Lecture9

Graphics Part |

Intro to JavaFX

(photo courtesy of Instagramfiters)

1/89

10/5/2023

Eran Mendel

2/89

switch Statements (1/2)

+ To do something dif ferent for every possible value of an
integer v ariable, have two options:

o use a lot of else-ifs: if (myInteger == 0) {
// do something...
} else if (myInteger =
//do something el
} else if (myInteger
// do something else.. .
} else if (myInteger == 3) {
// etc.
}

else {
// last case

o better solution: use a switch statement!

3/89

switch Statements (2/2)

Syntax: Rules:

switch (<variable>) {
case <value>: <variable> usually an integer - char
// do something and enum (discussed later) also possible
break;
case <other value>:
// do something else

values have to be mutually exclusive

If default is not specified, Java compiler

break;

default: will not do anything for unspecified values
// take default action . _
break; « break indicates the end of a case - skips

} to end of switch statement (if you forget
break, the code in next case will execute)

10/5/2023

4/89
.
switch Example (1/6)
// imports elided - Math and Color
public class ScarfCreator{
/ constructor elided
+ Let's makea ScarfCreator class that putlic serf gmeratescart() {
produces different colored scarves for
our players using a switch statement
The scarf is chosen by weighted
distribution (more orange, red, brown,
and fewer blue, green, yellow)
ScarfCreator generates random
values usingMath
« Based onrandom value, creates and
retums a Scarf ofa paticuartype This is anexample ofthe Tactory” pattem in object-
orented programming: itis amethod that has more
complicated logic than a simple assignment
} } statement for each instance variable.
J— 5/89
.
switch Example (2/6)
« To generate arandom value, we use pubﬂiii;iw‘sﬁif&;ﬂ»? o
i // comstructor elided
§tat|c method random from PuHLiC Sanf geratescarf() {
java.lang.Math int randint = (int) (Math.random() * 10);
- randomretumns a double between
0.0 (inclusive) and 1.0 (exclusive)
This line retums a random int 0-9
by multiplying the value returned by
random by 10 and casting the result
toan int
Casting is a way of changing the
type of an object to another specified
type. Casting from a double to int))
truncates your double!
6/89

switch Example (3/6)

+ Weiinitialize myScarf to null,
and switch on the random
value we’ve generated

public cl.
¢

inports elided - Math and Color
s ScarfCreator{
tructor elided
public Scarf generatescarf () {
int randint = (int) (Math.random() * 10);
Sarf myscarf = null;
switch (randInt) {

10/5/2023

N }
- 7/89
.
switch Example (4/6)
imports elided - Math and Color
public class ScarfCreator{
: : constructor elided
+ Scarf takesin an instance of public Scarf generatescarf() {
javafx.scene.paint.Colorasa int randint = (int) (Math.random() * 10);
parameter of its constructor (needs to Sarf mscarf = null;
S switch (randInt) {
know what cdor it is) @ase 0: case 1:
o . t myScarf = new Scarf(Color.ORANGE) ;
+ Once you impol break;
javafx.scene.paint.Color, youonly
need to say, for example, Color .ORANGE
to name a color of type Color
« If random vaue umnsout tobeOor 1,
instantiate an orange Scarf and assignit
to myScarf
+ break breaks us out of switchstatement)
}
[T — 8/89
.
switch Example (5/6)
public class ScarfCreator{
@nstructor elided
;mb]_‘ic Scarf ger\e‘ra‘tescarf() {
int randInt = (int) (Math.random() * 18);
. Scarf myScarf = null;
« If our random value is 2, 3, or 4, we ;,,?t(hm(’r:;m;?
instantiate a yellow Scarf and @se 0: case 1:
P nyScarf = new Scarf(Color .ORMGE) ;
assign itto myScarf break;
case 2: case 3: c@se 4
+ Color.YELLOW is another constant of myScarf = new Scarf(Color.YELLOW) ;
type Color —check out Javadocs for bredk;
javafx.scene.paint.Color!
}
}
}
[—— 9/89

switch Example (6/6)

public (lass Scarfereator{
constructor elided
pubh(Scarf gereratesaarf() {
. int randInt = (int) (Math.random() * 10);
- We skipped over the cases for scarf myScarf = null;
switch (randInt) {

values of 5, 6, and 7; assume they e 0: cae 1t
create green, blue, and red Scarfs, myScarf = new Scarf (Color .ORMNGE) ;
: break;
respectively cse 2: case 3: ase 4:
myScarf = new Scarf(Color.YELLOW);

+ Our default case (if random value reak;
is 8 or 9) creates a brown Scarf = 5

. i default:
Last, we retum myScarf, which was ySearf = new Scarf(Calor, BION);

initialized in this switch with a color break;

i }
depending on the value of randInt L eturn myscnts

10/5/2023

10/89

TopHat Question Join Code: 504547

Which of the following switch statements is correct?
o In the constructor for Weapon, the parameter is a string.

A. B.
int rand = (int) (Math randan() * 10); int rand = (int) (Math.randan() * 10); wsa;nnType type = type. randan();
Weapon weapon = nul. Weapon weapon = null; Weapon weapen = null;
switch (rand) { switch (rand) { switch (type) {
case @: case 1: case case @: case 1: case 2! case case Axe:
weapo = new wEapun(Axg), weapon = rew Vbﬁpm("ﬂm”), weapon = new Wegpan (‘Axe”) ;
break; break;
case 4: case 5: case 6: ase 7:
wegpon = ned Weapon(“Poisan”) ; case 4; case 5: case 6: case 7: case Bali:
weapon = new Weapon (“Poisor’); weapon = new Weapon (“Poisor”);
default: break; break;
weapan = new Weapon(“Knife”);
break; default: default:
} weapon = new Weapon (Knife”) ; weapon = rew Weapon ("Knife”) ;
break; break;
} }
[T — 11/89

TopHat Question Join Code: 504547

When you want to review lecture recordings how often are they available
online?

