
10/3/23

1

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 1/73

Lecture 8
Math and Making Decisions

1

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 2/73

● Inheritance models very similar classes
o factor out all similar capabilities into a generic superclass

o superclasses can
▪ declare and define methods
▪ declare abstract methods

o subclasses can
▪ inherit methods from a superclass
▪ define their own specialized methods

▪ completely/partially override an inherited method
● Polymorphism allows programmers to reference instances of a subclass as

their superclass
● Inheritance, Interfaces, and Polymorphism take generic programming to the max

– more in later lecture

Review: Inheritance and Polymorphism Summary

2

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 3/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change
• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

3

10/3/23

2

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 4/77

● What if we wanted to seat all
of the passengers in the car?

● CS15Mobile, Convertible,
and Van all have different
numbers of seats

abstract Methods and Classes (1/6)

o they will all have different
implementations of the
same method

4

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 5/77

● We declare a method abstract in a superclass when the
subclasses can’t really re-use any implementation the
superclass might provide – no code-reuse

● In this case, we know that all Cars should
loadPassengers, but each subclass will loadPassengers
very differently

● abstract method is declared in superclass, but not
defined – it is up to subclasses farther down hierarchy to
provide their own implementations

● Thus superclass specifies a contractual obligation to its
subclasses – just like an interface does to its
implementors

abstract Methods and Classes (2/6)

5

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 6/77

● Here, we’ve modified Car to make it
an abstract class: a class with at
least one abstract method

● We declare both Car and its
loadPassengers method abstract:
if one of a class’s methods is
abstract, the class itself must also
be declared abstract

● An abstract method is only
declared by the superclass, not
defined – thus use semicolon after
declaration instead of curly braces

abstract Methods and Classes (3/6)

public class Car {

private Racer driver;

public Car(Racer myDriver) {
this.driver = myDriver;

}

public abstract void loadPassengers();

}

abstract

6

10/3/23

3

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 7/77

● How do you load Passengers?
o every Passenger must be told to sit in a specific Seat in a physical Car

o SeatGenerator has methods that returns a Seat in a specific logical position

abstract Methods and Classes (4/6)

public class Passenger {

public Passenger() { //code elided }
public void sit(Seat st) { //code elided }

}

public class SeatGenerator {

public SeatGenerator () {//code elided }
public Seat getShotgun() {//code elided }
public Seat getBackLeft() {//code elided }
public Seat getBackCenter() {//code elided }
public Seat getBackRight() {//code elided }
public Seat getMiddleLeft() {//code elided }
public Seat getMiddleRight() {//code elided }

}

7

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 8/77

● All concrete subclasses of Car
override by providing a concrete
implementation for Car’s abstract
loadPassengers() method

● As usual, method signature and
return type must match the one
that Car declared

abstract Methods and Classes (5/6)
public class Convertible extends Car{

@Override
public void loadPassengers(){

SeatGenerator seatGen = new
SeatGenerator();

this.passenger1.sit(
seatGen.getShotgun());

}
}

public class CS15Mobile extends Car{
@Override
public void loadPassengers(){

SeatGenerator seatGen = new
SeatGenerator();

this.passenger1.sit(seatGen.getShotgun());
this.passenger2.sit(seatGen.getBackLeft());
this.passenger3.sit(seatGen.getBackCenter());

}
}

public class Van extends Car{
@Override
public void loadPassengers(){

SeatGenerator seatGen = new SeatGenerator();
this.passenger1.sit(seatGen.getMiddleLeft());
this.passenger2.sit(seatGen.getMiddleRight());
this.passenger3.sit(seatGen.getBackLeft());
//more code elided

}
}

8

A n d r ie s v a n D a m © 2 0 2 3 9 /2 8 /2 3 9/77

● abstract classes cannot be instantiated!

o this makes sense – shouldn’t be able to just instantiate a generic Car, since it has no
code to loadPassengers()

o instead, provide implementation of loadPassengers() in concrete subclass, and
instantiate subclass

● Subclass at any level in inheritance hierarchy can make an abstract method
concrete by providing implementation
o it’s common to have multiple consecutive levels of abstract classes before reaching a

concrete class
● Even though an abstract class can’t be instantiated, its constructor must still be

invoked via super() by a subclass
o because only the superclass knows about (and therefore only it can initialize) its own

instance variables

abstract Methods and Classes (6/6)

