKeeper;
Manag er manager = new Mana ger (kee ger);
= new Dog Groo mer (kee pi);

privagh Tinekee per keeper;

pyblic Dogeroomer(Tinekeeper myKeeper) {
this.kgeper = myKeeper;

DogGroomer and Manager set their keeper instance variable to point to the same TimeKeeper they received ag
an argument. Now they “know about” the same TimeKeeper and share the same properties. 43781

Wrong Association

¢ Ifdifferentinstancesof TimeKeeper are passed to the
constructors of Manager and DogGroomer, the DogGroomer
will still logtheir hours, but the Manager will not see any
hours worked when computeHoursWorked iscalled

® Thisisbecause Manager and DogGroomer would be
sending messagesto different TimeKeepers

® And each ofthose TimeKeepers could have different hours
® Let’s see what thislooks like underthe hood

44 /81

Wrong Association: Under the Hood

public class Manager {
private TineKepe r keeper;

publi ¢ Petshop() { public Manager(Tin ekeeper myKe eper)
Manager magager = new Mana ger (ney TimeKeeper()); s kecpar mykocpers
\en Dog Groo mer (ne\Ti nek eepe ~());

public clafs Dogor oomer {

privagé Tinekee per keeper;

puflic Dogsroomer(Tinekeeper mykeeper)
this.keeper = myKeeper;

DogGroomer and Manager set their keeper instance variable to point to different instances of TimeKeeper. A

9/21/2023

change in one instance (e.g., when an instance variable cl_vanges) is not reflected in the other instance45 / 81

15

Visualizing Association

~ “contains one
| PetShop | instance of”
0 “contains
———@» more than one
instance of”

* N “knows about’is
|DugGroomer |—i| TimeKeeper |<—| Manager | —>

associated with

The diagram above illustrates class relationships in our program. In CS15, we
refer to this diagram as a Containment/As sociation diagram

- 46 /81

9/21/2023

Association as a Design Choice

e How we associate classes inour program is a design choice

o ifwe had multiple employees in the PetShop, it would not make
sense to pass the same instance of TimeKeeper to all employees.

Why?
m they would all modify the same start and end instance variables
m the Manager would need to know which employee they are
paying

insuch a case, we may choose to associate the Manager with the
employees (each employee instance would have its ownstart and
end variables that they can modify)

In later assignments, you will have to jystiiya])(our design choices and how
you decide o assoclate your classes, if at ‘all, would be one of them

Jpyeps— 47181

>

o

TopHat Question

public class Farmer {

Which of the following lines of code
would NOT produce a compiler error,
assuming it's written in the App class?

Farmer farmer = new Farmer(this);

Farmer farmer = new Farmer();

Distributor dist = new Distributor(new Farmer());

Farmer farmer = new Farmer(new Distributor());

private Distributor dist;
public Farmer(Distributor myDist)
this.dist = myDist;
}
}
public class Distributor {

public Distributor() {

}
}

48/ 81

16

Outline

e Association

o Two-way Association

49 /81

Two-way Association

® Inthe previous example, we showed how two classes can communicate
with each other
O class A contains an instance of class B, thus can send messages to it
O class B knows about its container, class A, thus can send messages to
ittoo

® Sometimes, we may want to model peer classes, say, A and B, where
neither is a component of the other and we want the communication to be
bidirectional

® |f we want these classes to communicate with each other (no intermediate
class necessary), we can setup a two-way association where class A
knows about B and vice versa

® Let's see an example

50/81

9/21/2023

Example: Motivation for Association (1/10)

e Here we hav e the class

CS15Professor public class CS15Professor {

// declare instance variables here

e We want CS15Professor to 1/ ang Eere...
know about his Head TAs — 7/ and herei

he didn’t create them or vice
versa, they are peers(i.e., no
containment)

e And we alsowant Head TAs
to know about
CS15Professor

e Let’s set up associations!

public CS15Professor(/* parameters */) {

// initialize instance variables!
/"o

s
/.

51/81

17

Example: Motivation

e The CS15Professor needs
to know about 5 Head TAs,
all of whom will be instances
of the class HeadTA

e Once he knows about them,
he can call methods of the
class HeadTA on them:
remindHeadTA,
setUpLecture, etc.

e Take a minute and try to fill
in this class

for Association (2/10)

public class CS15Professor {

// declare instance variables here
// and here..
// and here..
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
/o
/.

