Lecture 8

Math and Making Decisions

2z N
UL

473

10/3/23

Review: Inheritance and Polymorphism Summary

« Inheritance models very similar classes
o factor out all similar capabilities into a generic superclass
o superclasses can
declare and define methods
declare abstract methods

> s can
inherit methods from a superclass
define their own specialized methods
completely/partially override an inherited method

« Polymorphism allows programmers to reference instances of a subclass as
their superclass

. Interfaces, and take generic to the max
— more in later lecture

2073

3073

abstract Methods and Classes (1/6)
e

e What if we wanted to seat all
of the passengers in the car?

e (S15Mobile, Convertible,
and Van all have different
numbers of seats
o they wil all have different

implementations of the
same method

Pliad

10/3/23

abstract Methods and Classes (2/6)

« We declare a method abstract in a superclass when the
subclasses can't really re-use any implementation the
superclass might provide — no code-reuse

« In this case, we know that all Cars should
loadP_assenﬁer‘s, but each subclass will loadPassengers
very differently

« abstract method is declared in superclass, but not
defined — it is up to subclasses farther down hierarchy to
provide their own implementations

« Thus superclass specifies a contractual obligation to its
subclasses — just like an interface does to its
implementors

577

abstract Methods and Classes (3/6)

« Here, we've modified Car to make it
an abstract class: a class with at
least one abstract method

public abstract class Car {
private Racer driver;

« We declare both Car and its
loadPassengers method abstract:
if one of a class’s methods is

public Car(Racer mydriver) {
this.driver = myDriver;

abstract, the class itself must also public abstract void loadpassengers();

be declared abstract

e Anabstract method is only
declared by the superclass, not
defined — thus use semicolon after
declaration instead of curly braces

8177

abstract Methods and Classes (4/6)

« How do you load Passengers?
o every Passenger must be told to sit in a specific Seat in a physical Car
o SeatGenerator has methods that returns a Seat in a specific logical position

public class Passenger { public class SeatGenerator {

public SeatGenerator () {. }

public Seat getShotgun() {. }

public Seat getBackLeft() { }

’ public Seat getaackCenter() {)
public Seat getBackRight() { }
public Seat getMiddleLeft() {. }

public Passenger() { 3
public void sit(seat st) { ¥

public Seat getmiddleright() { H

777

10/3/23

abstract Methods and Classes (5/6)

public class Cor extends Car{ public class C515Hobile extends Car{
@verride @override
public void loadpassengers(){ public vold loadpassengers()
SeatGenerator seatGen = new SeatGenerator seatGen = new
SeatGenerator(); SeatGenerator();
this.passengerl.sit(this.passengerl.sit(seatGen.getShotgun());
seatGen.getshotgun()); this.passenger2.sit(seatGen.getBackLeft());
) this.passenger3.sit(seatGen. getBackCenter());
))
}
public class Van extends Car(
goverride « Al concrete subclasses of Car
public void loadpassengers(){ override by providing a concrete
seatGen = new

implementation for Car’s abstract

2
this.passengerl.sit(seatGen. getMiddleLeft()); loadPassengers () method

this.passenger2.sit(seatGen.getMiddleRight());
this.passenger3.sit(seatGen.getBackLeft());

« As usual, method signature and
3 return type must match the one

¥ that Car declared

8177

abstract Methods and Classes (6/6)

« abstract classes cannot be instantiated!

o this makes sense — shouldn't be able to just instantiate a generic Car, since it has no
code to loadPassengers ()

,and

o instead, provide implementation of loadPassengers () in concrete s
instantiate sub
ss atany level in inheritance hierarchy can make an abstract method

concrete by providing implementation
o it's common to have multiple consecutive levels of abstract classes before reaching a
concrete class
« Even though an abstract class can't be instantiated, its constructor must still be
invoked via super () by a st s
o because only the superclass knows about (and therefore only it can initialize) its own
instance variables

o177

Abstract Methods & Classes

* Abstract classes have 1 or more abstract methods

An abstract method simply specifies a contractual application for a child class (at any
level below parent) to provide a concrete implementation

* Aclass can NOT be instantiated if it is abstract
* Aninterface is simply an abstract class with NO code to inherit
Abstract

Car
I

Concrete
‘ Van ‘ ‘(SlSMnhi le‘

1073

10/3/23

10

So.. What’s the difference?