9

10/3/23

4

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 10/73

• Abstract classes have 1 or more abstract methods

• An abstract method simply specifies a contractual application for a child class (at any
level below parent) to provide a concrete implementation

• A class can NOT be instantiated if it is abstract

• An interface is simply an abstract class with NO code to inherit

Abstract Methods & Classes

Car

Van CS15Mobile Convertible

Abstract

Concrete

10

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 11/73

● You might be wondering: what’s the difference between abstract classes
and interfaces?

● abstract classes:
o can define instance variables
o can define a mix of concrete and abstract methods
o you can only inherit from one class

● Interfaces:
o cannot define any instance variables/concrete methods
o has only undefined methods (no instance variables)
o you can implement multiple interfaces

So.. What’s the difference?

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are
even closer in that you can have concrete methods in interfaces. W e will not make use of this in CS15.

11

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 12/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change
• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

12

10/3/23

5

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 13/73

Review: Basic Arithmetic Operators

Operator Meaning

+ addition

- subtraction

* multiplication

/ division

% remainder

13

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 14/73

Basic Arithmetic Operators: Shorthand

Operator Meaning Example Equivalent Operation

+= add and reassign a += 5; a = a + 5;

-= subtract and reassign a -= 5; a = a - 5;

*= multiply and reassign a *= 5; a = a * 5;

/= divide and reassign a /= 5; a = a / 5;

%= take remainder and reassign a %= 5; a = a % 5;

14

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 15/73

Unary Operators

Operator Meaning Example

- negate b = -b; // negates b

++ increment b++; // equivalent to: b = b + 1;

-- decrement b--; // equivalent to: b = b - 1;

15

10/3/23

6

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 16/73

Increment and Decrement Operators

• ++ and -- can be applied
before (prefix) or after (postfix)
the operand

o i++ and ++i will both
increment variable i

o i++ assigns, then increments

o ++i increments, then assigns

Postfix example:
int i = 10;

int j = i++; // j becomes 10, i becomes 11

Prefix example:
int i = 10;

int j = ++i; // i becomes 11, j becomes 11

16

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 17/73

• Extremely useful “utility” class, part of core Java libraries

• Provides methods for basic numeric operations

o absolute value: abs(double a)

o exponential: pow(double a, double b)

o natural and base 10 logarithm: log(double a), log10(double a)

o square root: sqrt(double a)

o trigonometric functions: cos(double a), sin(double a)…

o random number generation: random() returns random number from
0.0(inclusive) to 1.0(exclusive)

o for more check out:
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

java.lang.Math

17

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 18/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change
• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

18

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

10/3/23

7

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 19/73

• All of java.lang.Math’s methods are declared static
• Example: the method that returns the absolute value of

an integer is declared below
o public static int abs(int a) {...}

• A static method belongs to a class, rather than an
instance of the class
o it cannot access instance variables, whose values may differ

from instance to instance
▪ but can have local variables, e.g., temps

static Methods

19

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 20/73

• static methods are invoked on the class, not on an
instance:

int absoluteValue = Math.abs(-7);

• That means we can use all of Math’s static methods
without ever instantiating it

Note: You won’t need to write any static methods of your
own in CS15, but you’ll be using Math’s static methods in
future assignments

Calling a static Method

20

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 21/73

tributeCounter is an instance of
the HungerGames class. Which is the correct
way to call this static method of the HungerGames class:

TopHat Question

public static int numAlive(){…}?
A. int tributesRemaining = Instance.numAlive();

B. int tributesRemaining = HungerGames.numAlive(static);

C. int tributesRemaining = HungerGamesInstance.numAlive(static);

D. int tributesRemaining = HungerGames.numAlive();

E. int tributesRemaining = tributeCounter.numAlive();

Join Code: 504547

21

10/3/23

8

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 22/73

• Progression in scope:
o local variables are known in a single method

o instance variables are known to all methods of a class

o static instance variables are known to all instances of a class

• Each instance of a class has the same instance variables but
typically with different values for those properties

