9/26/23

Lecture 6
Interfaces and Polymorphism

HAL1GOTALLTHE | [1T SEEMED ASHAME
WA? 0 THE POG. T0 60 ALL THAT WAY
GROOMER AND REAL- FOR NOTHING.
\ZED | FORGOT
THE DOG!)l

50 | HAD THEM.

1/92

2/92

Review: Containment and Association

Containment and association are two key ways of
establishing relationships between instances of a class

In containment, one class creates an instance of another (its
component) and can call methods on it

In association, one instance of a class knows about an
instance of another class (that is not its component) and can
call methods on it

e Containment and association are consequences of
delegating responsibilities to other classes

o the){ are design choices, not Java constructs and require no new
syntax

3/92

4/92

9/26/23

Using What You Know

« Imagine this program:
o Lexi and Anastasio are racing from their dorms to the CIT
whoever gets there first, wins!
catch: they don't get to choose their method of transportation
« Design a program that
o assigns mode of transportation to each racer
o starts the race

« For now, assume transportation options are Car and Bike

5/92

Goal 1: Assign transportation to each racer

e Need transportation classes
o App needs to give one to each racer
e Let'suse Car and Bike classes

e Both classes will need to describe how the
transportation moves
o Carneeds drive method

o Bike needs pedal method

Coding the project (1/4)

« Let's build transportation classes

public class { public class Bike {
public car() { public Bike() {
1)
public void drive() { public void pedal() {
1)

} 1

7/92

9/26/23

Goal 1: Assign transportation to each racer
o Need racer classes that will tell Lexi and Anastasio to use their type of
transportation

o BikeRacer

o What methods will we need? What capabilities should each -Rac
have?

e CarRacer needs to know how to use the car

o write useCar() method: uses Drive(), shields caller from knowing what all
usecar might need to do

e BikeRacer needs to know how to use the bike

o write useBike () method: uses Pedal(), shields caller from knowing what all
usesike might need to do

8/92
Coding the project (2/4)
« Let's build the racer classes
public class carRacer { public class Bikeracer {
private car car; private Bike bike;
public carRacer() ¢ public Bikeracer() {
this.car = new Car(); this.bike - new 81ke();
¥ }
public void useCar(){ public void useBike(){
this.car.drive(); this.bike.pedal();
¥ }
} }
9/92

9/26/23

Goal 2: Tell racers to start the race

« Race class contains Racers

o App contains Race

startRace:
Tell this.lexi to useCar
Tell this.anastasio to useBike

« Race class will have
startRace() method

o startRace() tells each Racer to
use their transportation

« startRace() gets called in App

10/92

10

Coding the project (3/4)

e Given our CarRacer class, let's

o public class Race {

build the Race class

private CarRacer lexi;
private BikeRacer anastasio;

public class CarRacer {

private Car car;
public Race() {
public CarRacer() { this.lexi = new CarRacer();
this.car = new car(); this.anastasio = new BikeRacer();
)
old code
public void useCar(){ public void startRace() {
this.car.drive(); this.lexi.usecar();
) this.anastasio.useBike();
)
))

11/92

11

Coding the project (4/4)

public class App {

public static void main(string(] args) { e Now build the App class
Race cs15Race = new Race();

csisRace.startRace();

o Program starts with main()

e main() calls startRace() on
cs15Race

public void startRace() {
this.lexi.usecar();
this.anastasio.useBike();

12/92

12

The Program P S ¢

public class App {
public static void main(string[] args) {
Race cs1SRace = new Race();
esIsRace. startRace();

public CarRacer() {
this.car = new Car();
)

public void usecar(){
) this.car.drive();
}

public class Race {
private CarRacer lexi;)
private BikeRacer anastasio;

public Race() { public class BikeRacer {
this.lexi - new Caracer(); .

‘this.anastasio = new BikeRacer();

public BikeRacer() {

S ke o

i ke = 03
public vold startRace() { ¥
S ie0; public vold usebike(){
3 this.bike.pedal();
4)

13/92

13

Flow of control (1/2)

How would this program run?

