CSCI 1590 Intro to Computational Complexity

Applications of and Limits on Diagonalization

John E. Savage

Brown University

February 23, 2009

Summary

1 Time Hierarchy Theorem

Oracle Turing Machines

3 Under Relativization Both P = NP and $P \neq NP$

Time Hierarchy Theorem

If the TM M on input \mathbf{x} runs in time $t(\mathbf{x})$, the Universal TM U defined previously can simulate this computation in time $O(t^2(\mathbf{x}))$.

To see this, observe that U may bounce back and forth between the description $\lfloor M \rfloor$ of M at the beginning of a tape to the head position, taking at most $O(t(\mathbf{x}))$ steps to simulate one step of M.

Theorem

Let $f: \mathcal{N} \mapsto \mathcal{N}$ and $g: \mathcal{N} \mapsto \mathcal{N}$ be proper resource functions and let $f(n) \log f(n) = o(g(n))$. Then,

$$DTIME(f(n)) \subsetneq DTIME(g(n))$$

Time Hierarchy Theorem

Proof

The result uses the fact that a universal TM U can simulate a TM M on input of length n in $O(n \log n)$ steps.

We prove weaker result, namely, that $DTIME(n) \subseteq DTIME(n^{2.10})$.

Given an input string \mathbf{x} , let $M_{\mathbf{x}}$ be the TM with description $\lfloor M \rfloor = \mathbf{x}$. If \mathbf{x} is not well-formed, let it represent the TM that has one state and accepts all inputs.

Let D be a DTM that simulates $M_{\mathbf{x}}$ with the universal TM U on input \mathbf{x} for $|\mathbf{x}|^{2.1}$ steps. If $M_{\mathbf{x}}$ outputs an answer in $\{0,1\}$ (accept, reject), let D produce $D(\mathbf{x}) = 1 - M_{\mathbf{x}}(\mathbf{x})$. Otherwise, let $D(\mathbf{x}) = 0$.

D accepts a language $L \in \mathsf{DTIME}(n^{2.10})$. We show that $L \not\in \mathsf{DTIME}(n)$.

Time Hierarchy Theorem

Proof (cont.)

Assume that there exists TM T that decides $\mathbf{x} \in L$ in time cn for some constant c > 0, $n = |\mathbf{x}|$. We show a contradiction.

Given T, for every $\mathbf{x} \in \Sigma^*$, $T(\mathbf{x}) = D(\mathbf{x})$. U simulates T on input \mathbf{x} in time at most $d|\mathbf{x}|^2$ for some constant d > 0.

There exists n' such that for $n \ge n'$, $n^{2.1} > dn^2$. Because T is equivalent to an infinite set of TMs, there is a description \mathbf{x} of a TM equivalent to T of length greater than n'. Given the definition of D, on input \mathbf{x} , $D(\mathbf{x}) = 1 - T(\mathbf{x}) \ne T(\mathbf{x})$. We have a contradiction and conclude that T does not exist.

Oracle Turing Machines

Diagonalization uses two facts, a) each TM can be represented by a computable string and b) a universal TM exists that simulates another TM on its input with a small (logarithmic) overhead. These properties apply to oracle TMs. We show that oracle TMs can't resolve whether or not $\mathbf{P} = \mathbf{NP}$.

Definition

An oracle Turing machine (OTM) M is TM and an oracle $O \subseteq \{0,1\}$. M has three special states, q_{oracle} , q_{yes} , and q_{no} and a special read/write tape. M writes a string on this tape. When it enters state q_{oracle} , the oracle determines whether or not this string is in O. If so, it moves M to state q_{yes} in one step. Otherwise, it moves M to q_{no} in one step. M can be deterministic or nondeterministic.

Oracle Turing Machines

Definition

For $O \subseteq \{0,1\}$, \mathbf{P}^O is the class of languages recognized by a PTIME DTM with oracle O. Similarly, \mathbf{NP}^O is the class recognized by a nondeterministic PTIME NTM with oracle O.