• If instead you want all instances of a class to share the same value
for a variable, declare it static – this is not very common (and
probably not used in CS15)

• Each time any instance changes the value of a static variable, all
instances have access to that new value

static Variables

22

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 23/73

static Variables: Simple Example
• tributes starts out with a value of 0

• Each time a new instance of Tribute is
created, tributes is incremented by 1

• Get current value at any point by calling:
Tribute.getNumTributes();

o each instance of Tribute will have
and know the same value of
tributes

• static methods can use static and
local variables – but not instance
variables

public class Tribute {

private static int tributes = 0;

public Tribute () {
this.tributes++;

}

public static int getNumTributes () {
return this.tributes;

}

}

23

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 24/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change
• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

24

10/3/23

9

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 25/73

• Constants are used to represent values which never
change (e.g. Pi, speed of light, etc.) – very common!

• Keywords used when defining a constant:
o public: value should be available for use by anyone (unlike

private instance variables and local variables)

o static: all instances of the class share one value

o final: value cannot be reassigned

o naming convention for constants is all caps with
underscores between words: LIGHT_SPEED

Constants

25

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 26/73

Constants: Example (1/2)

public abstract class Physics {

// speed of light (Units: hundred million m/s)
public static final double LIGHT_SPEED = 2.998;

// constructor elided

public static double getDistanceTraveled(double numSeconds) {
return (LIGHT_SPEED * numSeconds);

}
}

• Useful to bundle a bunch of constants for your application in a “utility” class
(like Math), with useful methods using those constants; both constants and
methods will be then declared static

26

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 27/73

• Always use constants when possible

o literal numbers, except for 0 and 1,
should rarely appear in your code

o makes code readable, easier to alter

• Also called symbolic constants –
should have descriptive names

• If many classes use same
constants, make separate utility
class, like Physics

• A constants utility class should
never be instantiated, so it should
be declared abstract

public class Physics {

//speed of light (Units: hundred million m/s)
public static final double LIGHT_SPEED = 2.998;

// we can add more constants if we want
}

We can access this constant from a method in
another class in our program like this:

Physics.LIGHT_SPEED
(another use of dot notation!)

Example:
spaceShip.setSpeed(Physics.LIGHT_SPEED)

abstract

Constants: Example (2/2)

27

10/3/23

10

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 28/73

Which of the following constants is defined correctly?

A. public static final int TRIBUTE_AGE;

B. public static final int TRIBUTE_AGE = 17;

C. public static int final TRIBUTE_AGE = 17;

D. private static final int TRIBUTE_AGE = 17;

TopHat Question Join Code: 504547

28

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 29/73

Bread Makers (1/6)
• Peeta has entered a competition to

see who can sell the most loaves of
bread!
o (don’t take this example too literally)

• Depending on the amount of dough
and time to bake it, he will be able to
make a certain amount of loaves

• Our Head TAs calculated that his
number of loaves made is the amount
dough times his baking time

• Loaves sold equals one half of the
square root of his baked loaves

29

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 30/73

Bread Makers (2/6)
• BreadMakerConstants class keeps track of

important constants in our calculation

public abstract class BreadMakerConstants {

// Already sold 10 loaves
public static final double START_LOAVES = 10;

// Number of loaves sold to win the competition
public static final double MAX_LOAVES= 200;

}

30

10/3/23

11

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 31/73

Bread Makers (3/6)
• Peeta keeps track of

instance variable
loavesSold

• loavesSold initialized in
constructor to
START_LOAVES defined in
BreadMakerConstants

import java.lang.Math;

public class Peeta {

private double loavesSold;

public Peeta() {
this.loavesSold = BreadMakerConstants.START_LOAVES;

}
}

31

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 32/73

Bread Makers (4/6)

• Peeta’s bake method
changes his number of
loaves sold depending
on the amount of dough
he has and the time he
has to bake

import java.lang.Math;

public class Peeta {

private double loavesSold;

public Peeta() {

this.loavesSold = BreadMakerConstants.START_LOAVES;

}

public void bake(double dough, double bakeTime) {
// code elided

}
}

32

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 33/73

Bread Makers (5/6)
• First, loavesMade is

computed

• Second, anotherLoafSold
is calculated according to the
formula

• Math.sqrt is a static method
from java.lang.Math that
computes the square root of a
value

• Increment the total loaves
sold

import java.lang.Math;
public class Peeta {

private double loavesSold;

public Peeta() {

this.loavesSold = BreadMakerConstants.START_LOAVES;

}

public void bake(double dough, double bakeTime) {

double loavesMade = dough * bakeTime;
double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
this.loavesSold += anotherLoafSold;

}
}

33

10/3/23

12

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 34/73

Bread Makers (6/6)
• Now fill in sellBread()

• Peeta will only bake & sell
bread until he wins the
competition

• How can we check if condition
is met?