Java initializes an instance of App,
calling main
main initializes an instance of Race
Race’s constructor initializes lexi, a
CarRacer and anastasio, a BikeRacer
o CarRacer’s constructor initializes
car,aCar
- BikeRacer’s constructor initializes
bike, a Bike

9/26/23

14/92

14

Flow of control (2/2)

public static vots masn(string(] aree) (
o sublic vota usepske()(

)

ot vete sy < After Race constructs lexi and
[anastasio, App calls

i cs15Race.startRace()

lexi calls useCar() and anastasio

calls useBike()

useCar() calls this.car.drive()

useBike() calls this.bike.pedal()

punlic class «

puplic vots usecar()(

y

15/92

15

Can we do better?

16/92

16

9/26/23

Things to think about

e Do we need two different Racer classes?
o we want multiple instances of Racers that use different modes of transportation

+ both classes are very similar, they just use their own mode of transportation
(useCar and useBike)

+ dowe need 2 different classes that serve essentially the same purpose?

o how can we simplify?

17/92

17

Solution 1: Create one Racer class with
multiple “useX” methods!

+ Create one Racer class
public class Racer {

o define different use methods for public Racer(){

each type of transportation

« lexi would be an instance of Racer }

and in startRace we would call:
public void useCar(Car myCar){

this.lexi.useCar(new Car()); myCar.drive();
5 Car's drive() method will be ¥
invoked
public void useBike(Bike myBike){
+ Good: only one Racer class nyBike.pedal();
+ But Racer has to aggregate a }
use..() method to accommodate ¥

every kind of transportation!
18/92

18

Solution 1 Drawbacks

9/26/23

« Now imagine all the public class Racer {
CS15 TAs join the race public Racer() {
and there are 10 N
different modes of public vold usecar(car mycard((¢ 3
y PUBLLE void useBike(5ike mybike
transportation public void useHoverboard(nyHb) 3
" - public void useHorse(Horse myHorse){
o Writing these similar public void useScooter(myscooter){)
USEX() methods is a lot public ve?ﬂ useMotorcycle(| myMe) { }
public void usePogoStick(¢ nypogo)(¥
of work for you, as the
developer, and it is an ¥
inefficient coding style
19/92
Racer Racer
“Se;i:‘fz:k‘?k , useTransportation(..)
useBike(Bike bike
useHoverBoard(HoverBoard hoverboard)
useHorse(Horse horse) [—
usescooter(Scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogostick(Pogostick pogo)
« Can we go from left to right?
20/92

20

Outline

e |ntr Interf:

e |mplementing Interfaces
e Polymorphism

21/92

21

Interfaces and Polymorphism

« In order to simplify code, we need to learn:
o Interfaces
o Polymorphism
- we'll see how this new code works shortly:
public class Racer { public class Car implements Transporter {
public Cor() {
public void useTransportation(
Tr r transport) {
transport.nove(); 3

3
public void drive(){

1
}

9/26/23

public interface Transporter {
public void move(); }
}
22/92
22
Interfaces: Spot the Similarities
e What do cars and bikes have in common?
o What do cars and bikes not have in common?
23/92
23

Cars vs. Bikes

o Play radio « Move « Drop kickstand

o Turn off/on headlights ‘ « Brake \ . Change gears
| o Turn offfon turn signal \ o Steer 3

\ . Lock/unlock doors y

— — 24/92

24

Digging deeper into the similarities

[eMove \ ‘
“ o Brake

| e Steer |

\ oo / .

How similar are they when they move?
o do they move in same way?