« You might be wondering: what's the difference between abstract classes
and interfaces?

« abstract classes:
o can define instance variables
can define a mix of concrete and abstract methods
o you can only inherit from one class

o cannot define any instance variables/concrete methods
has only undefined methods (no instance variables)
you can implement multiple interfaces

Note: Java, like most programming languages, is evolving. In Java 8, interfaces and abstract classes are
even closer in that you can have concrete methods in interfaces. We will not make use of this in CS15

11773

11

12/73

12

Review: Basic Arithmetic Operators

Operator Meaning
+ addition
- subtraction
* multiplication
/ division
% remainder

1373

10/3/23

13

Basic Arithmetic Operators: Shorthand

Operator Meaning Example | Equivalent Operation
+= add and reassign a += 5; a=a+5;
-z subtract and reassign a -=5; a=a-5;
*= multiply and reassign a *= 53 a =a*s5;
/= divide and reassign a /= 5; a=al/s5;
%= take remainder and reassign | a %= 5; a=a%5;
14
Unary Operators
Operator Meaning Example
- negate b = -b; negates b
++ increment b++; // equivalent to: b = b + 1;
-- decrement b--; // equivalent to: b = b - 1;

15/73

15

Increment and Decrement Operators

* ++and -- can be applied Postfix example:
before (prefix) or after (postfix) .
the operand

int

10;

int j

i++ and ++1i will both

increment variable i
Prefix example:

int 1= 10;

i++ assigns, then increments

++1 increments, then assigns

int J = ++1; // i becomes 11, j becomes 11

16/73

10/3/23

16

java.lang.Math

* Extremely useful “utilty” class, part of core Java libraries
* Provides methods for basic numeric operations

absolute value: abs (double a)
exponential: pow(double a, double b)

natural and base 10 logarithm: log(double a), logle(double a)
square root: sqrt (double a)

trigonometric functions: cos(double a), sin(double a)...

random number generation: randon() retums random number from
0.0(inclusive) to 1.0(exclusive)

for more check out:
docs.oracle Lhtml

7173

17

- D

Outline

n

ic meth Il ic variabl

nstants — val hat never chan

ision making: lean algebra, if-el men
he switch men

18/73

18

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

static Methods

All of java.lang.Math’s methods are declared static

Example: the method that returns the absolute value of
an integer is declared below

o public static int abs(int a) {...}
A static method belongs to a class, rather than an
instance of the class

o it cannot access instance variables, whose values may differ
from instance to instance

but can have local variables, e.g., temps
1073

10/3/23

19

Calling a static Method

« static methods are invoked on the class, not on an
instance:

int absoluteValue = Math.abs(-7);
« That means we can use all of Math’s static methods
without ever instantiating it

Note: You won't need to write any static methods of your
own in CS15, but you'll be using Math’s static methods in
future assignments

20173

20

TopHat Question Join Code: 504547

tributeCounter is an instance of

the HungerGames class. Which is the correct

way to call this static method of the HungerGames class:
public static int numAlive(){..}?

A. int tributesRemaining = Instance.numAlive();
B. int tributesRemaining = HungerGames.numAlive(static);
C. int tributesRemaining = HungerGamesInstance.numAlive(static);
D. int tributesRemaining = HungerGames.numAlive();
E. int tributesRemaining = tributeCounter.numAlive();
i 2173
21

static Variables

Progression in scope:
o local variables are known in a single method

o instance variables are known to all methods of a class
o static instance variables are known to all instances of a class

Each instance of a class has the same instance variables but
typically with different values for those properties

If instead you want all instances of a class to share the same value
for a variable, declare it static — this is not very common (and
probably not used in CS15)

Each time any instance changes the value of a static variable, all
instances have access to that new value

22173

22

static Variables: Simple Example

tributes starts out with a value of 0

public class Tribute {

Each time a new instance of Tribute is

}

static methods can use static and)
local variables — but not instance
variables

created, tributes is incremented by 1 rivate static int tribstes - o)
+ Get current value at any point by calling: sublic Tribute () ¢
Tribute.getNumTributes(); this. tributestss
o each instance of Tribute will have '
and know the same value of public static int getNumTributes () {
tributes return this.tributes;

