Lecture 7

Inherital

v o

nce and Polymor

phism

v

9/28/2023

Qutline

* Inheritanceoveriew
« Implementinginheritance

- adding new methods fo subclass

» Inheritance and polymorphism

» Accessing instancevariables
» Abstractmethods andclasses

277

Recall: Interfaces and Polymorphism

Interfaces are contracts that

classes agree to
if a class chooses to implement given
interface, it must define all methods
declared in interface; compiler will raise
errors otherwise

Polymorphism: a way of coding

generically; reference instances of

related classes as one generic type
Violin, Trumpet, Drums all
implement Playable interface with
single play() method
how can we make use of the
conduct() method so it can
polymorphically take in any
instrument of type Playable?

public class Conductor {

//previous code elided
public void conduct(Playable instrument) {
instrument.play();

// in Orchestra class

Conductor conductor = new Conductor();
playable violin = new Violin();
playable trumpet = new Trumpet();
conduc tor .conduct (violin);

377

Similarities? Differences?

. What are the similarities between a convertible and a sedan?

. What are the differences?

9/28/2023

[477
Convertiblesvs. Sedans
_— - T - \\
Convertible Sedan
/ « Might have only 2 seats /- Drive \ « 5seats \\
/ « Top down/up [+ Brake \ \
[. Play radio “ |
|+ Lock/unlock | |
\ doors / /
\ Tumn offfon /
engine
\\\%27777/7//“ I _\\\%%77777} __— 577
Digging deeperinto the similarities
. Aconvertible and a sedan are
extremely similar
= Drive - Not only do they share a lot of the
« Bk same capabilities, they perfom these
» Py racio actions in the same way
Locktuninok - both cars drive and brake the same way
doors = let's assume they have the same engine,
w Tuim i doors, brake pedals, fuel systems, etc.
LM N
6/77

Can we modelthis incode?

9/28/2023

« Inmany cases, objects can be very closely Convertiple
related to each other, in life and in code e turnOnEngine()
. convertibles and sedans drive the same way e turnOffEngine()
dri
- flip phones and smartphones call the same way ¢ driveQ)
. Brown students and Harvard students study the | ¢ PutTopbown()
same way (?!?) * putTopUp()
« Imagine we have a Convertible and a Sedan Sedan
class e turnOnEngine()
. can we put their similarities in one place? . EuTnOFfEngine()
- how do we portray that relationship with e drive()
code? e parkInCompactSpace()
T
Interfaces

We could build an interface to model their similarities
build a Car interface with the following methods:
turmOnEngine()
tumOffEngine()
drive()
. etc.
Remember: interfaces only “declare” methods
- each class that implements Car will need to “define” Car’s methods
alot of these method definitions would be the same across classes
Convertibleand Sedan would have the same definition, i.e., code, for drive(),
startEngine(), turnOffEngine (), etc.
Is there a better way that allows us to reuse code, i.e., avoid duplication?

e o o o as 8177

Outline

» Inheritanceoverview

e om o w3 977

Inheritance

« InOOP, inheritance is a way of modeling very
similar classes and facilitating code reuse
« Inheritance models an “is-a” relationship

9/28/2023

asedan “is a” car F, Animalia
de is a P
is & dog - LTE Chordata
adog “is a" mammal [
. Remember. Interfaces model an “acts-as” i Flss | Mammalia
relationship)) .:_ S
« You've probably seen inheritance before! L
taxonomy from biology class: any level has all of the .": :‘:. Fumiby
capabiities of the levels above it but is more specialized T
than its higher levels
adog inherits the capabilities of its “parent,” so it knows Apmim |

what a mammal knows how to do, plus more
we will cover exactly what is inherited in Java class

hierarchy shortly...

Modeling Inheritance (1/3)

Mammal

A

A A

This is an inheritance diagram
o each box represents a class

o transitively, a Poodle is a Mammal
“Inherits from” =‘is-a”

o Poodle inherits from Dog

o Dog inherits from Mammal

for simplicity, we're simplifying the taxonomy
here a bit

Poodle ‘ ‘ Labrador ‘

This relationship is not bidirectional

o aPoodle is aDog, but not every Dogis a
Poodle (could be a Labrador, a German
Shepherd, etc.)

A Poodle ‘is-a” Dog, a Dog ‘is-a” Mammal

w77

Modeling Inheritance (2/3)

e Superclass/parent/base: A class that is
inherited from

e Subclass/child/derived: Aclass that inherits
ther

s
Jay e APoodle “isa” Dog
o Poodle is the subclass
m o Dog is the superclass
JAN A
Poodle ‘ ‘ Labrador ‘