Not very similar

o cars drive

o bikes pedal

Both can move, but in different ways

We prefer the more general move to
the previous useCar, useBike

9/26/23

25/92
« Many real-world objects have several broad
functional similarities
° cars and bikes can move car
° cars and laptops can play radio + move()
° phones and Teslas can be charged o brake()
o steer()
« Take Car and Bike classes
o how can their similar functionalities get * playRadio()
enumerated in one place? Tockboors ()
how can their broad relationship get modeled * unlockDoors()
through code?
Rlke
« Note: cars and bikes serve a similar Dy
purpose while phones and Teslas don't - o steer()
we only care that they share some similar
functionality (but potentially quite different « dropKickstand()
implementations) changegears()
26/92
e Interface groups declarations of similar capabilities of
different classes together
« Looks like a totally stripped-down class declaration, with
just method declarations: car
move()
i brake
e public interface Transporter { reee)
public void move(); iaykadio0)
lockDoors ()
) unlockboors()
Bike
+ Corsand Bikes can ‘implement’ a Transporter interfac| J ove0,
o they can transport people from one place to another steer()
o they “act as’ transporters dropkickstand()
ccan move (and brake, steer...) changeGears()
o for this lecture, interfaces are green and classes that
implement them are pink 2702

27

Introducing Interfaces (2/2)

o Interfaces are contracts that classes agree to
o If classes choose to implement given interface, it must define all
methods declared in interface
o if classes don'timplement one of interface’s methods, the compiler raises
rrors

later we'lldiscuss strong motivations for this “contract enforcement”
o Interfaces only declare, don't define their methods — classes that
implement the interfaces provide definitions/implementations

o interfaces only care about the fact that the methods get defined — not how
d

they are define
o Models similarities while ensuring consistency
o what does this mean?

28/92

28

9/26/23

Models Similarities while Ensuring
Consistency (1/3)

Let’s break that down into two parts:
1) Model Similarities

2) Ensure Consistency

29/92

29

Models Similarities while Ensuring
Consistency (2/3)

« How does this help our program?

« We know Cars and Bikes both need to move
o i.e., should both have some move () method
o let compiler know that too!
« Make the Transporter interface
o what methods should the Transporter interface declare? Similarities!
move() (plus brake, steer...)
- compiler ensures consistency--doesn’t care how method is defined,
just that it has been defined

o general tip: methods that interface declares should model functionality
all implementing classes share

30/92

30

10

What does this look like?

public interface Transporter {

public void move();

Declaring an Interface (1/3)

Declare it as interface rather
than class

Declare methods — the contract

In this case, we show only one
required method : move ()

All classes that sign contract
(implement this interface) must
define actual implementation of
any declared methods

9/26/23

31/92

31

What does this look like?

public interface Transporter {

public void move();

Declaring an Interface (2/3)

Interfaces are only contracts,
not classes that can be
instantiated

Interfaces can only declare
methods — not define them

Notice: method declaration
end with semicolons, not
curly braces!

32/92

32

What does this look like?

public interface Transporter {

public void move();

Declaring an Interface (3/3)

That's all there is to it!

Interfaces, just like
classes, have their own
.Jjava file. This file
would be
Transporter.java

33/92

33

11

Outline

9/26/23

34/92

34

Implementing an Interface (1/6)

public class Carimplements o |et's modify Car toimplement

Transporter Transporter
public Car() { o declare that Car “acts-as”
Transporter
} e Add implements Transporter
public void drive() { to class declaration

o Promises compiler that Car will
} define all methods in
Transporter interface

o e, move()

35/92

35

ublic class Car implements Error: Car does not override
ransporter { method move() in Transporter
public Car() { Willthis code compile?
o nope(
} o Neverimplemented move() —
o drive() doesn't suffice.
public void drive() { Compiler will complain
accordingly
}
}
“Noto: the fullsrror message is “Car s not abstract and does not override abstract
nethod move() in Transporter.” We'll gt mors into the meaning of abstract in a later lecture. 3692

36

12

Implementing an Interface (3/6)

public class Car implements
Transporter

public Car() {
}

public void drive() {
}

@verride

public void move() {
this.drive();

Next: honor contract by
defining a move()
method

Method signature
(name and number/type
of parameters) and
return type must match
how it’s declared in
interface

37/92

37

9/26/23

Implementing an Interface (4/6)

What does @0verride mean? .

public class Car implements Transporter { .
public Car() {
)
public void drive() {
)
goverri

de
public void move() {
this.drive(); .