A) Never

B) Sometimes

C) Often

D) Always

12/89

TopHat Question Join Code: 504547

When you review lecture recordings how useful are they to helping you review
class material?

A) Not very useful
B) Somewhat useful
C) Quite useful
D) Very useful

13/89

10/5/2023

Outline

+ GUIs and JavaEX

« JavaFX Scene GraphHierarchy

* \Box panes and PaneQrganizers

« Example: ColorChanger

* Logical vs Graphical Containmentwith JavaEX

14/89

Pixels and Coordinate System

X
(0,0)
« Screenis a grid of pixels (tiny squares, each with Y
RGB values)

« Cartesian plane with:
o origin in upper-left comner
o x-axis increasing left to right
o y-axis increasing top to bottom
o corresponds to English writing order

pixels

« Each graphical element is positioned at specific pixel Former HTASam Squres!

15/89

What is JavaFX?

* Usually don’t want to program at the pixel level — far
too tedious!

« JavaFX is a set of graphics and media packages
enabling developers to design, create, and test

powerful graphical applications for desktop, web, and J
mobile devices av L1

JavaFX is an API (Application Programming Interface)
to a graphics and media library: a collection of useful
classes and interfaces and their methods (with
suitable documentation) — no intemals accessible!

10/5/2023

16/39
Creating Applications from Scratch
+ Until now, TAs took care of graphical components for you
o our support code defined the relevant classes
* From now on, you are in charge of this!
« JavaFX is quite powerful but can be a bit tricky to wrap your head around
because of the size of the JavaFX library
o not to fear, all JavaFX packages, classes, and method descriptions can be found in the
ide on our website!
o 17/89
Graphical User Interface (GUIs)
* GUIs provide user-controlled =,
(i.e., graphical) way to send
messages to a system of = .
instances, typically your app e =
« Use JavaFX to create your
own GUIs throughout the ST
semester v v .
18/89

https://docs.google.com/document/d/1cOq649OLNp0-UHxz5W5KAOH-KyM2VXvq_TKmuGHv0Rg/edit?usp=sharing

Components of JavaFX application (1/2)

« Stage
o location (or “window”) where all graphic
elements will be displayed

o blue border with “Stage” label and minimize,
maximize and close icons — the “decoration”

+ Scene m

o scene (grey interior portion) must be on a
stage to be visible

o container for all Ul (User Interface)
elements to be displayed on a stage

o Ul elements include Panes, Labels, Shapes,
etc., like the Button shown

19/89

10/5/2023

Components of JavaFX application (2/2)

« Scene Graph
o family tree of graphical elements
* Nodes
o all elements of the Scene Graph
o can have multiple children or none

o graphical representation called a Ul
element, widget, or control (synonyms)

2vj03

Creating GUIs With JavaFX: Stage (1/2)

* App class for JavaPX application

imported abstract class public class App extends Application {

javafx. application.Application @override
« From now on, begilr] every project by public void start(Stage stage) {
implementing Application’s stage. show();
abstract start()
o jtar't_g()tls called automatically by

avaFX’to launch program }
« Java automatically creates a Stage T e
usmglmporteg X g -

orted javafx.stage.Stage
class, which is passed into star‘t(?
o e RSN e
application
- All this automagic reminds us of
Main

21/89

Creating GUIs With JavaFX: Scene (2/2)

For our application to provide content to show on the stage, must first set

(specify) ascene before showing iton (in) the stage
javafx.scene.Scene is the top-level container for all Ul elements

Process shown in

- y . a fewslides!
o first instantiate Scene within App class’ start method 07
o then pass that Scene into Stage’s setScene(Scene scene) method to set the scene!
In CS15, only specify 1 Scene — though JavaFX does permit creation of
applications with multiple Scenes

o ex: an arcade application where you could select to play either DoodleJump, Tetris or
Pacman from the main screen might utiize multiple Scenes — one for each subgame

So, what exactly is a javafx.scene.Scene ?

22/89

10/5/2023

* \Box panes and PaneQrganizers
« Example: ColorChanger
* Logical vs Graphical Containmentwith JavaEX

23/89

JavaFX Scene Graph Hierarchy

« InJavaFX, contents of the Scene (Ul elements) are represented as a
hierarchical tree, known as the Scene Graph
o you are familiar with some other hi ies already — contair ion and
inheritance/interface

Contai , iation Hierardh i /Interface Hierarchy

24/89

JavaFX Scene Graph Hierarchy: Nodes

Think of the Scene Graph as a family

h Node
tree of visual elements

* javafx.scene.Node is the abstract
superclass for all Ul elements that can
be added to the Scene, such as a
Button or a Label
o all Ul elements are concrete subclasses of Node
(Button, Label, Pane, etc)
Each Ul component that is added to
the Scene Graph as a Node gets
displayed graphically Node Node Node

Node Node

10/5/2023

25/89
JavaFX Scene Graph Hierarchy: Node Properties
S ——
, . 4 N
« Each Node can have multiple children This node has < Node ’
but at most one parent wo children \ /
o child Nodes are almost always graphically
contained in their parent Node
o more on graphical containment later!
Node Node
* The Node at the top of the Scene
Graph is called the root Node
o the root Node has no parent
< Node Node , Node
[T — 26/89
The root of the Scene
* Root Node is the highest level container and will always be a
javafx.scene.layout.Pane or one of Pane’s subclasses
« Different Panes have different built-in layout capabilities to allow easy
positioning of Ul elements — see below for options!
« For now, use a VBox as the root of the Scene — more on VBox later
| raze
Anchor | Bordar ftack EBox/ Flow arid
' Para Fans VEzE [FEFY
27/89