1277

Modeling Inheritance (3/3)

e Superclass/parent/base: Aclass that is

inherited fro
. : Aclass that inherits
from another
« A “isa’ Dog
o is the
o Dog is the superclass
e Aclass can be both a superclass and a
o eg. Do

poodle ‘ ‘ Labrador |* You canonly inherit from one superclass

o no as it would inherit from Poodle

and Labrador

s
T “ 7 o other languages, like C++, allow for multiple

inheritance, but too easy to mess up

9/28/2023

1377
Motivations for Inheritance
. A inherits all its parent’s public capabilties
. Car defines drive() and inherits drive() from Car, driving the
same way and using Car’s code. This holds true for all of ’s

subclasses as well

Inheritance and interfaces both legislate class’ behavior, althoughin
v ery different ways
interface: does not define methods, so all implementing classes must specify
all capabilities outlined in interface

- inheritance: assures that all of a superclass will have the
superclass’ public capabilities (i.e., code) automatically — no need to re-
specify

a knows how to drive and drives the same way as Car because of
inherited code
e o 14/77
Benefits of Inheritance
car
private Engine myEngine
. Codereuse! public void turnOnEngine()
public void turnOf fEngine()
o ifdrive() is definedincCar, public void drive()
doesn’t need to
redefine it! Code is inherited Zr
. Only need to implement whatis
dif ferent, i.e., what makes
special — do this
by adding methods (or modifying public void putTopDown()
inherited methods — Stay tuned) Note that we don't list the parent’s
methods again here — they are
implicitly inherited!
15/77

Outline

* Inheritanceoverview
+ |Implementinginheritance

» Inheritance and polymorphism
» Accessing instancevariables
» Abstractmethods andclasses

16/77

9/28/2023

Superclassesvs. Subclasses
. Asuperclass factors out commonalities among its
- describes everything that all subclasses have in common
Dog defines things common to al Dogs
. A extendsits superclass by:
o adding new methods:

the subclass should define specialized methods. Not all Animals canswim, but
can

overriding inherited methods

a class might override its inherited sleep method so tat it hibemnates
rather than sleeping as most other Animals do

o defining “abstract” methods:
the superclass declares but does notdefine all methods (more on this later!)

was o o warn 1777

Modeling Inheritance Exam ple (1/3)

. Let's modela ,a (Sedan), and a
class with inheritance!

JAY

Nt

o om o wmm 18/77

Modeling Inheritance Reminders

. Youcan create any number of subclasses
, \ , ...could all inherit from Car
. these classes will inherit public capabilities (i.e., code) from Car
. Each subclass canonly inherit from one superclass

cannot inherit from Car, FourWheeledTransportation,
and GasFueledTransportation

1977

9/28/2023

TopHat Question 1 Join Code: 504547

Which of these is an invalid superclass/subclass model?:
A C.

D. None of the above

was o o warn 20077

Modeling Inheritance Exam ple (2/3)
public class Car {
« Step 1-define thesuperclass private Engine engine;
o defining Car is just like defining public Car() {
any other class

this.engine = new Engine();

}
public void turnonEngine() {
this.engine.start();

}
public void turnOffEngine() {
this.engine.shutoff();

public void cleantngine() {
this.engine.steanC lean();

}
public void drive() {

T 2177

Modeling Inheritance Example (3/3)

. Step2-definea public class extends Car {

. Usethe extends keyword)

extends means ‘is a subclass of”
or ‘inherits from”

extends lets the compiler know
that Convertible is inheriting
from Car

whenever you create a class that
inherits from a superclass, the
class declaration must include:

extends <superclass name>

[—— 211 oy

9/28/2023

Adding new methods (1/3)

¢ Wedon't need to (re)declare
any inherited methods public class extends Car {

e Our class does private ConvertibleTop top;
. public Of
more than a generic Car class this.top = new Convert ibleTop();

}

public void putTopDown(){
//code using this. top elided

e Let'sadd aputTopDown()
method and an instance
variable top (initialized in }
constructor) }

o emn sws 23177

Adding new methods (2/3)

« Now, let'smake a new
class that
also inheritsfrom Car

. Can
putTopDown()?
o nope- that method is defined
in , soonly public class extends Car {
and ;
bl)
’s subclasses pebRe !
can use it ¥
¥
w0 sz wwn 24]T

Adding new methods (3/3)

« Youcan add specidized functionality to a subclass by defining
methods in that subclass

. These methods canonly be inherited if a class extends this
subclass Defines Car’s methods and
« doesn't inherit Convertible’s
new methods
Y JAN
Inherits Car’s methods ‘ ‘

Inherits Car's methods
« and doesn't inherit
Convertible's methods

and defines ——>
Convertible’s methods

Inherits and adds to
< Convertible’s methods,
which includes Car’s methods

25177

9/28/2023

Overriding methods (1/4)

public class Car {

. A may decide
Car’s drive() method just private Engine engine;

doesn’t cutit
public Car() {
. a drives much this.engine = new Engine();

}
faster than a regular car public void drive() {

. Canoverride a parent class’s this. goFor yHPHO);
method and redefine it public void goFortyMPH () {

}

et om0 s 2677

Overriding methods (2/4)

« (@verride should look familiar!