52 /81

9/21/2023

Example: Setting up Association (3/10)

e Our solution: we record passed-in
HTAs created by whatever object
creates CS15Professor and
HTAs, e.g., CS15App

® Remember, you can choose your
own names for the instance
variables and parameters

® The CS15Professor can now
send a message to one of his
HTAs like this:

this.hta2.setUpLecture();

public class CS15Professor {

private HTA htal;
private HTA hta2;
private HTA hta3;
private HTA htaa;
private HTA htas;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA,
HTA fourthTA, HTA fifthTA) {

this.htal = firstTA;
this. hta2 = secondTA;
this.hta3 = thirdTA;
this. htad = fourthTA;
this.hta5 = fifthTA;

53/81

Example: Using the

P
e We've got the CS15Professor

class down
o Now let’s create a professor
and head TAs from aclass that
contains all of them: CS15App
e Try and fillin this class!

o youcan assume that the HTA
class takes no parameters in its }
constructor

Association (4/10)

ublic class CS15App {

// declare CS15Professor instance var
// declare five HTA instance vars

==
<

/1
public CS15App() {

// instantiate the professor!
/o

/.
// instantiate the five HTAs

54 /81

18

Example: Using the Association (5/10)

e Wedeclare andy, allie,
anastasio, cannon, lexi,
and sarah asinstance
variables - they are peers

e Inthe constructor, we
instantiate them

e Since the constructor of
CS15Professor takes in 5
HTAs, we pass in allie,
anastasio, cannon, lexi,
and sarah

public class CS15App {
private CS15Professor andy;
private HTA allie;
private HTA anastasio;
private HTA cannon;
private HTA lexi;
private HTA sarah;

public €s15App() {
B P

cannon = new HTA();
lexi = new HTA();
sarah = new HTA();
this.andy = new
Cs15Profes sor(this. allie,
this.anastasio, this.cannon,
this.lexi, this.sarah);
}
¥ 55/81

9/21/2023

Example: Using the Association (6/10)

public class CS15Professor {

private HTA htal;
private HTA hta2;
private HTA hta3;
private HTA hta4;
private HTA htas;

public CS15Professor(HTA firstTA,
HTA secondTA, HTA thirdTA
HTA fourthTA, HTA fifthTA) {

this.htal = firstTA;
this. hta2 = secondTA;
this. hta3 = thirdTA;
this. htad = fourthTA;
" this.hta5 = fifthTA;

/* additional methods elided */

public class CS15App {

private CS15Professor andy;
private HTA allie;

private HTA anastas io;
private HTA cannon;

private HTA lexi;

private HTA sarah;

public CS15App() {

this.allie = new HTA();

this.anastasio = new HTA();

.cannon = new HTA();

lexi = new HTA();

arah = new HTA();

.andy = new

CS15Professor(this. allie,

this.anastasio, this.cannon,
this.lexi, this.sarah);

}
b} 56 /81

More Associations (7/10)

e Now the CS15Professor
can call on the HTAs but can
the HTAs call on the
CS15Professor too?

e No! Need to set up another
association

e Canwe just dothe same
thing and pass this.andy
as a parameter into each
HTAs constructor?

public class CS15App {

private CS15Professor andy;
private HTA allie;

private HTA anastasio;
private HTA cannon;

private HTA lexi; Code

private HTA sarah; from
previou

public €S15App() { |stide

this.allie = new HTA();
this .anastasio = new HTA() ;
this .cannon = new HTA();
this.lexi = new HTA();
this.sarah = new HTA() ;
this.andy = new

CS15Profes sor(t his. allie,

this.anastasio, this.cannon,

this.lexi, this.sarah);

~57/81

19

More Associations (8/10)

e When we instantiate allie,
anastasio, cannon, lexi, and
sarah, we would like to use a
modified HTA constructor that
takes an argument, this.andy

e Butthis.andy hasn’t been

instantiated y et (will get a

public class CS15App {

private CS15Professor andy;
private HTA allie;

private HTA anastas io;
private HTA cannon;

private HTA lexi;

private HTA sarah;

public €S15App() {
this.allie = new HTA() ;
this .anastasio = new HTA() ;

NullPointerException)! And we this.cannon = new HTA();

this.lexi = new HTA();

can'tinitialize andy first because this.sarah = new HTA() ;

the HTAs haven't been created

yet...