Constructing the Scene Graph (1/2)

« Instantiate root Node

« Pass itinto Scene constructor to
construct Scene Graph
o Scene Graph starts off as a single root
Node with no children

. . Viax
o the root is simply a container, without
graphical shape

public class App extends Application {
@verride
public void start(Stage stage) {
//code to populate Scene Graph
VBox root = new VBox();
Scene scene = new Scene(root);

10/5/2023

}
} 28/89
Constructing the Scene Graph (2/2)
* Once we setScene() and show()
on Stage, we begin populating the
Scene Graph
Viax
rock
public class App extends Application { =
@verride
public void start(Stage stage) {
//code to populate Scene Graph
VBox root = new VBox();
Scene scene = new Scene(root);
stage. setScene(scene);
stage. show() ;
}
) R 29/89
Adding Ul Elements to the Scene (1/2)
* How can we add more Nodes to the -
Scene Graph? s
« Adding Ul elements as children of root - -
[Bumn B
Node adds themto Scene and makes 1 [])
them appear on Stage!
« Calling getChildren() method on a Node T L
returns a list of that Node’s children —
o by adding/removing Nodes from a Node’s T
list of children, we can add/remove Nodes =
from the Scene Graph! Bulton 3
o later we’ll see how Java supports Lists
30/89

10

Adding Ul Elements to the Scene (2/2)

« getChildren() returns a List of the

child Nodes
o in example on right, root.getChildren()
retums a List holding three Buttons ey T e
(assuming we created them previously — [=]
next slide)
* To add a Node to this list of children, call P
add(Node node) on that returned List! —
o also, addA11(Nodes.. nodel, node2, ..)
which takes in any number of Nodes [
o allowing any number of arguments is a new Bafor 3

capability of parameter lists

31/89

10/5/2023

root.getChildren().add(..) inaction

* Add 3 Buttons to the Scene by adding them as children of
the root Node (no children before this)

« First create buttons

ii

« Then add buttons to Scene Graph |order matters- order

buttons added effects § _
order displayed i B [,
(b1, b2, b3)vs. (K2, b1,b3 Lo ok L]

/* Within lass
@override
public void start(Stage stage) {

//cde for setting root,stage,scene elided

Button bl = new Button(“Button 1);
Button b2 = new Button(“Button 2);
Button b3 = new Button(“Button 3);
root.getChildren().addAl1(b1,b2,b3);

i

double dot
root.getChildren() returns a List of root’s children. Rather than storingthat retumed List in a ariable and
calling add(..) on that variable, we simplify code by calling add(...) directly onreturned List of children!

Removing Ul Elements from the Scene

« Similarly, remove a Ul dement by removing itfrom the list
of its parent’s children with remove (Node node)
o note: order of children doesnt matter when removing elements Viax
since you specify their variable names

* Let's remove third Button* s

* Within App class * &

@verride
public void start(Stage stage) { B 1
/wde for irg root, stage, scene e

Button bl = new Button(“Button 1’);
Button b2 = new Button(“Button 2°);
Button b3 = new Button(“Button 3');
roct.getChildren().addAl1(b1,b2,b3);
roct.getChildren().remove(b3);

}

*Note: nota typical design choice to add and then remove a N

inthe same code block! 33/89

11

Populating the Scene Graph (1/3)

What if we want to make more
complex applications?

Add specialized layout containers,
called Panes

Add another Pane as child of root
Node, then add more Ul elements as
child Nodes of this Pane

This will continue to populate the
scene graph!

34/89

10/5/2023

Populating the Scene Graph (2/3)

* First, instantiate another VBox and add it Wl
as child of root Node

o Note: VBox is apure container without
graphical shape Buton Bdinn W

* Within App class *
@override LK
public void start(Stage stage) {

//cwde for settirg scene elided

Button bl = new Button(); //no label
Button b2 = new Button(); //no 1
root.getChildren().addAl1(b1,b2);

VBox holder = new VBox();
root.getChildren().add(holder);
35/89

Populating the Scene Graph (3/3)

* Next, add Label to Scene as child of new VBox =

Within App class L
@verride
public void start(Stage stage) {

//wde for settirg scene elided

Button bl = new Button();

Button b2 = new Button();

root.getChildren().addAl1(b1,b2);

VBax holder = new VBox();

root.getChildren().add(holder);

Label text = new label(“I live in the
VBox!”);

holder.getthildren().add(text);

o T Pl

36/89

12

10/5/2023

- 37/89
Removing a Node with children (1/3)
* Removing a Node with no children simply "':;‘
removes that Node... Sl
o root.getChildren().remove(b2) ; o '[
to remove second Button . S
Bution [Wi
Bl] Puslder
|
Labsi
tan1
. 38/89
Removing a Node with children (2/3)
* Removing a Node with no children simply "r:'
removes that Node... S
o root.getChildren().remove(b2) ; e e
to remove second Button - o
* Removing a Node with children removes all its i —
children as well!
o root.getChildren().remove(holder); Label
makes both VBox and its Label disappear e
39/89

13

Removing a Node with children (3/3)

* Removing a Node with no children simply
removes that Node...
o root.getChildren().remove(b2) ;
to remove second Button
* Removing a Node with children removes all its
children as well!
o root.getChildren().remove(holder);
makes both VBox and its Label disappear