public class extends Car {
- saw it when we implemented an
interface method public 01
« Include @verride right before }
declaring method we want to @verride
override public void drive(){
this.goSixt yMPH();
« @uverride is an annotation —in a ¥
subclass it signals to compiler (and public void goSixtyMPH (){
to anyone reading your code) that) /code elided
you're overriding an inherited 3

method of the superclass
o om o wmm 2777

Overriding methods (3/4)

+« We override methods by re-declaring

and re-defining them public class extends Car {
. Be careful —in declaration, the public O A{
method signature (name of method
and list of parameters) and return ¥
type must match that of the @verride
superclass’s method exactly*! P”"iihcisvgigi:;;"”l:éz)f
or else Java will create a new, adcitional } : ’

method instead of overriding

. drive() is the method signature, public void goSixtylPH() {

9/28/2023

indicating that name of method is }
drive and takes in no parameters; }
the return type must also match
*return typealso mustbe thesame o bea subty pe methods pe,eg.ifthe siper
returns a Gar, the subdassmethods houdreturna Car of
- 28/77
Overriding methods (4/4)
. Fillinbody of overridden method .
with whatever we want a public class extends Car {
to do when itis told public 04
to drive
}
« In this case, we'refully overriding @override
the method public void drive(){
this.goSixtyMPH();
« When a istold to }
drive, itwill execute this code public void goSixtyMPH (){
instead of the code in its
superclass’s drive method (Java) ¥
compiler does this automagically -
stay tuned)
o o s 20177
Partially overriding methods (1/6)
. Let's say we want to keep @
track of 's route
. drives at the AR
same speed asa Car,butit ***
adds dots to a map
30/77

10

Partially overriding methods (2/6)

We need a tostart
driving normally, and then start
adding dots

To do this, we partially override

the drive() method

partially accept the inheritance
relationship

Car:
void drive:
Go 40mph

void drive:
Go 4emph
Add dot to map

9/28/2023

—. 377
Partially overriding methods (3/6)
« Just like previous example, use public class extends Car {
@0verride to tell compiler we're public 01
about to override an inherited //code elided
method ¥
@verride
. Declare the drive() method, public Voig drive(){
making sure that the method i:fi"ad;;ﬁ%%po
signature and return type match }
that of superclass’s drive o
method pubhs Zﬁ:defi ‘dEStTOME p() {
}
}
. 3277
Partially overriding methods (4/6)
« When a drives, itfirst public class extends Car {
does what every Car does: goes public 0 {
40mph //code elided
}
« Firstthing to do in ’s
@verride

drive method therefore is “drive
as if | were just aCar, and
nothing more”

Keyword super used to invoke
original inherited method from
parent: inthis case, drive as
implemented in parent Car

public void drive(){
// super refers to parent class
super.drive();
this.addDo tToMap() ;

}

public void addbotToMap() {
//code elided
}

2 33/77

11

Partially overriding methods (5/6)

. Afterdoingeverythinga Car
does todrive,the
needs to add a dot to the map!

. Inthis example, the
“partially overrides”
the Car’s drivemethod: it
driv es the way its superclass
does, then does something

public class extends Car {
public O A1
//code elided
}
@verride

public void drive(){
super.drive ();
this.addDot ToMap() ;
}

9/28/2023

specialized

public void
//code e

DotToMap() {
ed

}
}
34/77
Partially overriding methods (6/6)

If we think our should move a
Iittle.more., we can call super.drive() public class extends Car {
multiple times

public O {
While you can use super to call other //code elided
methods in the parent class, it's strongly }

'
discouraged) @overri de bad form!
- use the thiskeywordinstead, parents public voi ive(){

methods are inherited by the subclass :this™. turnonEngine ();
, :

except when youare cdling the parent's m() .
method witinthe childs method ofthe Supe;'drive(); ’
same name super.drive();

what would happen if we said this.addDo tToMap() ;

this.drive() instead of super.drive()? this.turn0ffengine ();

ot e s] 35/77

Method Resolution (1/3)

. Whenwe call drive () on someinstance of , how
does the compiler know which version of the method to call?

. Starts by lookingat the instance’s class, regardless of where class
is in the inheritance hierarchy
- if method is defined in the instance’s class, Java compiler calls it
- otherwise, it checks the superclass
if method is explicitly defined in superclass, compiler uses it
otherwise, checks superclass up one level... etc.
if a class has no superclass, then compiler throws an error

o om o wmm 36/77

12

Method Resolution (2/3)

. Essentially, the Java compiler
“walks up the class inheritance
tree” from subclass tosuperciass
until it either:

finds the method, and calls it
doesn’t find the method, and
generates a compile-time error.
Compiler won't let you give a
command for which there is no
method!

Convertible
drive()
topDown
A

9/28/2023

[—— 37177
Method Resolution (3/3)
. Whenwe calldrive()on
a , Java compiler l
uses the drive() method -
defined in Convertible
drive()
« When we call topDown() topDown
ona , Java T ¥ A
compiler usesthe]
topDown () method defined
in Convertible '
wate o o o wan 38/77

Outline

* Abstractmeth ndcl

3977

13

Inheritance Example

Let’s use the car inheritance relationshipin an actual program
Rememberthe race program from last lecture?