Include @override right above
the method signature
@override is an annotation — a
signal to the compiler (and to
anyone reading your code)

o allows compiler to enforce that
interface actually has method
declared

o more explanation of @verride
in next lecture

Annotations, like comments,

have no effect on how code

behaves at runtime

38/92

38

Implementing an Interface (5/6)

public class Car implements Transporter {

public void drive() {
3
@

verride
public void move() {
HhisBreel):
this.drive();
Bublic void brake() { //code elided}

Defining interface method is
like defining any other
method

Definition can be as simple or
complex as it needs to be
Ex.: Let's modify Car’s move
method to include braking
What will instance of Car do
if move () gets called on it?

39/92

39

13

9/26/23

Implementing an Interface (6/6)

e Aswith signing multiple contracts,
classes can implement multiple

public interface Colorable {

interfaces public vold setColor(Color 5
o “I signed my rent agreement, so I'm public Color getColor();
PRI
employment contract, so 1 an)
amployee. Im the same person
© whatif |wanted Cir to be able to public class Car implements Transporter, Colorable
change color as well? ¢
o create a Colorable intorface
o add that interface to 's class. public Of //body elided }
declaration public void drive(){ //body elided }
o Class implementing interfaces must DT votd Tredr(loser 3 T undy elided 3
define every single method from - BUREE Bl SRRIArS Iy ")

each interface

40/92

40

Modeling Similarities While Ensuring
Consistency (3/3)
« Interfaces are formal contracts and ensure consistency

o compiler will check to ensure all methods declared in interface
are defined

« Can trust that any instance of class that implements
Transporter can move()

« Will know how 2 classes are related if both implement
Transporter

41/92
41
TopHat Question
Can you instantiate an interface as you can a class?
A. Yes
B. No
42/92

42

14

TopHat Question

Can an interface define code for its methods?
A. Yes

B. No

9/26/23

43/92
43
TopHat Question
Which statement of this program is incorrect?
A. public interface Colorable {
public Color getColor() {
return Color.WHITE;
}
C. public class Rectangle implements Colorable {
D. @verride
public Color getColoré) {
return Color.PURPLE;
}
44/92

44

TopHat Question
Given the following interface:

public interface Clickable {
public void click();

interface? (don’t worry about what change:
A

Position does

goverride C.
public double click()

return this.changeXPosition(160.0);
)

@override
public void clickIt() {

this. changeXPosition(100.0);
¥
goverride
public void click()

this. changeXPosition(100.0);

B. eoverride
public void click(double xPosition) {
this.changeXPosition(xPosition);

}

Which of the following would work as an in;g)lememation of)the Clickable

45/92

45

15

public class Car implements Transporter {

public car() {

)
public void drive(

y
@override

public void move() {
this.drive();

Back to the CIT Race

« Let's make transportation classes use an interface

public class Gike implements Transporter {

public 8ike() {

3
public void pedal() {

@override
public void move() {
his.pedal();

46/92

9/26/23

46

Leveraging Interfaces

« Given that there’s a guarantee that anything that
implements Transporter knows how to move, how can
it be leveraged to create single
useTransportation(..) method?

racer Racer

useCar(Car car)

useTransportation(.)
useBike(Bike bike)

useHoverBoard(Hoveroard hoverboard)
useHorse (Horse horse)
usescooter(scooter scooter)
useMotorcycle(Motorcycle motorcycle)
usePogostick(Pogostick pogo)

47192

47

Outline

e Polymorphism

48/92

48

16

9/26/23

Introducing Polymorphism

o Poly = many, morph = forms

o Away of coding generically

o way of referencing multiple classes sharing abstract functionality as acting as
one generic type

= cars and bikes can both move () — refer to them as classes of type Transporter

* phones and Teslas can both getCharged() — refer to them as class of type

nargeable, ie., classes that implement Chargeable interface
* cars and boomboxes can both playRadio() — refer to them as class of type

o How do we write one generic useTransportation(..) method?

49/92

49

What would this look like in code?

public class Racer {

public void useTransportation(Transporter transportation) {
transportation.move();

This i polymorphism!
transportation instance
passed in could be instance of
Car, Bike, efc., ie., of any class
that implements the interface

50/92
50
Let’s break this down
There are two parts to implementing polymorphism:
1. Actual vs. Declared Type what's the actual vs. declared
type of any transportation
2. Method resolution instance passed in?

public class Racer {

public void useTransportation(Transporter transportation) {
transportation.move();

}

N which move () is executed?