2373

23

10/3/23

Constants

« Constants are used to represent values which never
change (e.g. Pi, speed of light, etc.) — very common!
Keywords used when defining a constant:

public: value should be available for use by anyone (unlike
private instance variables and local variables)

o

static: all instances of the class share one value

o

final: value cannot be reassigned

naming convention for constants is all caps with
underscores between words: LIGHT_SPEED

o

o

25073

25

10/3/23

Constants: Example (1/2)

= Useful to bundle a bunch of constants for your application in a “utility” class
(like Math), with useful methods using those constants; both constants and
methods will be then declared static

public abstract class Physics {

// speed of light (Units: hundred million m/s)

public static final double LIGHT_SPEED = 2.998;

// constructor eli

public static double getDistanceTraveled(double numseconds) {
return (LIGHT_SPEED * numSeconds);

}

26173

26

Constants: Example (2/2)

Always use constants when possible

o lteral numbers, except for 0 and 1,
should rarely appear in your code public sbstract class Physics {
4 of 1ight (Units: hundred million m/s)

o makes code readable, easier to alter P g
public static final double LIGHT_SPEED = 2.998;

Also called symbolic constants -
should have descriptive names y

If many classes use same

constants, make separate utility N
P Y We can access this constant from a method in

another class in our program like this:
A constants utility class should Physics. LIGHT_SPEED
never be instantiated, so it should (another use of dot notation!)

be declared abstract Example: .
spaceship. setSpeed(Physics.LIGHT_SPEED)

class, like Physics

21773

27

TopHat Question Join Code: 504547
Which of the following constants is defined correctly?

A. public static final int TRIBUTE_AGE;
B. public static final int TRIBUTE_AGE = 17;

C. public static int final TRIBUTE_AGE = 17;
D. private static final int TRIBUTE_AGE = 17;

28173

10/3/23

28

Bread Makers (1/6)

Peeta has entered a competition to
see who can sell the most loaves of
bread!

o (don't take this example too literally)

Depending on the amount of dough
and time to bake it, he will be able to
make a certain amount of loaves
Our Head TAs calculated that his
number of loaves made is the amount
dough times his baking time

Loaves sold equals one half of the
square root of his baked loaves

29173

29

Bread Makers (2/6)

* BreadMakerConstants class keeps track of
important constants in our calculation

public abstract class BreadMakerConstants {

/ Already sold 16 loaves
public static final double START_LOAVES = 10;

// Number of loaves sold to win the competition
public static final double MAX_LOAVES= 200;

30173

30

10

Bread Makers (3/6)

* peeta keeps track of inport java.lang.Math;
instance variable public class Peeta {
loavesSold

private double loavessold;

public Peeta() {
loavesSold initialized in this.loavessold = BreadMakerConstants.START_LOAVES;
constructor to
START_LOAVES defined in }
BreadMakerConstants

3173

10/3/23

31

Bread Makers (4/6)

inport java.lang.Math;

. Peeta's bake method Pl class peeta ¢

changes his number of private double loavessold;

loaves sold depending public Peeta() {

on the amount of dough this. loavesSold = BreadHakerConstants. START_LOAVES;
he has and the time he)

has to bake public void bake(double dough, double bakeTine) {

}

32173

32

Bread Makers (5/6)

) . import java, lang. Math;
First, loavesMade is pubtic d1acs pecia {

computed

private double loavesSold;

Second, anotherLoafSold

N n public Peeta() {
is calculated according to the

formula this. loavesSold = BreadMakerConstants. START_LOAVES;
* Math.sqrt is a static method ~ *

from java.lang.Math that public void bake(double dough, double bakeTime) {

computes the square root of a

double loaveshade = dough * bakeTine;
double anotherloafSold = (1/2) * Math.sqrt(loavesade);

value
this. loavessold += anotherLoafSold;

Increment the total loaves }
sold '

33

3373

11

10/3/23

Bread Makers (6/6)

inport java.lang.Math;

Now fillin sel1Bread()

public class peeta {

Peeta will only bake & sell
bread until he wins the
competition

private double loavessold;

public Peeta() {

this. loavessold = BreadMakerConstants. START_LOAVES;

1

How can we check if condition
is met?

public void bake(double dough, double bakeTime) {

Introducing... boolean's and

L double loavesMade = dough * bakeTine;
if's! double anotherLoafSold = (1/2) * Math.sqrt(loavestiade) ;
. seen booleans in Pong , this.loavesSold += anotherloafSold;

assignment but let's
formally introduce them P eesfom ot 15
}

at calls bake()!