10/5/2023

e 40/89
Given this code:
public void start(Stzge stage) { Which of the following would correctly remove
//@ode for setting scene elided removelabel fom the VBox holder?
//wde for setting w root elided
Butten b1 = new Button(); A. root.remove (removelLabel);
Button b2 = rew Button(); B. holder.remove(removelabel);
root .gethildren() . addAll (b1, b2);
C. root.getChildren.remove(removelabel);
Box holder = new VBox(); D. holder.getChildren().remove(removelabel);
root .getthildren() . add(holder);
Label removelabel = new Label (“remove mel”) ;
folder.getthildren(). add(remelatel) ;
}
41/89

Outline

+ Glls and lavaEx
« JlavaEX Scene GraphHierarch:

« MBox panes and PaneQrganizers

« Example: ColorChanger

« Event Handlingand lamhda expyessions

42/89

14

VBox layout pane (1/5)

+ So what exactly is a VBox?

* VBox is a Pane that creates an easy way for
arranging a series of children in a single vertical
column

« We can customize vertical spacing between children
using VBox's setSpacing(double) method

o the larger the double passed in, the more
space between the child Ul elements

10/5/2023

o 43/89
« Can also setpositoning of ertire vertica column of children
« Default posifoning for the vertical coumn is in TOP_LEFT of VBox (Top Vertically, Left
Horizontally)
o can change Vertical/Horizontal positioning of column usihg VBox's setAlignment(Pos
position) method, passing in a javafx.geometry.Pés constant — javafx.geometry.Pos is a
class of enums (more on these later!), or fixed set gf values, to describe vertical and horizontal
positioning. Use these values just like a constantg’ class that you would write yourself!
« Pos options arein the fom Pos.<vertica position>_<horizontal position>
o e.g., Pos.BOTTOM _RIGHT represents posSitioning on the bottom vertically, right horizontally
o fulllist of Pos constants can be foyrid here
Why ALL_CAPS notation?
It is a “symbolic constant’ with pre-defined meaning.
s omm o 44/89
« The following code produces the example
on the right: L @ Sample VBox
VBox root = new VBox(); LTM‘ J
Button bl = new Button(“Top”); Ml
Button b2 = new Button(“Middle”);
Button b3 = new Button(“Bottom”); Bathom
root.getChildren().addAll(b1,b2,b3);
width, height
Scene scene = new Scene(root, 300, 200);
stage.setTitle("Sample VBox");
stage. setScene(scene);
stage.show();
45/89

15

https://docs.oracle.com/javase/8/javafx/api/javafx/geometry/Pos.html

VBox layout pane (4/5)

« Adding spacing between children

L] @ Sample VBax
Tap

VBox root = new VBox();
Button bl = new Button(“Top”);
Button b2 = new Button(“Middle”); Middle
Button b3 = new Button(“Bottom”);
root.getChildren().addA11(b1,b2,b3);

Botiom
root. setSpacing(8);

10/5/2023

. 46/89
VBox layout pane (5/5)
* Setting alignment property to configure
children in TOP (vertically) CENTER [a] ® Sampla VBox
(horizontally) of the VBox
Top
VBox root = new VBox(); Micidla
Button bl = new Button(“Top”);
Button b2 = new Button(“Middle”); =
Button b3 = new Button(“Bottom”); Botiom
root.getChildren().addAl1(b1,b2,b3);
root.setSpacing(8);
root.setAlignment(Pos.TOP_CENTER);
[T — 47/89
.
CS15 paneOrganizer Class (1/2)
« Until now, all code dealing with the Scene has been inside Application’s
start method; adding more nodes will clutterit up...
o remember App class should never have more than a few lines of code!
* Write a PaneOrganizer class where all graphical application logic will live
— an example of delegation pattem
O PaneOrganizer is our new graphical top-level class
* PaneOrganizer will instantiate root Pane, and provide a public getRoot ()
method that retumns this root
o App class can now access root Pane through PaneOrganizer’s public getRoot()
method and pass root into Scene constructor
+ We'll do this together soon!
48/89

16

CS15 PaneOrganizer Class (2/2)

Pattern

1. App class instantiates a PaneOrganizer, which creates root

2.

App class passes return value from getRoot() to Scene

constructor, so Scene has a root

Top-level PaneOrganizer class

instantiates JavaFX Ul

components (Button, Label,Pane...)

These Ul components are added to root Pane (and therefore

to the Scene, indirectly) using
root.getChildren().add(..
root.getChildren().addAll(

.); or

cee)s

ksl
rr T e

49/89

10/5/2023

Outline

GUIs and JavalEX

JavaFX Scene Graph Hierarch
VBox panes and PaneQrganizers,
Example: ColorChanger

; -
Logical vs Graphical Contanmentwith JavabX

50/89

Our Hrst JavaFX Application:

Spec: App that contains text
reading “CS15 Rocks” and a
Button that randomly changes
text's color with every click

Useful classes: Stage, Scene,
VBox, Label, Button,
EventHandler

ColorChanger

Stage

@ 0 @ Color Changs:

Lab
ael\

Rarssiors Coler

Button /

Pane (e.g., VBox)
This is the
structure that
contains the Label
and the Button

s%

This is the grey
background. ALL
elements in the
Scene Graph will
show up within

the Scene 51/89

17

Process: ColorChanger

Stage

Create App class that extends ’/
javafx.application.Application ® © @ Coor Changs
and implements start (where you set Label
Scene) —the standard pattern
Create top-level PaneOrganizer class Farsicrn Color
that instantiates root Pane and provides .= ==
public getRoot() method to return the utton
Pane. In PaneOrganizer, instantiate a
Label and Button and add them as pane (e.g., VEox) \
children of root Pane ne le-8., Scene