51/92

51

17

Actual vs. Declared Type (1/2)

We first show polymorphic assignment (typically not useful by
itself) and then polymorphic parameter passing

.

.

Consider following polymorphic assignment statement:
Transporter lexisCar = new Car();

o We say “lexisCar” is of type Transporter,” but we instantiate
anew Car and assign itto lexisCar... is that legal?
o doesn’t Java do “strict type checking™? (type on LHS = type on RHS)
o how can instances of Car get stored in variable of type Transporter?

9/26/23

52/92

52

Actual vs. Declared Type (2/2)
o Cantreat Car/Bike instances as

instances of type Transporter
o Caris the actual type

o Java compiler will look in this class for the

definition of any method called on ransporter transportation = new Car();

transportation rensportr oo
e Transporter is the declared type
o compiler will limit any caller so it can only
call methods on instances that are declared
as instances of type Transporter AND are
defined in that interface
« If Car defines playRadio() method, Nope. The pLayRadio() method is
is this correct? not declared in Transpor

f . interface, therefore compiler does not
transportation.playRadio() +———— recognize it as a valid method call

53/92
53
Is this legal?
Transporter anastasiosBike = new Bike(); /
Transporter lexisCar = new Car(); /
Transporter lexisRadio = new Radio(); x
Radio wouldn'timplement Transporter. Since
Radio cannot “act as” type Transporter, you cannot
treat it as of type Transporter
54/92
54

18

9/26/23

Only Declared Type’s Methods Can be Used

o What methods must Car and Bike have in

common?
class fike implements Transporter {]
o move() public void move();
o How do we know that? public void dropKickstand();
. theyimplement Transporter //etc.
+ guarantees that they have move(), plus
whatever else is to that cla
o Think of Transporter like the “lowest 2 - {
-) public void move();
common denominator public void playRadio();
o it's what all classes of type Transporter //ete.
will have in common l

o only move() may be called if an instance is
passed as the declared interface type

565/92

55

Motivations for Polymorphism

« Many different kinds of transportation but only care about
their shared capability
o i.e., how they move
« Polymorphism lets programmers sacrifice specificity for
generality
o treatany number of classes as their lowest common denominator
o limited to methods declared in that denominator
= can only use methods declared in Transporter
« For this program, that sacrifice is ok!
o Racer doesn’t care if an instance of Car can playRadio() or if an instance of
Bike can dropKickstand()
o only method Racer wants to call is move ()

56/92

56

Polymorphism in Parameters

« What are implications of this method declaration?

public void useTransportation(Transporter transportation) {
//code elided

o useTransportation will accept any class that implements Transporter
o we say that Transporter is the (declared) type of the parameter

o we can pass in an instance of any class that implements the Transporter interface
o useTransportation can only call methods declared in Transporter

57/92

57

19

Is this legal?

public void useTransportation(Transporter transportation) {

9/26/23

//code elided

}
Transporter anastasiosBike = new Bike();
this.anastasio.useTransportation(anastasiosBike);

; Even though
Car lexisCar = new Car(); "

- w Car() / lexisCar is

declared as a Car,

this. lexi.useTransportation(lexisCar);
the compiler can stil

Radio lexisRadio = new Radio(); x verify that it
this. lexi.useTransportation(lexisRadio); implements
Transporter
A Radi0 wouldn'timplement Transporter. Therefore
ortation() cannot treat it as a type of

useTransp

58/92

58

Let’s look at move () (1/2)

o Why call move()?
o _What move () method gets executed?

public class Racer {

//previous code elided
public void useTransportation(Transporter transportation) {

transportation.move();

}

Y
Since the only method declared in Transporter is move(), all
we will ever ask objects of type Transporter to do is move()

59/92

59

Let’s look at move () (2/2)

Only have access to instance of type Transporter

o cannot call transportation.drive() or
transportation.pedal()
that's okay, because all that's needed is move ()

o limited to the methods declared in Transporter

60/92

60

20

Method Resolution: Which move() is
executed?

e Consider this line of code in Race class:

this.anastasio.useTransportation(new Bike

Remember what useTransportation method looks like:

public void useTransportation(Transporter transportation) {
transportation.move();

What is “actual type” of transportation in
this.anastasio.useTransportation(new Bike());?