34/73

34

Outline

3573
booleans
* British logician George Boole (1815-1864) wanted to improve on
Aristotelian (formal) logic, e.g., modus ponens, rule of inference:
o “All men are mortal, Socrates is a man, therefore...”
* boolean (named after Boole) is simplest Java base type
O You've seen this in Pong!
* Aboolean variable can have value true or false
* Example initialization: The terms foo, bar, etc. are often
used as placeholder names
in computer programming or
boolean foo = true; < P prog 9 .
computer-related documentation:
derived from FUBAR, WWII slang
boolean bar = false;
i 36/73

36

12

Relational Operators

10/3/23

Can compare numerical exp: ion:
with relational operators

Full expression evaluates to a
boolean: either true or false

Examples:
boolean bl = (3 > 2);
boolean b2 = (5 <= 5);
int x = 8;
boolean b3 = (x

6);
bland b2 are true, b3 is false

Operator Meaning
is equal to

1= is not equal to

> is greater than
< is less than

is greater than or equal to

<= is less than or equal to

37173

37

+ Canuse == and != to see if two

references point to the same

instance, or not

What three values are printed to

the console in this example?

Assume these three examples are

run in order

1. false:d1 and d2 are not equal

2. true: d1 and d2 refer to the
same instance

3. true: d1!=d2is false, so foo is
true (since foo = (false))

o

Comparing References

public class DogPark {
public void compareReferences() {
Dog_class defined else hc

Dog d1 = new Dog();

Dog d2 = new Dog();

boolean foo = (d1 == d2.
Systen.out.println(foo);

a

2 foo = (a2);
Systen.out..println(foo);

3 foo = 1(d1

« 2);
Systen.out.println(foo);

38/73

38

TopHat Question

public class TestClass {
onstructor el
public void compareReferences() {

Student s1 = new Student
Student 52 = new Student

boolean samestudent = (s
A, Systen.out.printin(sanestu

s2 = s1;
samestudent = (s1 == 52);
Systen.out . printin(saneStudent);

boolean student1Exists =

(s1 1= nul1);
C. Systen out.printin(studentlexists);

Join Code: 504547

Which of the following will print false?

39173

39

13

if Statements

if statements allow us to make decisions based on value of a
boolean expression
Syntax:
if (<boolean expressions) {
to be executed if expression is true

code
}

If boolean expression is true, code in body of if statement is

executed. If false, code in body skipped

Either way, Java compiler continues on with rest of method

40173

10/3/23

40

if Statement: Flow Chart

Is

condition
true?

Previous Execute rest of
Statements method

Execute if
clause

41173

41
if Statements: Examples
}
if (myBoolean) {
lf‘(“y>7)(o e
Executed o execut f ter t
! 42173
42

14

Logical Operators: And, Or, Not (1/2)

Logical operators && (“and”) and | | (“or”) can be used to
combine two boolean expressions
o <expression a> && <expression b> evaluates to true only if
both expressions are true
. <expression a> || <expression b> evaluates to true if at
least one expression is true

Logical operator ! (“not”) negates a boolean expression

Logical operator * (“exclusive or”) returns true if either a or b
is true but not both

10/3/23

43773

43

Logical Operators: And, Or, Not (2/2)

» To represent the values a logical operator may take, a
truth table is used

A B A& B |A||lB A™B 1A
false | false | false | false | false | true
false | true [false | true true true
true | false | false | true true | false
true true true true | false | false

44173

44

TopHat Question Join Code: 504547

Which if clause statement will run if the game has started
and the tools have been gathered? (The variables below
are of type boolean)

A. if(!gameStarted && !toolsGathered){..}
B. if(!gameStarted && toolsGathered){..}
C. if(gameStarted && !toolsGathered){..}
D. if(gameStarted && tools Gathered){..}