• Introducing… boolean's and
if’s!
o seen booleans in Pong

assignment but let’s
formally introduce them

import java.lang.Math;

public class Peeta {

private double loavesSold;

public Peeta() {

this.loavesSold = BreadMakerConstants.START_LOAVES;

}

public void bake(double dough, double bakeTime) {

double loavesMade = dough * bakeTime;
double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
this.loavesSold += anotherLoafSold;

}

public void sellBread() {
// decision-making logic that calls bake()!

}
}

34

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 35/73

• Abstract Methods and Classes

• Arithmetic operations – java.lang.Math

• Static methods and static variables

• Constants – values that never change
• Decision making: boolean algebra, if-else statements

and the switch statement

Outline

35

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 36/73

• British logician George Boole (1815-1864) wanted to improve on
Aristotelian (formal) logic, e.g., modus ponens, rule of inference:

o “All men are mortal, Socrates is a man, therefore…”

• boolean (named after Boole) is simplest Java base type
o You’ve seen this in Pong!

• A boolean variable can have value true or false

• Example initialization:

boolean foo = true;

boolean bar = false;

booleans

The terms foo, bar, etc. are often
used as placeholder names
in computer programming or
computer-related documentation:
derived from FUBAR, WWII slang

36

10/3/23

13

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 37/73

Relational Operators
• Can compare numerical expressions

with relational operators
• Full expression evaluates to a

boolean: either true or false

• Examples:
boolean b1 = (3 > 2);
boolean b2 = (5 <= 5);
int x = 8;
boolean b3 = (x == 6);

• b1 and b2 are true, b3 is false

Operator Meaning

== is equal to

!= is not equal to

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

37

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 38/73

Comparing References
• Can use == and != to see if two

references point to the same
instance, or not

• What three values are printed to
the console in this example?
o Assume these three examples are

run in order

1. false: d1 and d2 are not equal
2. true: d1 and d2 refer to the

same instance
3. true: d1 != d2 is false, so foo is

true (since foo = !(false))

public class DogPark {

//constructor elided

public void compareReferences() {
//Dog class defined elsewhere in code
Dog d1 = new Dog();
Dog d2 = new Dog();

boolean foo = (d1 == d2);
System.out.println(foo);

d2 = d1;
foo = (d1 == d2);
System.out.println(foo);

foo = !(d1 != d2);
System.out.println(foo);

}
}

1

2

3

38

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 39/73

Which of the following will print false?
TopHat Question

public class TestClass {

//constructor elided

public void compareReferences() {
Student s1 = new Student();
Student s2 = new Student();

boolean sameStudent = (s1 == s2);
System.out.println(sameStudent);

s2 = s1;
sameStudent = (s1 == s2);
System.out.println(sameStudent);

boolean student1Exists = (s1 != null);
System.out.println(student1Exists);

}
}

A.

B.

C.

Join Code: 504547

39

10/3/23

14

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 40/73

• if statements allow us to make decisions based on value of a
boolean expression

• Syntax:
if (<boolean expression>) {

// code to be executed if expression is true
}

• If boolean expression is true, code in body of if statement is
executed. If false, code in body skipped

• Either way, Java compiler continues on with rest of method

if Statements

40

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 41/73

if Statement: Flow Chart

Previous
Statements

Is
condition

true?
No Execute rest of

method

Yes
Execute if

clause

41

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 42/73

if Statements: Examples
int x = 6;

if (x == 5) {
// code to execute if x is 5

}
Not executed

Executed

if (myBoolean) {

// code to execute if myBoolean is true
}

int y = 9;