Silly Premise

the department received a ~mysterious~ donation and can now afford to
give all TAs cars! (we wish)

o Lexi and Cannon want to race from their dorms to the CIT in their brand
new cars

whoever gets there first, wins!
you get to choose which car they get to use

9/28/2023

Inheritance Example

What classes will we need for this lecture’s program?
o old: App, Racer
o new: Car,

Rather than using any instances of type Transporter, Lexi and

Cannon are limited to only using instances of type Car

o for now, transportation options have moved from and to
. , and

How do we modify Racer’s useTransportation() method to

reflect that?

o can we use polymorphism here?

et om0 s 477

Inheritance and Polymorphism (1/3)

What is the “lowest common denominator” between
,and

Car <«<——— Caris the LCD!

o om o s 4277

14

Inheritance and Polymorphism (2/3)

. Canwe referto CS15Mobile as
its more generic parent, Car?

. Declaring CS15Mobile astype
Car follows the same process
as declaring a Bike asof type Transporter bike = new Bike();
Transporter

Car car = new CS15Mobile();
. Transporter andCar are the

declared types

. BikeandCS15Mobile are the
actual types

b o 3 4377

9/28/2023

Inheritance and Polymorphism (3/3)

. What would happen if we made Car thetype of the parameter
passed into useTransportation?

can only pass in Car and subclasses of Car, i.€., anything that is-a car

ET

public class Racer {

public void useTransportation(Car myCar) {

}
}
e 477
Is this legal?
Car convertible = new Convertible(); "f

this.lexi.useTransportation(convertible);

Convertible convertible = new Convertible(); "/
this.lexi.useTransportation(convertible);

Car bike = new Bike(); x

this.lexi.useTransportation(bike);

Bike is not a subclass of Car (the two classes
have no relationship), so you cannot treat an
instance of Bike as a Car

15

Inheritance and Polymorphism (1/2)

. Let's define public class Racer {
useTransportation()

. What method should we public void useTransportation(Car myCar) {
callonmyCar?) my Car.dri ve();

- every Car knows how to
drive, which means we
can guarantee that every
subclass of Car also knows
how to drive

9/28/2023

Inheritance and Polymorphism (2/2)

« That's all we needed to do!

« Our inheritance structure looks really similar to our interfaces structure

- therefore, we only need to change 2 lines in Racer in order to use any of
our new Cars!

- butremember- what's happening behind the curtain is v ery different:
method resolution “climbs up the hierarchy” for inheritance
« Polymorphism is an incredibly powerful tool
- allows for generic programming
treats multiple classes as their generic type while still allowing specific
method implementations for specific subclassesto be executed
« Maximum flexibility: polymorphism + inheritance and/or interfaces

was o o warn 47177

Polymorphism Review

Polymorphism allows programmers to refer to instances of asubclass or a
class which implements an interface as type <superclass> or as ty pe
<interface>, respectively
o relaxationofstict type checking, particularly usefu in parameter passing
e.g. drive(Car myCar){..} can iake in any kind of Car that is aninstance of a
subclass ofCar and Race(Transporter myTransportation){..} can takein
any instance of aclass thatimplements the Transporter interface
Advantages
o makes code generic and extensible
o treats muliple classes as their generic (declared) type while still allowing instances of
specific subclasses to execute their specific method implementations through method
resolutionbased on the actual type
Disadvantages
o sacrifices specfficity for generality

can only call methods specified in superclass or interface, i.e., noputTopDown() 2877

16

TopHat Question 2 Join Code: 504547

In the following code, the HungerGames subclass extends the SurvivalGame
superclass. SurvivalGame defines a play() method, and HungerGames
ov errides that method.

SurvivalGame game = new HungerGames();
game.play();

Whose play() method is being called?

A. SurvivalGame

B. HungerGames

9/28/2023

49/77
Outline
» Accessing instancevariables
» Abstractmethods andclasses
wate o o o wan 50/77

Accessing Superclass Instance Variables (1/3)

« Can Convertible access engine? X
. . . . public class Car {
« private instance variables or private private Engine engine;
methods of asuperclass are not

directly inherited by its subclasses public Car(O{

this.engine = new Engine();

superclass pratects them from manipulation }
by its own subclasses public void turnOnEngine() {
« Convertible cannot directly access this.engine.start();
any of Car’s private instance variables ;}Jublic void turnOffEngine() {
« Infact, Convertible is completely this.engine.shutof £();

unaware that engine exists! This is
encapsulation for safety!

programmers typically don'thave access to i
superclass’ code — they know what methods
are available (i.e., their declarations) but not
how they’reimplemented

}
public void drive() {

e om o w3 5177

17

Accessing Superclass Instance Variables (2/3)

But that's not the whole story...