This is the This is the grey
Set up a custom EventHandler that structure that background. Al
changes Label’s color each time contains the label elements in the
Button is clicked, and register Button and the Button. Scene Graph will
with this handler Note: no visual show up within

outline of panes the Scene

52/89

10/5/2023

ColorChanger: App class (1/3)

To implement start:
Instantiate a PaneOrganizer as
top-level class and storeit in the
local variable organizer

public class App extends Application {

@werride
public void start(Stage stage) {
PaneOrganizer organizer = new PaneOrganizer();
/write our PaneOrganizer class later, where we will
instantiate the root Pane */

s an o < 105 53/89

ColorChanger: App class (2/3)

To implement start:

Instantiate a PaneOrganizer as
top-level class and storeit in the
local variable organizer

Instantiate a new Scene, passing

o root Pane, accessed through
organizer's public getRoot()

o along with desired width and
height of Scene

public class App extends Application {

@werride
public void start(Stage stage)
PaneQrganizer organizer = new PaneOrganizer();
/*write ur Panedrganizer class later, where we will
instantiate the root Pane
Scene scene = new Scene(organizer.getRoot(), 89,80) ;

ot widh_height

54/89

18

ColorChanger: App class (3/3)

1. To implement start: public class App extends Application {
A. Instantiate a PaneOrganizer as @verride
top-level class and storeit in the public void start(Stage stage) { .
local variable organizer Panerganizer organizer = new PaneOrganizer();
X . /*write cur PaneOrganizer class later, where we will
B. Instantiate a new Scene, passing instantiate the root Pane */

Scene scene = new Scere (organizer.getRoot(), 89,80) ;
stage. setScene(scene) ;
o root Pane, accessed through stage. setTitle (“Calor Changer!”);
organizer’s public getRoot() stage. shaw() ;
o along with desired width and
height of Scene)

C. Setthe Scene,title the Stage,and
show the Stage

o p— 55/89

10/5/2023

Process: ColorChanger

1. Create App class that extends
javafx.application.Application o
and implements start (where you set Label
Scene) —the standard pattern T

2. Create top-level PaneOrganizer class Farssorn Coler
that instantiates root Pane and provides
public getRoot() method toreturnthe Button
Pane. In PaneOrganizer, instantiate a

Label and Button and add them as
children of root Pane pane (6., VBo) SZQ
This is the This is the grey

3. Set upa custom EventHandler that structure that background. ALl
changes Label’s color each time contains the label elements in the
Button is clicked, and register Button and the Button Scene Graph will
with this handler show up within

I the Scene se/gg

ColorChanger: Our PaneOrganizer Class (1/4)

. : . public class Panedrganizer {
2. To write PaneOrganizer class: private VBox root;
A. Instantiate root VBox and store it in

. public PaneOrganizer() {
instance variable root

this.root = new \Box();

57/89

19

2. To write PaneOrganizer class:

A. Instantiate root VBox and store itin
instance variable root

B. Create a public getRoot()
method that returns root
o reminder: this makes root Pane
accessible from within App's start
for new Scene(root)

ColorChanger: Our PaneOrganizer Class (2/4)

public class PaneOrganizer {
private VBox root;

public PaneOrganizer() {
this.root = new \Box();

}

public VBox getRoot() {
return this.root;

¥

58/89

10/5/2023

ColorChanger: Our PaneOrganizer Class (3/4)

2. To write PaneOrganizer class:

C. Instantiate Label and Button,
passing in String representations
of text we want displayed
o myLabel and btn arelocal variables

because only need to access them
from within constructor

public class PaneGrganizer {
private VBox root;

public Paneorganizer() {
this.root = new \Box();

Latel myLabel = new Label(“CS15 Rocks”);
Button btn = new Button(‘Random
Color”);

i

public VBox getRoot() {
return this.root;

wres on o < 23 52 59/89

ColorChanger: Our PaneOrganizer Class (4/4)

2. To write PaneOrganizer class:

Instantiate Label and Button,
passing in String representations
of text we want displayed

o label and btn are

local variahles
because only need to access them
from within Constructor

D. Add Label andButtonas chidren of
root
o this.root.setSpacing (8) is

optional but creates a nice vertical
distance between Label and Button

public class Panedrganizer {
private VBox root;

public PaneOrganizer() {

this.root = new Box();

Latel label = new Label(“CS15 Rocks”);

Button btn = new Button(‘Random
Color”);

this.root.getChildren().addAll(
label,btn);

this.root.setSpacing(8);

}

public VBox getRoot() {
return this.root;
}

e o o 28 052 60/89

20

Containment/ Association Structure (1/2)

Scene is always contained
in App; but no need to
include in your own
containment diagrams...

61/89

10/5/2023

Containment/ Association Stru

(=1

cture (2/2)

This simplified diagram
will suffice!

with this handler

[r—) [e==] | = |
[62/89
Process: ColorChanger
Stage
. Create App class that extends .
javafx.application.Application ® 5 W Color CTanger
and implements start (where you set Label
Scene) —the standard pattern
. Create top-level PaneOrganizer class Faresiorn Color
that instantiates root Pane and provides
public getRoot() method to return the utton
Pane. In PaneOrganizer, instantiate a
Label and Button and add them as pane”(e.g., VBox) S~
children of root Pane ne (e-g-, Scene
This is the This is the grey
Set up a custom EventHandler that structure that background. ALL
changes Label’s color each time contains the Label elements in the
Button is clicked, and register Button and the But ton Scene Graph will

show up within
the Scene

63/89

21

Generating javafx.scene.paint.Colors (1/2)
« Let’s first determine what shoud happen to gererate the Label's random color