//more code elided – y is not reassigned
if (y > 7) {

// code to execute if y is greater than 7
}

42

10/3/23

15

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 43/73

• Logical operators && (“and”) and || (“or”) can be used to
combine two boolean expressions
o <expression a> && <expression b> evaluates to true only if

both expressions are true
o <expression a> || <expression b> evaluates to true if at

least one expression is true

• Logical operator ! (“not”) negates a boolean expression

• Logical operator ^ (“exclusive or”) returns true if either a or b
is true but not both

Logical Operators: And, Or, Not (1/2)

43

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 44/73

Logical Operators: And, Or, Not (2/2)

A B A && B A || B A^B !A

false false false false false true

false true false true true true

true false false true true false

true true true true false false

• To represent the values a logical operator may take, a
truth table is used

44

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 45/73

Which if clause statement will run if the game has started
and the tools have been gathered? (The variables below
are of type boolean)

A. if(!gameStarted && !toolsGathered){…}

B. if(!gameStarted && toolsGathered){…}

C. if(gameStarted && !toolsGathered){…}

D. if(gameStarted && tools Gathered){…}

TopHat Question Join Code: 504547

45

10/3/23

16

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 46/73

if Statements: More Examples
• Should always take one of two forms:

o if (<boolean expression>)

o if (!<boolean expression>)

• Never do this (inefficient):

o if (<boolean expression> == true)

o if (<boolean expression> == false)

• Be careful! It’s easy to mistakenly use =
(assignment operator) instead of ==
(comparator)

int x = 6;

if (x == 5) {
// code to execute if x
// is 5

}

if (!myBoolean) {
// code to execute if
// myBoolean is false

}

if (myBoolean == false) {
// code to execute if
// myBoolean is false
// code is inefficient

}

inefficient

46

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 47/73

• If we want to do two different things depending
on whether the boolean expression is true or
false, we can use an else clause

• Syntax:
if (<boolean expression>) {

// code executed if expression is true
} else {

// code executed if expression is false
}

if-else (1/2)

47

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 48/73

if-else: Flow Chart

Previous
Statements

Is
condition

true?

Yes

Execute rest of
method

No
Execute

else clause

Execute if
clause

48

10/3/23

17

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 49/73

if-else (2/2)
• Can use if-else to fill in

the sellBread method

• If Peeta’s loaves sold are
less than amount needed
when method is called, he
makes bread

• Otherwise, he stops and
wins the competition!

• Does this code limit the
final number of loaves sold
to MAX_LOAVES?

import java.lang.Math;

public class Peeta {

private double loavesSold;

// constructor elided

public void bake(double dough, double bakeTime) {
double loavesMade = dough * bakeTime;
double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
this.loavesSold += anotherLoafSold;

}
public void sellBread() {

if (this.loavesSold < BreadMakerConstants.MAX_LOAVES) {
//bake 120 units of dough for 5 hours!
this.bake(120.0, 5.0);

} else {
// this method defined elsewhere in the code
this.winCompetition();

}
}

}

49

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 50/73

Complex if-else Statements
• If <boolean expression 1> is

true, block 1 is executed and
blocks 2 and 3 are skipped

• If <boolean expression 1> is
false and <boolean expression
2> is true, block 2 is executed
and blocks 1 and 3 are skipped

• If both expressions are false,
block 3 is executed and blocks 1
and 2 are skipped

if (<boolean expression 1>) {
// block 1

} else if (<boolean expression 2>) {
// block 2

} else {
// block 3

}

50

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 51/73

Nested if Statements
// variables and methods defined elsewhere

if (cs15Student.hasBug()) {

if (cs15Student.hasInitiative()) {
cs15Student.debug();

} else {
cs15Student.giveUp();

}
}

51

10/3/23

18

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 52/73

Which print statement will be printed out?

TopHat Question
int x = 10;
if (x < 10) {

if ((x+10) > 15) {
System.out.println(“case A”);

} else {
System.out.println(“case B”);

}
} else if (x <= 15) {

if ((x+2) > 13) {
System.out.println(“case C”);

} else {
System.out.println(“case D”);

}
} else {

System.out.println(“case E”);
}

A →
B →

C →
D →

E →

Join Code: 504547

52

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 53/73

Short-Circuiting (1/2)

• What is the value of n
after the code to the
right has executed?