61/92
61
Method Resolution (1/4)
public class Race { e Bikeis actual type

private Racer anastasio; o anastasio was handed a new
revious code elided Bike() instance as argument

public void startRace() { Transporter is declared type
this.anastasio.useTransportation(new &
3 o Bike instance is treated as type

} of Transporter

e So... what happens in
transportation.move()?
i o Whatmove() method gets used?

public class Racer {
previous c

public void useTransportation(Transporter transportation) {
transportation.move();

9/26/23

}
}
62/92
62
Method Resolution (2/4)
public class Race {
vious co id e anastasio isaRacer
public void startRace() {
this.anastasio.useTransportation(0% o gike's move() method gets used
. ;
¥ o Why?

public class Racer {
revious code elided o Bike s the actual type of this
public void useTransportation(Transporter Transporter
transportation) {
transportation.nove();
¥ defined in class

compiler will execute methods

)
o Transporter is the declared

wlic class sike iaplenents Transporter
" vious co pe id ¢ type
public void nove() { compiler lmits methods that can
this.pedal(); be called to those declared in
' Ransporter imerface
) 63192

63

21

Method Resolution (3/4)

public class Race {

previous c 1ided ® What if anastasio
public void startRace() { received an instance of
this.anastasio. useTransportation(% car?
y o Whatmove () moinod
would get called then?
public class Racer { + Car'sl
previous code elided
public void useTransportation(Transporter

transportation) {
transportation.move();
}
)

public class Cor implements Tr
evious code elided

public
thi

9/26/23

i ! 64/92

64

Method Resolution (4/4)

« move () method is bound dynamically — the compiler does
not know which move () method to use until program runs

o same “transport.move()” line of code could be executed indefinite
number of times with different method resolution each time

o This method resolution is an example of dynamic binding, which
directly contrasts the normal static binding, in which method gets
resolved at compile time

65/92

65

TopHat Question
Given the following class:
public class Laptop implements Typeable, Clickable { //two interfaces
public void type() {
/1 code elided
;):uhhz void click() {
//code elided
}
Given that Typeable has declared the tfvﬁe() method and Clickable has
declared the click() method, which of the following calls is valid?

A, Typeable macBook = new Typeavle(); C. Typeable macBook = new Laptop();
macBook. type(); macBook.click();
B. Clickable macBook = new Clickable(); [) Clickable macBook = new Laptop();
macBook. type(); macBook.click();
66/92

66

22

Why does polymorphism work when
calling methods?

« Declared type and actual type work together
o declared type keeps things generic
can reference many classes using one generic type
o actual type ensures specificity

when calling declared type’s method on an instance, the acfual code that
is called is the code defined in the actual type's class (dynamic binding)

Every district do their
job!

Declared Actual

9/26/23

67192

67

When to use polymorphism?

« Do you use only functionality declared in interface OR do you
need specialized functionality from implementing class?
o if only using functionality from the interface — polymorphism!
o if need specialized methods from implementing class, don't use
polymorphism
« If defining goOnScenicDrive()..

o want to put topDown() on Convertible, but not every Car can put top
down
don’t use polymorphism, not every Czr can goOnScenicDrive() ie.,

can't code generically

68/92

68

Why use interfaces?

e Contractual enforcement
o will guarantee that class has certain capabilities
= Carimplements Transporter, therefore it must know how to move ()
e Polymorphism
o can have implementation-agnostic classes and methods
= know that these capabilities exist, don't care how they're implemented
= allows for more generic programming
o useTransportation can take in any instance of type Transporter

o can easily extend this program to use any form of transportation, with minimal
changes to existing code

= atool for extensible programming
= How? 69/92

69

23

Why is this important?
« Using more than 2 methods of transportation?