While every instance of a subclass of
Car is-a Car, it can't access engine

directly by ’s specialized
methods
public class extends Car {

public void cleanCar() {
this.engine.steanC lean();

}
}
Instead parent can make a metho
available for us by its subclasses
(cleanEngine())

public class Car {
private Engine engine;

public void cleantngine() {
this.engine .steaC lean();
}
}

public class extends Car {

public void cleanCar() {
this.cleanEngine() ; /
}

5277

9/28/2023

Accessing Superclass Instance Variables (3/3)

What if superclass’s designerwants to allow access
(in a safe way) to some of its instance variables directly for their

own needs?

For example, different subclasses might eachwant todo
something differenttoan engine, but we don’twant tofactor out
and put each specialized methodinto the superclassCar (or
more ty pically, we can't even access Car to modify it)

o Car can provide controlled indirect access by defining public accessor

and mutator methods for private instance variables, a familiar pattern!

53/77

Defining Accessors and Mutators in Superclass

Assume Car also has radio; Radio class
defines setFavorite() method

Car can provide access to radio via
getRadio() and setRadio(...) methods

Important to consider this design decision

in your own programs — which properties

will need to be directly accessible to other

classes?

. don’talways needbath set and get

o theyshould be provided very sparingly

o setter shouderror-check received
parameter(s) so it refains some cortrol,
e.g., don’tallownegative vaues

public class Car {
private Radio radio;

public car() {
this.radio = new Radio();

} accessor

public Radio getRadio(){
return this.radio;

}

public void setRadio(Radio myRadio){
this.radio = myRadio;

}

mutator

18

Review of Inheritance and Indirect (“pseudo”) Inheritance of
Instance Variables

Subclass
Methods are inherited, patentidly (partialy) (
overidden

Additional methods and instance variables
are defined to specialize the subclass

Instance variables are alsoinherited, but
only “pseudo-inherited”, i.e., are part of a
subclass’ set of properties...but they can't
be directly accessed by the subclass

Instead, accessor/mutator methods are the
proper mechanism withwhich a subclass

can change those properties
defined

This provides the parent with protection mté
against children’s potential misbehavi

9/28/2023

Calling Accessors/Mutators From Subclass

Convertible can get a reference
to radio by calling

this.getRadio()
.) . public class Convertible extends Car {
subclasses automatically inherit public Convertible() {
these public accessor and mutator }
methods

- . public void setRadioPre sets(){
Note that by using “double dot, this. getRadio().setFavorite(1, 95.5);

we've chained two methods this. getRadio().setFavorite(2, 92.3);

¥
together }
. first, getRadio is called, and
inherited

retuns the radio method
o next, setFavorite is called on

that radio
56/77

Let’s stepthrough some code

Somewhere in our code, a Convertible is instantiated

Convertible convertible = new Convertible();
convertible.setRadioPresets();

. The next line of code calls setRadioPresets ()
. Let's stepinto setRadioPresets()

57177

19

Code Step Through

« Someone calls
setRadioPresets() on a
— firstline is
this.getRadio()

« getRadio() returns radio
« What is the value of radio at
this point inthe code?

was itinitialized when

was instantiated?

. Javawill, in fact, call superclass
constructor by default, but we

don’t want to rely on that

public class extends Car {
public 01
}

public void setRadioPresets() {
this. getRadio().setFavorite(1, 95.5);
this. getRadio().setFavorite(2, 92.3);
}
}

public class Car {

private Radio radio;

public Radio getRadio() {

}
}

return this .radio;

58/77

9/28/2023

Making Sure Superclass’s Instance Variables are Initialized

. may declare its own instance variables, which are
initialized in its constructor, but what about instance variables

pseudo-inherited from Car?

e Car’sinstance variables are initialized in its constructor
o but we don't instantiate a Car when we instantiate a

e« When we instantiate

, how can we make sure

Car’s instance v ariables are initialized too via an explicit call?
o wantto call Car’s constructor without making an instance of

acCar vianew

s 50177

super(): Invoking Superclass’s Constructor (1/4)

. Car’sinstance variables (like radio)
are initialized in Car’s constructor

. To make sure that radio is initialized
whenever we instantiate a
, we need to call
superclass Car’s constructor

« The syntax for doing this is “super()”

« Here super() is the parent’'s
constructor; before, in partial
overriding when we used

, “super” referred to
the parent itself (verb vs. noun
distinction)

public class extends Car {
private ConvertibleTop top;

public 01
super ();
this. top = new ConvertibleTop();
this. setRadi oPresets ();

}

public void setRadioPresets(){
this. getRadio().setFavorite(1, 95.5);
this. getRadio().setFavorite(2, 92.3);

w wwn 60/77

20

super(): Invoking Superclass’s Constructor (2/4)

We call super() from the public class extends Car {

's constructor to make
sure the superclass’s instance
variables are initialized properly
. even though we aren't

instantiating an instance of the
superclass, we needto
construct the superclass to
initialize its instance variables
Can only make this call once,
and it must be the very first line
in the ’s constructor }

private ConvertibleTop top;

public 01
super ();
this. top = new ConvertibleTop();
this. setRadioPresets ();

public void setRadioPresets(){
this. getRadio().setFavorite(1, 95.5);
this. getRadio().setFavorite(2, 92.3);

9/28/2023

Note: Our call to super() creates one copy of the instance variables, located deep inside the
subclass, but accessible to subclass onlyif class provides setters/getters (see diagram in dice
55) 6177

super(): Invoking Superclass’s Constructor (3/4)

What if the superclass’s
constructortakesin a parameter?