* We can generate most colors of visible color spectrum by additive mixtures of Red,
Green and Blue “primaries” generated by display hardware
o each display pixel has a R,G, and B sub-pixels to do this color mixing

e

il ks

il
4
e
[]

+ javafx.scene.paint.Color class has static method rgb(int red, int green, int
blue) that retums a cusiom color according to specific passed-in Red, Greén, and Blue
integer values in [0-255]

64/89

10/5/2023

o ex: Color.WHITE can be expressed as Color.rgb(255,255,255)

Generating javafx.scene.paint.Colors (2/2)

1. Defining our method to change
color of the label:

+ Math.random() returns arandom
double between O inclusive and 1

exclusive public void changelabelColor(Label mylabel) {
int red = (int) (Math.random()*256);
+ Muttiplying this value by 256 turns int green = (int) (Math.random()*256);
[0, 1) double |nto a[)o 256) double, int blue = (int) (Math.randam()*25%);
which we cast to a Color custonColor = Color.rgh(red,green,blie);
using (int) cast opera(or mylabel . setTextFill (custanCalor) ;

* Use these ints as Red, Green, and
Blue RGB values for a custom
javafx .scene .paint.Color

+ Call setTextFill on myLabel,
sing in new random Color
we've created

65/39

Outline

« GUls and JavaEX

* Javak cene Graph Hierarch

« VBox panes and PaneQrganizer
« Example: ColorChanger
« Event Handlingand lamhda expressions

66/89

22

Responding to User Input
* When should changelLabelColor be called?
* Need a way to respond to stimulus of Button

being clicked (like stimulus-response behavioral
leaming theory in psychology) 2 @ Cobkar Changss
+ We refer to this as Ev ent Handling
o asource (Node), such as a Button, generates an Flamdom
Event (such as a mouse click) and notifies all
registered instances of EventHandler
EventHandler is an interface, so all classes that
implement EventHandler must implement its

handle(Event event) method, which defines
response to event

o

note that handle(Event event) is called by JavaFX,
not the programmer

o

67/89

10/5/2023

EventHandlers (1/3)

« Button click causes JavaFXto generate a
javafx.event.ActionEvent

o ActionEvent is only one of many JavaFX EventTypes that are
subclasses of Event class

« Classesthatimplement EventHandler interface can
poly morphically handle any subclass of Event

o when aclass implements EventHandler interface, it must specify
what type of Event it should know how to handle

o how do we do this?

68/39

EventHandlers (2/3)

« EventHandlerinerface declared as:
public interface EventHandler<T extends Event>..
o the code inside literal < > is known as a “generic parameter” — this is magic for now
o lets you specialize the interface method declarations to handle one specific specialized
subclass of Event
o forces you to replace what is inside the literal < > with some subclass of Event, such as
ActionEvent, whenever you write a class that implements EventHandler interface

' = -

viarisce DvanitandarT axtends Fvenis

69/89

23

EventHandlers (3/3)

* EventHandler interface only has one metod, the handle method
« Parameter of handle will match the generic parameter of EventHandler type
o inthis case ActionEvent since Buttons generate ActionEvents

o JavaFX generates the specific event for you and passes it as an argument to your
handle method

o Note we dont actually use the data contained inan ActionEvent parameter for
button click handlers, but for MouseEvents and KeyEvents, you will need to use the
event parameter (durina next lecture!)

Hathed Frmmpry

e T

e I B e

o p— 70/89

10/5/2023

Registering an EventHandler (1/2)

* How do we leta Button know which EventHandler to execute when it's
clicked?

* We mustregister the EventHandler with the Button via the Button's
setOnAction method so that JavaFX can store the association with the
EventHandler and call it when the Button is clicked

o note the “generic parameter” <ActionEvent> since button clicks generate
ActionEvents

s an o < 105 71/89

Registering an EventHandler (2/2)

1. Write custom EventHandler class
(MyClickHandler), implementing
handle with previous code to generate
Color

o must create anassociation withthe

Label so the handler knows which
Label to change
2.In PaneOrganizer, register the
EventHandler with the Button, using
setOnAction method

3. When Button is clicked, handle
method in MyClickHandler is passed
an ActionEvent by JavaFX and is
then executed

publ ic class MyClickHandler implements EventHan dle rcAct ionEvent > {
priy abel ;

vate Label I

public MyC Lic kHandl er (Label mylabel) {
this.label = nyLabel;

}

verride
public voi

hand le(Ac tionEvent) {

int blue = (int 6);
Color custonColor = Color. rgh(red,green, blue) ;
this. label .se tText Fil 1(c us tonCol or) ;

}

1) (Mat h.r an don ()* 25

)
publ ic class PaneOrganizer {

public Paneorganizer() {
vious code el ded
Label label = new Label (“CS15 Rocks”);
Button btn = new Button (“Randon Color”) ;
btn. se ton Act ion (new MyC1i ckéand ler (1abe 1)) ;

72/89

24

Lambda Expressions (1/3)

» Creating a separate classMyClickHandler isnotthe
most efficient solution
o more complex EventHandlers may havetons of
associations with other nodes, all toimplement one handle
method
» Since EventHandler interface only hasone method, we
can use special syntax calleda lambdaexpression
instead of defining a separate classforimplementation