45173

45

15

10/3/23

if Statements: More Examples

* Should always take one of two forms: A
o if (<boolean expression>) de to
o if (l<boolean expression>) i

* Never do this (inefficient): if (ImyBoolean) {

o if (<boolean expression> == true) , myBoolean is false

o if (<boolean expression> == false)

* Be careful! It's easy to mistakenly use = if <myﬁ°“‘fa‘"f:fa‘“
(assignment operator) instead of == myBoolean is false
(comparator) de is inefficient

! 46173
46
if-else (1/2)

« If we want to do two different things depending
on whether the boolean expression is true or
false, we can use an else clause

* Syntax:

if (<boolean expression>) {
/ code executed if expression is true
} else {
// code executed if expression is false
)
sz
47
if-else: Flow Chart
Execute if
clause
Previous s Execute rest of
Statomonts condiion method
Execute
else clause
s

48

16

+ Canuse if-else tofillin

« If Peeta’s loaves sold are

if-else (2/2) o sorunsroos

public class Peeta {

the sellBread method private double loavessold;

structor elid

less than amount needed public void bake(double dough, double bakeTine) {
doub] dough’ " bakeT ine;

N uble loaveskade -
when method is caIIEd’ he double anotherLoafSold = (1/2) * Math.sqrt(loavesMade);
d

makes bread this. loavesSold += anotherLoafSold;
¥
. i ublic void sellfread
Otherwise, hestops and PE Elestlinestt oy
wins the competition! bake 120 units of dou urs
this.bake(120.0, 5.8);
+ Does this code limit the }else { ot .
final number of loaves sold this'wincompetition(); ' '
to MAX_LOAVES? }

49173

10/3/23

49

Complex if-else Statements

If <boolean expression 1> is

true, block 1 is execu%ed and if (cboolean expression 15) {
blocks 2 and 3 are skipped / block 1

If <boolean expression 1> is } else if (<boolean expression 2>) {
false and <boolean expression / block 2
2> is true, block 2 is executed

and blocks 1 and 3 are skipped ! els,e fw

ock 3
If both expressions are false,

block 3 is executed and blocks 1

and 2 are skipped

5073

50

i

Nested if Statements

/ variables and methods defined elsewhere
£ (cs1sStudent.hasBug()) {

if (csisStudent.hasInitiative()) {
cs15student . debug() ;
} el

}

se {
cs15Student. giveUp();

THE
HUNGER GAMES

51/73

51

17

TopHat Question Join Code: 504547

Which print statement will be printed out?

10/3/23

if (x < 10) {
1 (10
Ao
B—
}
} else if (x <= 15) {
if ((x#2) > 13) {
c— Systen.out printin(
} else {
D— Systen.out printin(
}
} else {
E— System.out.println(“case E”);
}
5273
52
Short-Circuiting (1/2)
* What is the value of n
after the code to the intn =1
. if ((n < 8) 8& (n++ == 2)) {
right has executed? // code to be executed if
¢ nisstill 1 }
. Why? System.out.println(n);
5373
53
Short-Circuiting (2/2)
Beware of short-circuiting!
If Java already knows what the full int n o= 15
expression will evaluate to after U o) ER ne
evaluating left argument, no need to n s tr
evaluate right argument !
o &&: if left argument of conditional
evaluates to false, right argument ::‘(Z“’ i
not evaluated o t
o |I: if left argument evaluates to) ne
true, right argument not evaluated
sums

54

18

“Side-effect”ing

« Updating a variable inside a
conditional is not good coding
style; it makes code confusing
and hard to read

Keep in mind short-circuiting if
you ever call a method that
might have a “side effect” inside
a conditional — here the first if
will leave n incremented, second
not

System.out.println(n);

ystem output: 2

intn=1;
if (false && (n+

}
System.out.println(n);
ystem output: 1

55/73

55

10/3/23

o usealotof else-ifs:

o better solution: use a switch statement!

switch Statements (1/2)

« To do something different for every possible value of an
integer variable, have two options:

if (myInteger == @) {
Jetse 47 (yintager
) etbe 1e yinceger
onething els
} else if (myInteger == 3) {