We'v e modified Car’s constructor
totake in a Racer as a parameter

How do we inv oke this
constructorcorrectly fromthe
subclass?

public class Car {
private Racer driver;
public Car(Racer myDriver) {
this.driver = myDriver;

)
public Racer getRacer() {
return this.driver;

62/77

In this case, need the

’s constructor to also
take ina Racer
This way, can pass on
the instance of Racer itreceives to
Car’s constructor, super()
The Racer is passed as an
argument to super() — now Racer’s
constructor will initialize Car’s
driver to the instance of Racer that
was passed to the

super(): Invoking Superclass’s Constructor (4/4)

public class extends Car {
private ComvertibleTop top;
public (Racer myRacen {
super(myRacer);
this.top = new ConvertibleTop();
}

public void dragRace(){
this.getRacer().mve();

63/77

21

What if we don’t call super()?

. If you don’t explicitly call super() first
thing in your constructor, Java
compiler automatically calls it for you,
passing in no arguments

. But if superclass’s constructor
requires an argument, you'll get an
error!

« Inthis case, we get a compiler error

public class

extends Car {

9/28/2023

private ComvertibleTep top;

public (Racer myRacer) {
oops, forgot to call super(..)
this.tep = new ConvertibleTop();

}

public void dragRace(){

. . this.getR: . H
saying that there is no constructor y hiseetacerQ move0

“public Car()”, since itwas ¥
declared with a parameter

64/77
Constructor Parameters
. Does need tohavethe same number of
parametersas Car?
. Nope!
- aslongas Car’s parameters are among the passed parameters,
's constructor can take in anything else it needs for its job
. Let’s modify all the subclasses of Car to take in a number of
Passengers
65/77

Constructor Parameters

public class extends Car {
private Passenger pi;
public Corvertible(Racer myRacer, Passenger pl) {
. R H
o Notice how we only i:?i?ﬂl“;i?
need to pass driver ¥

to supery())

ublic class extends Car {

P
e Wecan add additional private Passenger pl, p2, p3, p4;
. public CSiSMobile(Racer myDriver, Passenger pl,
parameters inthe ger p2,
constructor that only super(nydriver);
the subclasses will use .

ger p3, ger p4) {

this.pa

66/77

22

9/28/2023

Outline

» Abstractmethods andclasses

b o 3 67/77

abstract Methods and Classes (1/6)

e What if wewanted to seat all
of the passengers in the car?

e (S15Mobile, Convertible,
and Van all have different
numbers of seats
o they will all have different

implementaions ofthe
same method

was o o warn 68/77

abstract Methods and Classes (2/6)

. Wedeclare amethodabstractinasuperclass when the

subclasses can’treally re-use any implementation the superclass
might provide— no code+euse

. Inthis case, we knowthatall Cars should loadPassengers, but
each subclass will LoadPassengers very differently

. abstract method isdeclaredin superclass, but not defined — it is

up to subclasses farther down hierarchy to provide their own
implementations

. Thus superclass specifies a contractual obligation to its subclasses
—just like an interface does toits implementors

— 69/77

23

abstract Methods and Classes (3/6)

« Here, we've modified Car to make it
an abstract class: a class with at

public abstract class car {
least one abstract method
private Racer driver;

. Wedeclare both Car and its
public Car(Racer myDriver) {

loadPassengers method abstract: this.driver = mybriver;
ifone of a class’s methods is ¥
abstract, the class itself must also public abstract void loadPassengers();

be declared abstract

« Anabstract method is only
declared by the superclass, not
defined — thus use semicolon after
declaration instead of curly braces

9/28/2023

i o v 7077
abstract Methods and Classes (4/6)
« How do you load Passengers?
- every Passenger must be tddto sit in aspecific Seat ina physical Car
SeatGenerator has methods thatretuns a Seat in aspecific logical posiion
public class Passenger { public class SeatGenerator {
. public SeatGenerator () { }
puehie ST | e se et)
P public Seat getBackLeft() { }
i public Seat getBackCenter() { }
public Seat getBackRight() { }
public Seat getMiddleleft() { }
public Seat getMiddleRight() {
}
o e 0 777

abstract Methods and Classes (5/6)

public class extends Car{ public class extends Car{
@verride @verride
public void loadPassengers(){ public void loadPassergers(){
SeatGererator seatGen = new SeatGenerator seatGen = new
SeatGenerator(); SeatGenerator();
this.passengerl.sit(this.passengerl.sit(seatGen.getShotgun());
seatGen.getShotgun()); this.passenger2.sit(seatGen.getBackLeft());
} this.passenger3.sit(seatGen.getBackCenter());
} }
}
public class extends Car{
@override « All concrete of Car
public void loadpassengers(){ overnide by providing a concrete