e How to break this deadlock?_)

this.andy = new
CS15Profes sor(this. allie
this.anastasio, this.can
this.lexi, this.sarah);

Code

previou
slide

non,

—58/81

9/21/2023

More Associations (9/10)

e To break this deadlock, we
need to have anew mutator

e First, instantiate allie,

anastasio, cannon, lexi, and
sarah, then instantiate andy

e Use a new mutator, setProf,

public class GS15Ap {

private CSiSProfessor andy;

private HTA allie;

private HTA amastasio;

private HTA cannon;

private HTA lexi;

private HTA sarah;

public CS15APP() {
this.allie = nev HTA();
this.amastasio = naw HTA();
this.canon = new HTA();
this.lexi = new HTA();
this.sarah = new HT

()5
this.andy = new CSIsProfessor(this.allie,

this.anastasio, this.cnnon,

and pass andy toeach HeadTA this.sarah);

torecord the association

this.allie.setProf (this.andy);
this.amstasio.setProf (this.andy);
this.cannon. setProf(this.andy);
this.lexi.setProf (this.andy);
this.sarah.setProf (this.andy);

this. lexi,

¥
59/81

More Associations (10/10)

public class HTA {
private CS15Professor professor;

public HTA() {

}

public void setProf (CS15Professor myProf)

this.professor = myProf;
}
}
e Now each HTA will know
about andy!

public class CS15Mp {

private CSlSProfessor andy;
private HTA allie;

private HTA amastasio;
private HTA cannon;
private HTA lexi;

private HTA sarah;

public CS15App() {

this.allie = nav HTA(Q);

this.amastasio = new HTA();

this.cannon = rew HTA();

this.lexi = new HTA();

this.sarah = nev HTA();

this.andy = new CS15Professor(this
this.mastasio, this.cnnon,
this.sarah);

this.allie.setProf (this.andy);
this.amastasio.setProf (this.andy);
this.cannon. setProf(this.andy);
this.lexi.setProf (this.andy);
this.sarah.setProf (this.andy);

.allie,
this.lexi,

}
60 /81!

20

More Associations

e Butwhat happensif setProf isnevercalled?

e Will the HTAsbe able to call methodson the
CS15Professor?

o No! We would get a NullPointerException!

o remember: NullPointerExceptions occurat
runtime when a variable’svalue isnull, and you try
to give ita command

61/81

9/21/2023

Containment/Association Diagram

instance of”

CS15App _0 “contains one

“contains more than
. one instance of”

CS15Professor L:>| HTA | knows about’/is

associated with

62/81

Summary

Important Concepts:

In OOP, it's necessary for classes to interact with each other to accomplish
specific tasks
Delegation allows us to have multiple classes and specify how their
instances can relate with each other. We've seen two ways to establish these
relationships:
o containment, where one class creates an instance of another (its
component) and can therefore send messages to it
o association, where one class knows about an instance of another
class (that is not its component) and call methods on it
Delegation is the first “design pattem” we’ve leamed in CS15. Stay tuned for
a second design pattem coming up in the next lecture and more discussions
about design later in the course.

63 /81

21

Announcements

+ Pong comes out today!
o Due Monday 9/25 at 11:59 PM EST
o No early or late hand in!
+« HTA Hours
o Fridays 3:30 — 4:30 PM at CIT 210
« Section Swaps
o Deadline to make permanent swaps Friday 09/22
« CS15 Mentorship!

o Freshmen: Itis mandatory for you to meet with your mentors. Please
respond to their emails and be flexible.

o Ifyou have not gotten an assignment email the HTAs

64 /81

Review: Variables

e Store information eitherasa value of a primitive orasa

reference to an instance
int favNumber = 9;

Dog effie = new Dog();

<type> <name> = <value>;

declaration initialization

9/21/2023

65/81
Review: Local vs. Instance Variables (1/2)
e Local variablesare public class Petshop
declared inside a method Local Variables

public Petshop() {

and cannotbe accessed , e testeroonerO);

from any other method public void
Dog effie = newktog();
° Once the method has DogGroumirbg:Dcz\e;Ff r)\ew DogGroomer();
groomer. trimFur (effie);
finished executing, they Srooner trinfur(errie);

are garbage collected ’

66 /81

22

Review: Local vs. Instance Variables (2/2)

declaration
® [nstance variables model public class PetShop { /
properties or components that private DogGroomer groomer;)
initialization

all instances of a class have public petshop() {

this. groomer = new DogGroomer();