« Old Design:
o need more classes — more specialized methods (useCar(),
useBike(), useRollerblades(), etc.)
« New Design:
o aslong as the new classes implement Transporter, Racer
doesn't care what transportation it has been given
o don't need to change Racer!
+ less work for you!
- justadd more transportation classes that implement Transpo
- “need to know" principle, aka “separation of concerns”

70

What does our new design look like?

How would this program run?

An instance of App gets initialized by main

App’s constructor initializes cs15Race, an instance of Race
ce’s constructor initializes lexi, a Racer and anastasio

. R

aracer
App calls cs15Race. startRace()
csisRace calls:

o this.lexi.useTransportation(ne)

o this.anastasio.useTransportation(new Bike())
useTransportation(new Car()) initializes a Car and
calls Car's move() method which calls this.drive()
useTransportation(new Bike()) initializes a Bike and
calls Bike's move() method which calls this.pedal()

ar0))

9/26/23

71/92

71

public class Racer {
The Program public Racer() {}
public class App { public void useTransportation(ransporter transport)
public static void main(String[] args) { transport move();
Race cs1SRace = new Race();)
esisRace. startRace();)
public class Car_implements Transporter {
} public Car() {}
pubtic class race ¢ public votd drive() {
private Racer lexi, anastasio; J1code elided
public Race() { public void move() {
this.lexi = new Racer(); this.drive();
this.anastasio = new Racer(); }
public class o1l implenents Transporter {
public void startRace() { pubise 0 0
this.lexi useTransportation(% public void pedal() {
, st Beffprtatoncie e i coe ehsdd
)
u public void move() {
thispedal();
public interface Transporter { pedal().
public void move();)
N } 72/92

72

24

In Summary

« Interfaces are contracts, can’t be instantiated
o force classes that implement them to define specified methods
« Polymorphism allows for generic code
o treats multiple classes as their “generic type” while still allowing
specific method implementations to be executed
Polymorphism + Interfaces
o generic coding
« Why is it helpful?
o you want to be the laziest (but cleanest) programmer you can be

73192

73

9/26/23

Announcements

o TicTacToe released today (9/26)
o Early hand-in: 9/28
o On-time hand in: 9/30
o Late hand-in: 10/2
Class Relationships Section
o Mini Assignment due before section
o Email answers to your section TA
CS15 Mentorship
o Officially begun!

.

.

.
-
w
=
=
15
=3
g

Designs due Thursday before Lecture!! (looking at you RISD students :D)

74192

74

Topics in Socially
Responsible Computing

C515 Fall 2023

ARTIFICIAL INTELLIGENCE

75

25

From Stochastic Parrot to Coherent Language
Coined by American Linguist Emily Bender in her paper: On
the Dangers of Stachastic Parrots: Can Language Models b
Too Big? % a-

9/26/23

How to Train Your BregesLLM

* As discussed in last lecture we
need to feed our model data
to train the weights

«In our last example this data Common Crawi (iered)
was images of numbers

Datasat Quanty fiokens) ()

WebText2

Bookst

«To train a LLM we require,
Books?
instead, massive amounts of
textual data Wiipedia P

Weight in training mix

0%

(1) Tokens =

77

Word Embeddings

« An embedding is a sequence of numbers that

represents each token, and each token has a
unique sequence s

ince they exist in a hgh dimensional space. ©
{18+ dimensions)
os
+ Consider instead the following 20 example: %
* ing and queen are semanticay smilar 0
e we taling bt Medeval Htoyor Cres?
* Likewise Iva ould refr o programming

Ianguage or arnk o2

seems to always know the exact context in which e N
words are us o ot oz o3 or o5 de

« It can be difficult to visyalj2e word embeddings °* oe e°
ey ,

*Chat GPT maps these relaionships so vl thet it o ’o °°

78

26

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Word Embeddings (Continued)

Male-Female Verb Tense Country-Capital

Following Training: King — Man + Woman =
Queen

9/26/23

79

Garbage in, Garbage Out (GIGO)

+ Flawed inputs creates flawed outputs

~"Pra¥, Mr. Babbage, if you put into the B v ciaandy Vanoumos
machine wrong figures, will the right answers
come out?” - pasageslionihelieofa,

(186a11) | —

*Since Chat GPT is trained on false or incorrect
statements, it will (confidently) produce
flawed outputs

« This is why Chat GPT appears to hallucinate
sometimes.