• n is still 1

• Why?

int n = 1;
if ((n < 0) && (n++ == 2)) {

// code to be executed if
// expression is true

}

System.out.println(n);

53

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 54/73

Short-Circuiting (2/2)
• Beware of short-circuiting!

• If Java already knows what the full
expression will evaluate to after
evaluating left argument, no need to
evaluate right argument

o &&: if left argument of conditional
evaluates to false, right argument
not evaluated

o ||: if left argument evaluates to
true, right argument not evaluated

int n = 1;

if ((n == 1) || (n == 2)) {
// code to be executed if
// expression is true

}

int n = 1;

if ((n < 0) && (n++ == 2)) {
// code to be executed if
// expression is true

}

54

10/3/23

19

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 55/73

“Side-effect”ing
• Updating a variable inside a

conditional is not good coding
style; it makes code confusing
and hard to read

• Keep in mind short-circuiting if
you ever call a method that
might have a “side effect” inside
a conditional – here the first if
will leave n incremented, second
not

int n = 1;

if ((n++ == 2) && false) {
// code to be executed if
// expression is true

}
System.out.println(n);

//system output: 2

int n = 1;

if (false && (n++ == 2)) {
// code to be executed if
// expression is true

}
System.out.println(n);
//system output: 1

55

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 56/73

• To do something different for every possible value of an
integer variable, have two options:
o use a lot of else-ifs:

o better solution: use a switch statement!

switch Statements (1/2)

if (myInteger == 0) {

// do something...
} else if (myInteger == 1) {

//do something else...
} else if (myInteger == 2) {

// do something else...
} else if (myInteger == 3) {

// etc…
}
...
else {

// last case
}

56

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 57/73

Syntax:
switch (<variable>) {

case <value>:
// do something
break;

case <other value>:
// do something else
break;

default:
// take default action
break;

}

switch Statements (2/2)
Rules:

• <variable> usually an integer – char
and enum (discussed later) also possible

• values have to be mutually exclusive

• If default is not specified, Java compiler
will not do anything for unspecified values

• break indicates the end of a case – skips
to end of switch statement (if you forget
break, the code in next case will execute)

57

10/3/23

20

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 58/73

// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

}
}

• Let’s make a ScarfCreator class that
produces different colored scarves for
our players using a switch statement

• The scarf is chosen by weighted
distribution (more orange, red, brown,
and fewer blue, green, yellow)

• ScarfCreator generates random
values using Math

• Based on random value, creates and
returns a Scarf of a particular type

switch Example (1/6)

This is an example of the “factory” pattern in object-
oriented programming: it is a method that has more
complicated logic than a simple assignment
statement for each instance variable.

58

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 59/73

// imports elided – Math and Color
public class ScarfCreater{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);

}
}

• To generate a random value, we use
static method random from
java.lang.Math

• random returns a double between
0.0 (inclusive) and 1.0 (exclusive)

• This line returns a random int 0-9
by multiplying the value returned by
random by 10 and casting the result
to an int

• Casting is a way of changing the
type of an object to another specified
type. Casting from a double to int
truncates your double!

switch Example (2/6)

59

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 60/73

• We initialize myScarf to null,
and switch on the random
value we’ve generated

switch Example (3/6)
// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

}
}

}

60

10/3/23

21

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 61/73

• Scarf takes in an instance of
javafx.scene.paint.Color as a
parameter of its constructor (needs to
know what color it is)

• Once you import
javafx.scene.paint.Color, you only
need to say, for example, Color.ORANGE
to name a color of type Color

• If random value turns out to be 0 or 1,
instantiate an orange Scarf and assign it
to myScarf

• break breaks us out of switch statement

// imports elided – Math and Color
public class ScarfCreator{

// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

}
}

}

switch Example (4/6)

61

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 62/73

public class ScarfCreator{
// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

case 2: case 3: case 4:
myScarf = new Scarf(Color.YELLOW);
break;

}
}

}

• If our random value is 2, 3, or 4, we
instantiate a yellow Scarf and
assign it to myScarf

• Color.YELLOW is another constant of
type Color – check out Javadocs for
javafx.scene.paint.Color!