. .
Instance variables are this, testd roomer();

accessible from anywhere }
within the class — their scope
is the entire class

® The purpose of a constructor is
to initialize all instance

variables
67 /81

9/21/2023

Review: Variable Reassignment

® After giving a variable an initial value or reference, we can reassign it
(make it store a different instance)
® When reassigning a variable, we do not declare its type again, Java
remembers it from the first assignment
Dog effie = new Dog();
Dog katniss = new Dog();

effie = katniss;
® effie now stores a different dog (another instance of Dog),
specifically the one that was katniss. The initial dog stored by
effie is garbage collected
68 /81!

Review: Instances as Parameters

e Methodscan take in classinstancesas parameters
public void trimFur(Dog shaggyDog) {

¥

e When callingthe methodabove, every dog passed as
an argument, e.g., effie, will be thought of as
shaggyDog, a synonym, inthe method

69 /81

23

Review: Delegation Pattern

e Delegation allows us to separate different sets of functionalities
and assign them to other classes

o With delegation, we’ll use multiple classes to accomplish one
task. A side effectof thisis we need to set up relationships
between classes for their instances to communicate

e Containment is one of two key way s we establish these class
relationships. We'll learn the second one today . Stay tuned!

9/21/2023

~ 70/81
Review: NullPointer Exceptions
public class Petshop {
+ Whathappensifyoufailto ... ogsooner groamer;
initialize an instance
variable in the public PetShop() {
//oops | Forgot to initialize groomer
Con.grucmr? . this.testGrooming();
O instance variable groomer }
never vinitialized so default public void testGrooming () {
value is null Dog effie = new Dog(); //local var
o when a method is called on this.groomer.trimFur (effie);
groomer we get a }
NullPointerException }
NullPo inte rException
71/81

Review: Encapsulation

® In CS15, instance variables should be declared as private

* Why? Encapsulation for safety purposes
o your properties are your private business

* If public, instance variables would be accessible from any class. There
would be no way to restrict other classes from modifying them

* Private instance variables also allow for a chain of abstraction, so
classes don't need to worry about the inner workings of contained
classes

* We'lllearn safe ways of allowing external classes to access instance
variables

72181

24

Review: Containment
o Often a class A will need an instance of class B as a conponent,
so A will create an instance of B using the new keyword. Wesay A
contains an instance of class B
o ex: PetShop creates a new DogGroomer
o ex: Car creates anew Engine
O ex: Body creates anew Head

® This isnot symmetrical: B can't call methods on Al
o ex: aPetShop can call methods of a contained DogGroomer,
but the DogGroomer can't call methods on the PetShop
= aworkaround uses assocation pattern
® Containment isone of the ways we delegate responsibilities to
other classes 73181

9/21/2023

Topics in Socially
Responsible Computing

CS15 Fall 2023

74181

Task: Image Recognition with Neural Network

Neural networks are frequently used for
image recognition
Example: Given the following images,

can our neural network identify which

number is represented

751781

25

Neural Network Terminology e Layer

® Nodes (also known as neuron or perceptron)
Ouput Layer

O Anodeis a highlysimpified reuron

O Anode containsa value ard stores data tsed for
later calculaions.

O There shoud beaninputnodefor each feaure (n
the case ofimagerecogrition, ore inputfor each
pixel)

® Hidden Layer(s)

O Intermediate layer dnodesbetween the inptard
output

O Transformsthe inputfeatres so thatthey cante
correctyclessifiedin the ouputlayer

Weights (also known as parameters)

How Does a Feed Forward Neural Network Work? (1/2)

Input Layer
Hidden Layer

Step 1: Forward Pass

O Receive inputs
O Iniial datais passed in through the input
layer
O Ex. Each pixel roman image is an input
for image recognition sks
O Perform Computations

O Forfirstpass weights are randomly

initialized

O Atsimplestlevel,each hidden layer takes
aweighted sumofeach inputand their

iabts leading directivto it s o VRS

How Does a Feed Forward Neural Network Work? (2/2)

Input Layer

Step 2: Backwards Propagation Hidden Layer

+ Calculate Loss Outpust Layer
o Compute the loss (frequenty Mean Square
Error) ofthe predicted outputvs. actual outpt
o Ameasure ofhow much the actual output
diflers fromthe predicted output
« Gradient Descent Algorithm

o Use calculus chain rue to work backvards
and calculate which weights will minimize the
loss (MSE) ofthe predicted output

Step 3: Repeat

o Repeatthe firstwo steps for either a set

9/21/2023

number arunilioss drons befpwer c=ve

26

9/21/2023

tial Neural Network

79181

O
NI

N

Following Back Propagation

. @@@ o,

80/81

\I\

{
‘%&. 0

N

4

Making the Leap to Generative Al?