56/73

56

switch (<variables) {

case <value>:
// do something
break;

case <other values:
// do something else
break;

default:
// take default action
break;

switch Statements (2/2)

Syntax: Rules:

<variable> usually an integer - char
and enun (discussed later) also possible

values have to be mutually exclusive

If default is not specified, Java compiler
will not do anything for unspecified values
break indicates the end of a case - skips

to end of switch statement (if you forget
break, the code in next case will execute)

57773

57

19

switch Example (1/6)

Let's make a ScarfCreator class that
produces different colored scarves for
our players using a switch statement

The scarf is chosen by weighted
distribution (more orange, red, brown,
and fewer blue, green, yellow)

ScarfCreator generates random
values using Math

Based on random value, creates and
retums a Scarf of a particular type

inports elided - Math
public class ScarfCreator{
. jer

public Scarf generatescarf() {

58/73

10/3/23

58

switch Example (2/6)

To generate a random value, we use
static method randon from
java.lang.Math

random returns a double between
0.0 (inclusive) and 1.0 (exclusive)

This line returns a random int 0-9
by multiplying the value returned by
random by 10 and casting the result
toan int

Casting is a way of changing the

type of an object to another specified
type. Casting from a double to int

truncates your double!

inports elided - Math an
public class ScarfCreater{
onstructe dec

public Scarf generatescarf(
int randInt = (int) (Ma

Color

) (
th.randon() * 10);

59173

59

switch Example (3/6)

- We initialize myScarf to null,
and switch on the random plic scant generatescar() ¢

e ran
value we've generated

b
public class ScarfCreator{
ge

por i Math and Co

= (int) (Math.randon() * 10);

Scarf myscarf = null;
switch (randInt) {

60173

60

20

switch Example (4/6)

Scarf takes in an instance of

inports elided - Mat
public class ScarfCreator(

arf gen

and Colo

ratescar()

10/3/23

public sc {
javafx.scene.paint.Color as a int randInt = (int) (Math.random() * 10);
parameter of its constructor (needs to scarf myscarf = null;

know what color it is)

Once you import
Jjavafx.scene. paint.Color, you only

need to say, for example, Color.ORANGE
to name a color of type Color

If random value turns out to be 0 or 1,
instantiate an orange Scarf and assign it
tomyscarf

switch (randInt) {
ase 0: case 1
myScarf = new Scarf (Color.ORANGE);
break;

* break breaks us out of switch statement
6173
public class ScarfCreator{
public Scarf generateScarf() {
é"t :’aﬂdéhl ; (1n(%](math.random() *10);
. Carf myscart < null;
If our random value is 2, 3, or 4, we e ooty ¢
instantiate a yellow scarf and case 0: case 11
assign it to myScarf myScarf = new Scarf(Color.ORANGE);
case 4:
® Color.YELLOW is another constant of x ew Scarf(Color.YELLOW);
type Color — check out Javadocs for ak;
javafx.scene.paint.Color!
}
}
}
62173
public class Scarfcreston(
public Scarf generateScarf() {
't randInt = (int) (Wath.randon() * 10);
+ We skipped over the cases for S yeey (i randon© * 10)
values of 5, 6, and 7; assume they switeh (pandint)
create green, blue, and red Scarfs, myScarf = new Scarf(Color . ORANGE)
i break;
respectively case 2: case 3: case 4:
- Our default case (if random value pyscant = new scarf(Color. YELLOW);
is 8 or 9) creates a brown Scarf cases 5, 6, and 7 elided
«+ Last, we return myScarf, which was “*"’;;:jm e Sear (Cotor 5R0M)
initialized in this switch with a color Dreaks ’
depending on the value of randInt)
return myscart;
¥
}
6373

63

21

TopHat Question

Which of the following switch statements is correct?
In the constructor for Weapon, the parameter is a string.