10/5/2023

of handle
73/89
public class PareOrganizer {
+ Lambda expression has different private \Box raot; parameter
syntax with same semantics as public Panedrganizer() {
typical method this.root = new VBox(); method
Label label = new Label(“CSL5Rocks”); bod
o first parameter list Button btn = new Button(“Randam Cola”); 4
this.root. getthildren() .addyl1(1abel, btn)y
o followed by -> this.root.setSpacing(8);
btn.setMAction((ActionEvent e) ->
o then an arbitrarily complex this.changelabelColor (label));
method body in curly braces ¥
+ in CS15, lambda expression public void changeLabelCalor(Label myLabel) {
body wil be one line calling int red = (int) (Math.randan()*256);
another method, typically witten int green = (int) (Math.random()*256);
yourself in the same dass; in int blue = (int) (Math ﬂmd)m() 6);
this case changeLabelColor Calor custanCalor = rgb(red, green, blue);
myLabel. se:Texthll(cusmm:clov),
. can omn curly braces when }
od body is one line }
[T — 74/89
public class PaneOrganizer {
. private \Box root;
* Lambda expression o N o
PPN public Panedrganizer
shares scope with its Hie root o ner VBOX();
enclosmg method Label label = new Label(“CSL5 Rocks”);
Button btn = new Button(“Randam Color”);
o can access myLabel or this.root.getthildren() .addAl1(1abel, btn);
btn without setting up a A e e Flonivert o)
class association this.chagelabeltolor (label));
}
* Lambda expression body public void changelabelCalor(Label myLabel) {
h int red = (int) (Math.randan()*2%);
is then storedby JavaFX e e o
to be called once the i blue - (i) (athoranon(BG)
: : or custanColor = red,green, blue);
button is clicked myLabel. seﬂexthn(msmmcalor),
}
}
75/89

25

The Wh0|e App Irport J avaix. scene .layout.VEox ;
- mport J avafx scene .contr ol.Label;

ColorChanger it . e e

public c lass P aneor ganize r {

private VBox root:

publ ic Pan edrga nizer() {

import § vaf. stage Stage 5 this.root = new VBox();
imort Javate. scene Scene Label label = new Label (“CS15 Rock s”);
port J avafx. appl cation .Appli cation; Button btn = new Button (“Ran dom Co lor”) ;

this.r oot.g etChil dren() .addA 11(1ab el, bt n);

public ¢ lass App ex tends Application (thianoot.s etSpac ng(8) §
bt se tOnAc tion((Action fvent event) -
gove rride hi -changetabe color (abe1);
pubL ic voi d sta rt(sta ge stage) {)
Pancor ganiz er org anizer = new Pane Organ izer() ;
Scene scene = new Scene (organizer. getRoot(),180,80) ; publ ic VBox get Root() {
Stage. setSc ene(sc ene); return this .root;
stage. setTi tle("Color Change r");)
stage. show();
} private vo id changela belCol or(Label my Label) {
int red = (int) (Math.random ())5

it green -) (vt randon() * 350 ;
int blue = (int) (Math. random() * 256);
oo Coseo scator 01 o lvan(hed, “grokn, blue);

myLabe 1.set TextFi 11(cus toaCo lor);

76/89

10/5/2023

Outline

 GUIs and JavaFX

« JavaFX Scene GraphHierarch

+ VBox panes and PaneQrganizers

« Example: ColorChanger

» Event Handlingand lambda expression.

* Logical vs Graphical Containmentwith JavaEX

77/89

Logical vs. Graphical Containment/Scene Graph

x Stage
= B 5 8 Cor D
Label —» -
——xu| —1
—
=
== Button VBox Scere

Graphically, VBox is a pane contained within Scene, but logically, VBox is contained
within PaneOrganizer

Graphically, Button and Label are contained within VBox, but logically, Button
and Label are contained within PaneOrganizer, which has no graphical
appearance

Logical containment is based on where instances are instantiated, while graphical
containment is based on JavaFX elements being added to other JavaFX elements
via getChildren.add(..) method, and on the resulting scene graph

78/89

26

Announcements
Code from today’s lecture is available on Github — mess around for
pracficel

Frun Ninja deadlines
Early handin Smday 10009

al
: Laté'Wgn%an%ursF‘%M 1

Confused about the Javadocs? Be sure to submit the Fruit Ninja
Javadocs 9u|z Pe”or to coding to make sure you have a solid grasp on

We will hold TA hours over the long weekend
o Monday hours may be more limited because they are optional for our TAs

Debuggln hours start today ?/
o Read the message on Ed for full debugging hours logistics

10/5/2023

-~ 79/89
Topicsin SRC: Antitrust
and Regulating Big Tech
£1eCS 1% 816 TECH
80/89
What is Antitrust?
anti-trust
againg é/ \9 monopolies
o,
* Antitrustis legislationto prevent monopdlies!
it v O 520 W92 81/89

27

https://github.com/brown-cs15-2022/colorChanger
https://docs.google.com/forms/d/e/1FAIpQLSf7fGUp7rafzr2q3jy1TTYM7_BMLD4okH21wDoj2gYYDlsRfg/viewform?usp=send_form
https://docs.google.com/forms/d/e/1FAIpQLSf7fGUp7rafzr2q3jy1TTYM7_BMLD4okH21wDoj2gYYDlsRfg/viewform?usp=send_form

o 03 -

History of US Antitrust

/

10/5/2023

Federal Trade Commission, Cifford 2/8%
Traditional antitrust policy needsto
evolve
Some platforms are more Platform use evolves Price-based regulation
popular than others quickly and often doesn’t work on free
unpredictably platforms
e souce Feepic J— 83/89

Lina Khan (current chair of the FTC)

e B o i ‘ e

Amazons Anbitrast
Antagondst Has a =
E‘rm.ﬂ!i'rmugl'l IMdea
e ey L i P e
a = e
ELE, Apvani Assmipass off epally Prodoctong - - - B
Menapady Rerisd »

i Dhaliss

i v w20, FHEL

28

TALE INSICHTS:
B arwy Vormp——

Why ‘Breaking Up’ Big Tech Probably Won't
Work

9 X

I

Woud we get i Meta began ; Alternative forms
more integrating their e

competition? backends of regulation

85/89

Source: Yale Insights, 2019

Internal regulation?
1o ¥ QA Meta

= — Transparéency

An external advisory council to help
advance the responsible
developmient of Al

‘The X Rules

Image sources: Microsoft Meta, Google, X

Overall limits of internal regulation in big
tech

%I

o w— RS

What happens when

Who gets to decide How strictly are the

the rules and set a guidelines enforced ethical choices come

moral path for the —and by whom? at the expense of
industry? profit?