Proposition

- **1 co**SAT are "No" instances of SAT. Then, **co**SAT \in **P**^{SAT}.
- **2** If $O \in \mathbf{P}$, $\mathbf{P}^O = \mathbf{P}$.
- **3** Let EXPCOM be the language described below.

$$\{ \langle M, \mathbf{x}, 1^n \rangle | M \text{ outputs } 1 \text{ on } \mathbf{x} \text{ in } 2^n \text{ steps} \}$$

Then, $P^{\text{EXPCOM}} = NP^{\text{EXPCOM}} = EXPTIME$.

Oracle Turing Machines

Proof.

- To decide the "No" instances of SAT, write an instance ϕ of SAT on the oracle tape. Flip the response of the oracle.
- ② Clearly $P \subseteq P^O$. If $O \in P$, the oracle is redundant; we can simply incorporate its TM into a TM in P. Thus, $P^O \subseteq P$.
- Olearly, **EXPTIME** \subseteq $\mathbf{P}^{\mathrm{EXPCOM}}$ the oracle permits an exponential-time computation in one step. Let $M \in \mathbf{NP}^{\mathrm{EXPCOM}}$. In exponential time one can examine the exponentially many choices implied by a polynomial-length certificate and the polynomially many invocations of the EXPCOM oracle. Thus, $\mathbf{NP}^{\mathrm{EXPCOM}} \subseteq \mathbf{EXPTIME}$. It follows that

 $\textbf{EXPTIME} \subseteq \textbf{P}^{\mathrm{EXPCOM}} \subseteq \textbf{NP}^{\mathrm{EXPCOM}} \subseteq \textbf{EXPTIME}$

Under Relativization Both P = NP and $P \neq NP$

Recall that diagonalization uses two facts, a) each TM can be represented by a computable string and b) a universal TM exists that simulates another TM on its input with a small (logarithmic) overhead. These properties apply to oracle TMs.

A universal oracle TM with oracle O, OU, exists that can simulate an arbitrary oracle TM using small (logarithmic) overhead using a computable description of an oracle TM.

Theorem (Baker, Gill, Solovay 1975)

There are oracles O_1 and O_2 such that $\mathbf{P}^{O_1} = \mathbf{NP}^{O_1}$ and $\mathbf{P}^{O_2} \neq \mathbf{NP}^{O_2}$.

Diagonalization alone does not suffice to separate P from NP!

Under Relativization Both P = NP and $P \neq NP$

Proof

For the first statement, let $O_1 = \text{EXPCOM}$. For the second, we construct a language B. Let U_B be the following unary language:

$$U_B = \{1^n \mid \text{some string of length } n \text{ is in } B\}$$

For every oracle B, $U_B \in \mathbf{NP}^B$ because an NTM given 1^n can guess a string $\mathbf{x} \in B$ and then use the oracle to verify it. We construct a B such that $U_B \notin \mathbf{P}^B$.

B is constructed in stages. At ith stage, $1 \le i$, strings are added based on oracle queries made by ith oracle TM M_i^B , M_i with oracle B, so that it cannot decide U_B in $\le 2^n/5$ steps.

Under Relativization Both P = NP and $P \neq NP$

Proof (cont.)

Initially B is empty. At ith stage choose n larger than the length of any string currently in B. Run M_i^B on input 1^n for $2^n/5$ steps. If M_i^B issues a query string whose status has been determined at earlier stage, give the same response to M_i^B .

If M_i^B halts in $2^n/5$ steps on input 1^n , we make sure that its answer is incorrect. Do this by not including any string of length n in B if M_i^B accepts (ensures that 1^n is rejected) and by including some string of length n in B that has not been queried (ensures that 1^n is accepted). (Such a string exists since at most $2^n/5$ queries have been issued.)

If M_i^B doesn't halt in $2^n/5$ steps on input 1^n , the language it accepts $L_i \notin \mathbf{P}^B$. If M_i^B halts in $2^n/5$ steps on input 1^n , it doesn't accept U_B . It follows that U_B is not in \mathbf{P}^B or that $\mathbf{P}^B \neq \mathbf{NP}^B$.