SeatGenerator seatGen = new SeatGenerator(); N . 0
this.passengerl.sit(seatGen.getMiddleLeFtE;); implementation for Car’s abstract
this.passenger2.sit(seatGen.getMiddleRight()); loadPassengers() method
this.passenger3.sit(seatGen.getBackLeft());
« As usual, method signature and

} retum type must match the one
} that Car declared

277

24

abstract Methods and Classes (6/6)

. abstract classes cannot be instantiated!

o this makes sense —shouldn'tbe able i just instantiate a gereric Car, sinceithas no
code to loadPassengers()

- instead, provide implementation of loadPassengers() inconcrete ,and
instantiate
. at any level in inheritance hierarchy can make an abstract method

concrete by providing implementation
- it's common b have multiple consecutive levels of abstract classes before reaching a
concrete class
« Eventhough an abstract class can’t be instantiated, its constructor must still be
invoked via super() by a
- becauseonly the superclass knows about (and therefore only it caninitialize) its own
instance variables

i o 53 73177

9/28/2023

So.. What’s the difference?

« You might be wondering: what's the difference between abstract classes
and interfaces?
. abstract classes:
. can define instance variables
can define a mix of concrete and abstract methods
- you can only inherit fom one class
« Interfaces:
- cannot define any instance variables/concrete methods
- has only undefined methods (noinstance variables)
o you can implement muttiple interfaces

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are
even closer in that you can have concrete methods in interfaces. We will not make useof this in CS15.

 cmm wws 477

Summary

. Inheritance models very similar classes
factor out all similar capabilities into a generic superclass
° SUPETC\E\SSES can:
declare and define methods
declare abstract methods
can:
inherit methods from a superclass
define their own specialized methods
- completely/partially override an inherited method
. Polymorphism allows programmers to reference instances of a subclass as
their superclass
. Inheritance, Interfaces, and Polymorphism take generic programming to the
max —more in later lecture

o om o wmm 777

25

Quick Comparison:Inheritance and Interfaces

Inheritance Interface

« Each can only inherit from one e Classes can implement as
superclass many interfaces as you want

« Useful when classes have more e Useful forwhen classes have
similarities than differences and can more differences than
share code similarities

. “is-a” relationship: classes that extend e “acts-as” relationship: classes
another class implementing an interface
. Qe A is-acar define its methods

Can only use methods declared

« Can define more methods to specialize h N
in the interface

ie putting its top down

76177

9/28/2023

Announcements

. Tic Tac Toe deadlines
o Early handin: today 9/28 (+2 bonus points)
On-time handin: Saturday 9/30
Late handin: Monday 10/2 (-8 for late handin, but 4 late days to use throughout
semester)

. SRC Extra Credit Discussion (1 extra point on final grade)!
- See Ed or website for details
- Sunday 10/22at 2pm,3pm and 4pm

« HTAHours: Fridays 3 - 4pm in CIT210, or email us!
. ~special surprise ~ at Tuesday s lecture

was o o warn e

Topics in Socially
Responsible Computing

CS15 Fall 2023

ARTIFICIAL INTELLIGENCE

26

i L N e —
< AS ACTORS STRIKE FOR Al PROTECTIONS,

Al won an art contest, and artists are NETFLIX LISTS $900.800 Al JOB
Turigas

BuzzFeed Is Quietly Publishing Whole
Al-Generated Articles, Not Just
Quizzes
‘Thesa read like 0 proof of c

or reglacing human witers

IEM

M 1o pause hiring i pian {0 replace 7800 jobs with AL
Blcameory raparta

Source:CNN, Reuters, Thelntercept The Verge

9/28/2023

Automationasa force for good

D-

Take over jobs ‘ Take over mind- work

with dangerous mprove Take over night numbing, collaboratively
working Workzrs (hela'm shifts repetitive jobs with human
conditions and satety workers

The flip side of automation...

Y

Uncertainty asto Can reduce

whether it creates worker welfare

as many jobs asit if not deployed
removes well

27

2018 PwC Report on Automation Replacing Workers

9% of existing jobs at porentrial risk of auromarion
Wave 1 - 8 1
to early 2020s) g
¢ = =1 O Women

9/28/2023

(to late 2020s) P m———

s ———

(co mid-2030s)
Automating Automating non-| |Automating
physical labor physical, routine | |creative work
* Factory labor * Branding

automation * Bookkeepers * Logo design
* Self-driving * Accountants * Voice acting

trucks! * Radiologists e ..even art!
(est. 3.5 million * Lawyers
drivers - US (est. 62 million * Even
Census) jobs - Fed) programming!

(blue collar work) (white collar work) (creator economy)

How Al is predicted to enter the workforce

How canwe ensure that automation has
good impactson the labor force?