10/5/2023

87/89

29

10/5/2023

; In Its First Monopoly Trial of
Regulationand pc " tern Internet Eva, ULS.
Sets Sights on Google

- Ther Whomarerk irial, sl i b Toraclary, sowgm wp ofbortn o
Fonrin Apprees Antenst B0 Tangetion o -
g Tech Dominance

) Bil Gates, 198

Source: US News NTimesSp 12, 223

Across the ocean...

Antitrust: Commission fines Google €1.49 billion for

abusive practices in online advertising

E.U. Takes Aim at Big Tech’s Power
With Landmark Digital Act

T Deigital Mlarkets Act

1 i Bhae e mwereping: begislalion o

regilii bl s & Exiropaiain privacy L e jucod] m 2008

e sure: e comaBNED

30

	Slide 1: Lecture 9
	Slide 2
	Slide 3: switch Statements (1/2)
	Slide 4: switch Statements (2/2)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: switch Example (6/6)
	Slide 11: TopHat Question
	Slide 12: TopHat Question
	Slide 13: TopHat Question
	Slide 14: Outline
	Slide 15: Pixels and Coordinate System
	Slide 16: What is JavaFX?
	Slide 17: Creating Applications from Scratch
	Slide 18: Graphical User Interface (GUIs)
	Slide 19: Components of JavaFX application (1/2)
	Slide 20: Components of JavaFX application (2/2)
	Slide 21: Creating GUIs With JavaFX: Stage (1/2)
	Slide 22: Creating GUIs With JavaFX: Scene (2/2)
	Slide 23: Outline
	Slide 24: JavaFX Scene Graph Hierarchy
	Slide 25: JavaFX Scene Graph Hierarchy: Nodes
	Slide 26: JavaFX Scene Graph Hierarchy: Node Properties
	Slide 27: The root of the Scene
	Slide 28: Constructing the Scene Graph (1/2)
	Slide 29: Constructing the Scene Graph (2/2)
	Slide 30: Adding UI Elements to the Scene (1/2)
	Slide 31: Adding UI Elements to the Scene (2/2)
	Slide 32: root.getChildren().add(…) in action
	Slide 33: Removing UI Elements from the Scene
	Slide 34: Populating the Scene Graph (1/3)
	Slide 35: Populating the Scene Graph (2/3)
	Slide 36: Populating the Scene Graph (3/3)
	Slide 37
	Slide 38: Removing a Node with children (1/3)
	Slide 39: Removing a Node with children (2/3)
	Slide 40: Removing a Node with children (3/3)
	Slide 41: TopHat Question
	Slide 42: Outline
	Slide 43: VBox layout pane (1/5)
	Slide 44: VBox layout pane (2/5)
	Slide 45: VBox layout pane (3/5)
	Slide 46: VBox layout pane (4/5)
	Slide 47: VBox layout pane (5/5)
	Slide 48: CS15 PaneOrganizer Class (1/2)
	Slide 49: CS15 PaneOrganizer Class (2/2)
	Slide 50: Outline
	Slide 51: Our First JavaFX Application: ColorChanger
	Slide 52: Process: ColorChanger
	Slide 53: ColorChanger: App class (1/3)
	Slide 54: ColorChanger: App class (2/3)
	Slide 55: ColorChanger: App class (3/3)
	Slide 56: Process: ColorChanger
	Slide 57: ColorChanger: Our PaneOrganizer Class (1/4)
	Slide 58: ColorChanger: Our PaneOrganizer Class (2/4)
	Slide 59: ColorChanger: Our PaneOrganizer Class (3/4)
	Slide 60: ColorChanger: Our PaneOrganizer Class (4/4)
	Slide 61: Containment / Association Structure (1/2)
	Slide 62: Containment / Association Structure (2/2)
	Slide 63: Process: ColorChanger
	Slide 64: Generating javafx.scene.paint.Colors (1/2)
	Slide 65: Generating javafx.scene.paint.Colors (2/2)
	Slide 66: Outline
	Slide 67: Responding to User Input
	Slide 68: EventHandlers (1/3)
	Slide 69: EventHandlers (2/3)
	Slide 70: EventHandlers (3/3)
	Slide 71: Registering an EventHandler (1/2)
	Slide 72: Registering an EventHandler (2/2)
	Slide 73: Lambda Expressions (1/3)
	Slide 74: Lambda Expressions (2/3)
	Slide 75: Lambda Expressions (3/3)
	Slide 76: The Whole App: ColorChanger
	Slide 77: Outline
	Slide 78: Logical vs. Graphical Containment/Scene Graph
	Slide 79: Announcements
	Slide 80
	Slide 81: What is Antitrust?
	Slide 82: History of US Antitrust
	Slide 83: Traditional antitrust policy needs to evolve
	Slide 84: Lina Khan (current chair of the FTC)
	Slide 85
	Slide 86: Internal regulation?
	Slide 87: Overall limits of internal regulation in big tech
	Slide 88: Regulation and policy
	Slide 89: Across the ocean…