+ Chat GPT may also appear politically biased

+ Biased training material -> biased outputs

80

Fine Tuning Ngorhmic

takes months!)

« To reduce incorrect and biased outputs and tailor the
model towards specific tasks, the model s fine tuned
after initial training,

+ 5ama uses gig workers in developing economies to
create training datasets for Silicon Valley clients.
+ Sama workers, for example, manually labeled toxic
responses for Chat-GPT 10 build a mechanisrm for filtering

« Other Clients include Google, Meta, and Microsoft

« Fine tuning can also include training the model to

perform better at certain tasks or conform to a Fine Tuning
certain writing style! less-time but takes
human Input)

81

27

https://towardsdatascience.com/
https://www.gutenberg.org/files/57532/57532-h/57532-h.htm
https://www.gutenberg.org/files/57532/57532-h/57532-h.htm
https://time.com/6247678/openai-chatgpt-kenya-workers/

Further Courses @ Brown post CS15 & CS200

Many courses in the Artificial Intelligence/Machine Learning pathway go in
depth and have you implement what we discussed over the last lectures!

+€51410 - Artificial Intelligence

+€51420 -- Machine Learning

+ 51430 - Computer Vision

+ 51460 - Computational Linguistics

+C51470 - Deep Learning

+C51951A - Data Science

9/26/23

82

Introducing GPTA!

* GPTA is CS15’s very own “virtual TA” Chatbot
* Instead of using ChatGPT or other chatbots for questions, you can ask GPTA!

* GPTA is a great resource for those quick questions and misunderstandings
you have about concepts and syntax

* Access will be granted in your section this week

« i you had section this morning, you will be granted access shortly after lecture :)

wwwi.cs12egpta.com

83

Usage Guidelines

* You CAN ask: conceptual questions, for code examples explaining
concepts
* You CANNOT ask: debugging questions, for project code
* Specific examples of these are on the 315 GenAl Usage Doc

* You'll see these guidelines every time you sign in to GPTA

* We have a yser guide and usage guidelines on the Callab Policy and
the GenAl Usage Doc

84

28

http://www.cs15gpta.com/
https://docs.google.com/document/d/1MFfAXhaKwhJ2PtOsRPZ7sPv_8KOrR4xdgNEL5Jb3IKU/edit
https://docs.google.com/document/d/11AylwWq2KLH1vO5svMxs7eY2qqWGETmzy5AAqAq4b6E/edit
https://docs.google.com/document/d/11oqlPAXNYx9heme3zrhdYnYzgsFFnWa7NknjSStCick/edit
https://docs.google.com/document/d/1MFfAXhaKwhJ2PtOsRPZ7sPv_8KOrR4xdgNEL5Jb3IKU/edit

Terms and Conditions

* To make sure that this tool is not being abused, we will be logging all
questions and responses
+ we will be reviewing these responses to make sure no disallowed questions
(ie, ‘debug my code’, ‘generate project code’ questions)

« Before you can start using GPTA, you must fill out our Terms and
R
+ acknowledges you understand GPTA's role in our course, how you must use
it, and that we will be monitoring questions asked

9/26/23

85

DISCLAIMERS

This is a BIG experiment!
+ caution advisec-issues are expected early on
+ feedback form linked on the GPTA website

Like all GenAl, GPTA will occasionally produce inaccurate and irrelevant infor —-not
a replacement for real TA help

+ Just like with ChatGPT-sometimes issues with generated code

Explanations are based on general info in the wild, not specific CS15 ways we teach 0OP
+ may be differences in terminology and concept explanations, as well as style

Anticipating some server load issues

You're guinea pigs; based on our testing we found it useful but your mileage may vary

* bear with us as we figure this out together!

86

29

https://forms.gle/i6DaCTFgkdhCzd9t5
https://forms.gle/i6DaCTFgkdhCzd9t5