Join Code: 504547

10/3/23

°
A. B. c.
int rand = (int) (Math.random() * 10); int rand = (int) (Math.random() * 10); WeaponType type = type.random();
pon weapon = nulL; eapon weapon = ull; Weapon weapon = null;
switch (rand) { suitch (rand) { switch (type) {
case 0: case 1: case 2: case 3t Case o: case 1: case 2: case 3: case e
weapon = new Weapon(“Axe”); weapon = new Weapon(“Axe”); weapon = new Weapon(“Axe”);
break; brebk;
case 4: case 5t case 6: case 7:
Ueapon = new Weapon(“Polson”); case 4: case 5: case 6: case 7: case Bali:
weapon = new Weapon(“Poison”); weapon = new Weapor H
default break; break;
weapon = new Weapon(“Knife”);
break; default: default
) weapon = new Weapon (“Knife”); weapon = new Ueapor s
break; break;
¥)
64173
That’s It!
Important Concepts:
* static methods and static variables
+ Constants
* booleans
+ Making decisions with if, if-else, switch
65173

65

Announcements

® FruitNinja (handout and help slides) released today
o Early handin: 10/8 (+2 bonus points)
o On-time handin: 10/10

Debugging Hours start Thursday, Qctober 5.

More information on the course website

Polymorphism section this week

email your section TAs mini-assignment on time

SNC Deadiine today at 5pmi! (Not CS15 enforced, University Policy)

Late handin: 1012 (8 for late handin, but 4 late days to use throughout semester)

66173

66

22

SRC: Ethics and Labor
Practices in Big Tech

CS15 Fall 2023

ETHICS IN BIG TECH

10/3/23

67

The Power of Big Tech

As of 2022...

* 50% of global online ad spending goes X gver BoveiTA Bac
through Meta or Alphabet

+ Amazon takes in more than 40% of online
spending in the US

* Insearch, Google has more than a 60% share
inthe US

« Microsoft is a top-three vendor to
businesses

of

Source: Harvard Business Review (2022)

68

How Big Tech Does Ethics:
Internal Guidelines

- Internal advisory teams that create guidelines for responsible use
of Al and other technologies

- Reports with established ethical principles for teams to follow

Program overview

Remediation

69

23

How Big Tech Does Ethics:
Google’s “Al Applications We Will Not Pursue”

Where there isa sk of harm, we

at the benefits substantially outweigh th and wil
2. Weapons or ot pose is to cause or directly
3.Technologies that gather or use information for

4.Technologies and human

rights.

As our experience in this space deepens, this list may evolve.

10/3/23

70

The Technology Facebook and Google Didn’t

Dare Release

ineers at the tech giants built tools years ago that could put a
ey did not wa

‘We decided to stop’

Source: NYT (2023)

71

Abuse of Power in Big Tech

Elon Musk Has Fired Twitter’s ‘Ethical Al’ Team

Exclus
response to outcry

Microsoft lays off team that taught
employees how to make Al tools
responsibly

over privacy violations
Microsoft Agrees to Pay $20 Million
Children’s Privacy Laws Mishandling Child Data

Source; Wred (2022) Jusice Dep. (2023),The Verge (2023), CN (2023), NPR (2023), NYT (2023)

72

: Google cancels Al ethics board in

European watchdog fines Meta $1.3 billion|

Civil Penalty for Alleged Violations of TikTok Fined $370 Million for

24

Working Conditions

ers at Apple iPhone factory in China
beaten in COVID protest

AHard-Hitting Investigative
Report Into Amazon Shows That
Workers’ Needs Were Neglected
In Favor Of Getting Goods
Delivered Quickly

TEGH « ARTIFICIAL NTELLIGENCE

Gig Workers Behind Al Face ‘Unfair Working
Conditions, Oxford Report Finds

Sources: CBS (2022), Forbes (2021), Time (2022)

10/3/23

73

Proposition 22

- Classifies Uber/Lyft drivers as
independent contractors, not as
employees

- Reduces benefits like insurance,
saving companies money

- Gig companies spent >$200 million
pushing for Proposition 22

Source: NYT (2023)

74

Soure

Next lecture...

U.S. Accuses Amazon of lllegally
Protecting Monopoly in Online Retail

The Federal Trade Commission and 17 states sued Amazon,
saying its conduct in its online store and services to merchants

illegally stifled competition.

ce: NYT (2023)

75

25

Next lecture... antitrust laws!

PASASAS
Designed to increase consumer welfare

Involves breaking up firms that get “too big”, or
preventing mergers and acquisitions (M&A)

Highly debated subject

10/3/23

76

26