Scale of LLMs:

* GPT-3 had 175 billion

81/81

27

https://arxiv.org/pdf/2005.14165.pdf
https://www.semafor.com/article/03/24/2023/the-secret-history-of-elon-musk-sam-altman-and-openai

	Slide 1: Lecture 5
	Slide 2: Review Topics at the end of the deck
	Slide 3: TopHat Question Join Code: 504547
	Slide 4: TopHat Question Join Code: 504547
	Slide 5: TopHat Question Join Code: 504547
	Slide 6: Outline
	Slide 7: Accessors / Mutators
	Slide 8: Accessors / Mutators: Example
	Slide 9: Accessors / Mutators
	Slide 10: Accessors / Mutators: Example (1/6)
	Slide 11: Accessors / Mutators: Example (2/6)
	Slide 12: Accessors / Mutators: Example (3/6)
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Summary of Accessors/Mutators
	Slide 17: TopHat Question Join Code: 504547
	Slide 18: Outline
	Slide 19
	Slide 20: Example: Setting up Association (1/4)
	Slide 21: Example: Motivation for Association (2/4)
	Slide 22: Example: Using the Association (3/4)
	Slide 23: Example: Using the Association (4/4)
	Slide 24: Containment/Association Diagram
	Slide 25: TopHat Question Join Code: 504547
	Slide 26: TopHat Question Review
	Slide 27: Outline
	Slide 28: “Many-to-One” Association
	Slide 29: “Many-to-One” Association
	Slide 30: Example: Motivation for Association (1/9)
	Slide 31: Example: Motivation for Association (2/9)
	Slide 32: Example: Motivation for Association (3/9)
	Slide 33: Example: Motivation for Association (4/9)
	Slide 34: Example: Motivation for Association (5/9)
	Slide 35: Example Cont.: Setting up Association (6/9)
	Slide 36: Example Cont.: Setting up Association (7/9)
	Slide 37: Example Cont.: Setting up Association (8/9)
	Slide 38: Example Cont.: Using the Association (9/9)
	Slide 39: Association: Under the Hood (1/5)
	Slide 40: Association: Under the Hood (2/5)
	Slide 41: Association: Under the Hood (3/5)
	Slide 42: Association: Under the Hood (4/5)
	Slide 43: Association: Under the Hood (5/5)
	Slide 44: Wrong Association
	Slide 45: Wrong Association: Under the Hood
	Slide 46: Visualizing Association
	Slide 47: Association as a Design Choice
	Slide 48: TopHat Question
	Slide 49: Outline
	Slide 50: Two-way Association
	Slide 51: Example: Motivation for Association (1/10)
	Slide 52: Example: Motivation for Association (2/10)
	Slide 53: Example: Setting up Association (3/10)
	Slide 54: Example: Using the Association (4/10)
	Slide 55: Example: Using the Association (5/10)
	Slide 56: Example: Using the Association (6/10)
	Slide 57: More Associations (7/10)
	Slide 58: More Associations (8/10)
	Slide 59: More Associations (9/10)
	Slide 60: More Associations (10/10)
	Slide 61: More Associations
	Slide 62: Containment/Association Diagram
	Slide 63: Summary
	Slide 64: Announcements
	Slide 65: Review: Variables
	Slide 66: Review: Local vs. Instance Variables (1/2)
	Slide 67: Review: Local vs. Instance Variables (2/2)
	Slide 68: Review: Variable Reassignment
	Slide 69: Review: Instances as Parameters
	Slide 70: Review: Delegation Pattern
	Slide 71: Review: NullPointer Exceptions
	Slide 72: Review: Encapsulation
	Slide 73: Review: Containment
	Slide 74
	Slide 75: Task: Image Recognition with Neural Network
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Initial Neural Network
	Slide 80: Following Back Propagation
	Slide 81: Making the Leap to Generative AI?