switch Example (5/6)

62

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 63/73

public class ScarfCreator{
// constructor elided
public Scarf generateScarf() {

int randInt = (int) (Math.random() * 10);
Scarf myScarf = null;
switch (randInt) {

case 0: case 1:
myScarf = new Scarf(Color.ORANGE);
break;

case 2: case 3: case 4:
myScarf = new Scarf(Color.YELLOW);
break;

// cases 5, 6, and 7 elided.
// they are green, blue, red.
default:

myScarf = new Scarf(Color.BROWN);
break;

}
return myScarf;

}
}

switch Example (6/6)

• We skipped over the cases for
values of 5, 6, and 7; assume they
create green, blue, and red Scarfs,
respectively

• Our default case (if random value
is 8 or 9) creates a brown Scarf

• Last, we return myScarf, which was
initialized in this switch with a color
depending on the value of randInt

63

10/3/23

22

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 64/73

TopHat Question
Which of the following switch statements is correct?

o In the constructor for Weapon, the parameter is a string.

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
case 0: case 1: case 2: case 3:

weapon = new Weapon(“Axe”);

case 4: case 5: case 6: case 7:
weapon = new Weapon(“Poison”);

default:
weapon = new Weapon(“Knife”);
break;

}

int rand = (int) (Math.random() * 10);
Weapon weapon = null;

switch (rand) {
case 0: case 1: case 2: case 3:

weapon = new Weapon(“Axe”);
break;

case 4: case 5: case 6: case 7:
weapon = new Weapon(“Poison”);
break;

default:
weapon = new Weapon(“Knife”);
break;

}

B.
WeaponType type = type.random();
Weapon weapon = null;

switch (type) {
case Axe:

weapon = new Weapon(“Axe”);
break;

case Bali:
weapon = new Weapon(“Poison”);
break;

default:
weapon = new Weapon(“Knife”);
break;

}

C.A.

Join Code: 504547

64

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 65/73

That’s It!

Important Concepts:
• static methods and static variables

• Constants
• booleans

• Making decisions with if, if-else, switch

65

A n d r ie s v a n D a m © 2 0 2 3 1 0 /0 3 /2 3 66/73

• FruitNinja (handout and help slides) released today

o Early handin: 10/8 (+2 bonus points)

o On-time handin: 10/10
o Late handin: 10/12 (-8 for late handin, but 4 late days to use throughout semester)

● Debugging Hours start Thursday, October 5
o More information on the course website

● Polymorphism section this week

o email your section TAs mini-assignment on time

● SNC Deadline today at 5pm!! (Not CS15 enforced, University Policy)

Announcements

66

10/3/23

23

SRC: Ethics and Labor
Practices in Big Tech

CS15 Fall 2023

67

The Power of Big Tech
As of 2022…
• 50% of global online ad spending goes

through Meta or Alphabet
• Amazon takes in more than 40% of online

spending in the US
• In search, Google has more than a 60% share

in the US
• Microsoft is a top-three vendor to 84% of

businesses

Source: Harvard Business Review (2022)

68

How Big Tech Does Ethics:
Internal Guidelines

- Internal advisory teams that create guidelines for responsible use
of AI and other technologies
- Reports with established ethical principles for teams to follow

69

10/3/23

24

How Big Tech Does Ethics:
Google’s “AI Applications We Will Not Pursue”

70

Source: NYT (2023)

71

Abuse of Power in Big Tech

Source: Wired (2022), Justice Dept. (2023), The Verge (2023), CNN (2023), NPR (2023), NYT (2023)

72

10/3/23

25

Working Conditions

Sources: CBS (2022), Forbes (2021), Time (2022)

73

Proposition 22

Source: NYT (2023)

- Classifies Uber/Lyft drivers as
independent contractors, not as
employees
- Reduces benefits like insurance,
saving companies money
- Gig companies spent >$200 million
pushing for Proposition 22

74

Next lecture…

Source: NYT (2023)

75

10/3/23

26

Next lecture… antitrust laws!

Designed to increase consumer welfare

Involves breaking up firms that get “too big”, or
preventing mergers and acquisitions (M&A)

Highly debated subject

76