Support for workers —education & reskilling
)]
Cie] -
ha
(i) -

Hard Skills Soft Skills

Estimated to cost $24,800 per person in the United States!
(World Bank, Boston Consulting Group, 2019)

28

Reskilling Initiatives

Company Specific Programs:

Ex. Amazon Career Choice
Program

According to BGG ~24% of large
companiés linkreskilling effors ©
their corporate strategy

Govemment Efforts

+ 2019 Trump Executive Order
addressed Al’s effect on
workforce

Biden has indicated plans to
release a similar executive order
oon

Biden tells coal miners

9/28/2023

Ethical limits of Al

Explored this
weekinlab!

Source: MIT Technology Review

Teen

Shoukd a ssif-criving car il the haby or the grandma T
Depands on whars pou e rem

e limit...

... will anyone need
to work?

“Yet there is no country and no
people, | think, who can look
forward to the age of leisure and
of abundance without a dread.
For we have been trained too
long to strive and not to enjoy.”

John Maynard Keynes, Economic
Possibilities for our Grandchildren (1930)

29

	Slide 1: Lecture 7
	Slide 2: Outline
	Slide 3: Recall: Interfaces and Polymorphism
	Slide 4: Similarities? Differences?
	Slide 5: Convertibles vs. Sedans
	Slide 6: Digging deeper into the similarities
	Slide 7: Can we model this in code?
	Slide 8: Interfaces
	Slide 9: Outline
	Slide 10: Inheritance
	Slide 11: Modeling Inheritance (1/3)
	Slide 12: Modeling Inheritance (2/3)
	Slide 13: Modeling Inheritance (3/3)
	Slide 14: Motivations for Inheritance
	Slide 15: Benefits of Inheritance
	Slide 16: Outline
	Slide 17: Superclasses vs. Subclasses
	Slide 18: Modeling Inheritance Example (1/3)
	Slide 19: Modeling Inheritance Reminders
	Slide 20: TopHat Question 1
	Slide 21: Modeling Inheritance Example (2/3)
	Slide 22
	Slide 23: Adding new methods (1/3)
	Slide 24: Adding new methods (2/3)
	Slide 25: Adding new methods (3/3)
	Slide 26: Overriding methods (1/4)
	Slide 27: Overriding methods (2/4)
	Slide 28: Overriding methods (3/4)
	Slide 29: Overriding methods (4/4)
	Slide 30: Partially overriding methods (1/6)
	Slide 31: Partially overriding methods (2/6)
	Slide 32: Partially overriding methods (3/6)
	Slide 33: Partially overriding methods (4/6)
	Slide 34: Partially overriding methods (5/6)
	Slide 35: Partially overriding methods (6/6)
	Slide 36: Method Resolution (1/3)
	Slide 37: Method Resolution (2/3)
	Slide 38: Method Resolution (3/3)
	Slide 39: Outline
	Slide 40: Inheritance Example
	Slide 41: Inheritance Example
	Slide 42: Inheritance and Polymorphism (1/3)
	Slide 43: Inheritance and Polymorphism (2/3)
	Slide 44: Inheritance and Polymorphism (3/3)
	Slide 45: Is this legal?
	Slide 46: Inheritance and Polymorphism (1/2)
	Slide 47: Inheritance and Polymorphism (2/2)
	Slide 48: Polymorphism Review
	Slide 49: TopHat Question 2
	Slide 50: Outline
	Slide 51: Accessing Superclass Instance Variables (1/3)
	Slide 52: Accessing Superclass Instance Variables (2/3)
	Slide 53: Accessing Superclass Instance Variables (3/3)
	Slide 54: Defining Accessors and Mutators in Superclass
	Slide 55: Review of Inheritance and Indirect (“pseudo”) Inheritance of Instance Variables
	Slide 56: Calling Accessors/Mutators From Subclass
	Slide 57: Let’s step through some code
	Slide 58: Code Step Through
	Slide 59: Making Sure Superclass’s Instance Variables are Initialized
	Slide 60: super(): Invoking Superclass’s Constructor (1/4)
	Slide 61: super(): Invoking Superclass’s Constructor (2/4)
	Slide 62: super(): Invoking Superclass’s Constructor (3/4)
	Slide 63: super(): Invoking Superclass’s Constructor (4/4)
	Slide 64: What if we don’t call super()?
	Slide 65: Constructor Parameters
	Slide 66: Constructor Parameters
	Slide 67: Outline
	Slide 68: abstract Methods and Classes (1/6)
	Slide 69: abstract Methods and Classes (2/6)
	Slide 70: abstract Methods and Classes (3/6)
	Slide 71: abstract Methods and Classes (4/6)
	Slide 72: abstract Methods and Classes (5/6)
	Slide 73: abstract Methods and Classes (6/6)
	Slide 74: So.. What’s the difference?
	Slide 75: Summary
	Slide 76: Quick Comparison: Inheritance and Interfaces
	Slide 77: Announcements
	Slide 78
	Slide 79
	Slide 80: Automation as a force for good
	Slide 81: The flip side of automation…
	Slide 82
	Slide 83: How AI is predicted to enter the workforce
	Slide 84: How can we ensure that automation has good impacts on the labor force?
	Slide 85: Reskilling Initiatives
	Slide 86: Ethical limits of AI
	Slide 87

