
CS166 Computer Systems Security Spring 2018

Handin Project

First handin due: 11:59 pm, Thursday March 22
Second handin due: 11:59 pm, Thursday April 5

Contents

1 Introduction 1

2 Problem 2

3 Assignment 2

4 First Week vs Second Week 3

4.1 Grading . 3

4.1.1 Week 1 . 3

4.1.2 Week 2 . 4

4.1.3 Interactive Grading . 4

5 CS162 4

6 Handing In 5

6.1 Week 1 . 5

6.2 Week 2 . 5

7 Hints 5

1 Introduction

Spectre University’s computer science department uses a handin system very similar to the one we have at
Brown - each course has a directory in a shared filesystem, and running cs666_handin will invoke a binary
which is marked setgid (it will execute as the TA group, cs-666ta) which will create a tar archive of all of
the files in your handin, and save them to a location in the course’s handin directory. In addition to this,
the Spectre University Department of Computer Science has implemented an autograder which can extract
a student’s handin and automatically grade it by checking that answers are correct and running test suites
for code submissions. These grades are automatically collected in a course-wide grades database.

In this project, you’ll explore all of the ways that you can break this system in order to artificially modify
your grades, steal answers, view or changes others’ grades, and more.

1

cs666_handin
cs-666ta

CS166 Computer Systems Security Spring 2018

2 Problem

You (Alice) are a student in Spectre University’s CS666, “Computer Systems Security.” Presently, there’s one
assignment out—“Ivy” (the same problem as on Brown CS166’s Cryptography project). In this assignment,
you’re asked to both recover the key used by a simulated router, and also to write code to automatically
perform this attack in the future. You’re given:

• An ivy binary at /course/cs666/student/alice/ivy/ivy

• Template code of an attack at /course/cs666/pub/ivy/ (main.go and ivy.go)

You’re asked to turn in two files: KEY, containing the key you recovered from your binary, and main.go,
which implements your attack (you are asked not to turn in ivy.go; the autograder will supply its own copy
of ivy.go to test your solution). You can hand these in by running cs666_handin ivy from a directory
containing your KEY and main.go files. You can view your current grade on this and other assignments by
running report.

3 Assignment

There’s a copy of this infrastructure running on a VM at a unique external IP address for every student
in the class. You can ssh to it by running /course/cs1660/bin/ssh_handin from a department machine.
Your username on the VM is alice, and your password is iamalice.1 Additionally, we’ve provided another
user, bob (password iambob), whose account you can use to test attacks against other students (for example,
stealing other students’ grades or handins).

Your task is simple: break CS666’s course infrastructure in as many ways as possible. Some examples of
what you might be able to do include:

• View other students’ grades

• Modify your own grades

• Get access to answers to problems

• Hand in another student’s handin as your own

• Manage to run code as the TA group

It is important to understand the distinction between vulnerability and exploit for this project. For this
project, a vulnerability is the bug that exists in the code you’re attacking that allows you to carry out an
exploit. In this project, you will not be allowed to submit multiple exploits that take advantage of the same
vulnerability. If you are unsure of whether two vulnerabilities count as unique or not, please
ask the TAs rather than potentially losing points! An exploit, on the other hand, is the thing that
takes advantage of the vulnerability. What you will be submitting in this project are exploits, and each
submission will be scored based on the severity of the exploit. The number of points given for an exploit is
based on what you are able to do with that exploit, as outlined in this table:

1Note: if you want to scp files to or from the machine, you can do so by passing flag -i /course/cs1660/student/

<your-username>/handin/ssh-key to scp, and using alice@IP as the remote.

2

ivy
/course/cs666/student/alice/ivy/ivy
/course/cs666/pub/ivy/
main.go
ivy.go
KEY
main.go
ivy.go
ivy.go
cs666_handin ivy
KEY
main.go
report
/course/cs1660/bin/ssh_handin
alice
iamalice
bob
iambob
scp
-i
/course/cs1660/student/<your-username>/handin/ssh-key
/course/cs1660/student/<your-username>/handin/ssh-key
scp
alice@IP

CS166 Computer Systems Security Spring 2018

Exploit Description Points
Arbitrary Code Execution Execute arbitrary code as the TA group. 10
Data Modification Modify data that you should not be allowed to modify. 7
Data Exfiltration Get access to data that you should not have access to. 6
Data Theft (no exfiltration) Trick the infrastructure into believing that somebody else’s data

is your own (for example, use another student’s handin as your
own). If you manage to also get access to the data yourself, that
counts as data exfiltration, and not just data theft.

4

Metadata Exfiltration Get access to metadata that you should not have access to. Meta-
data includes whether or not other students have handed in, the
names (but not contents) of files in restricted parts of the file tree
(under /course/cs666), etc.

2

Note: If an exploit is eligible for more than one of these categories, then it will be scored based on the
category worth the highest number of points.

4 First Week vs Second Week

NOTE: This section describes important details about how this project will be graded. Read
it closely.

This project is broken down into two weeks. In the first week, you have access only to the infrastructure. In
the second week, we will release the source code for the all of the various components that you are attacking.
You will be given a significant bonus for exploits submitted during the first week.

4.1 Grading

CS166 students will be graded out of 36 points, and will be capped at 44 points. CS162 students will be
graded out of 29 points, and will be capped at 36 points.

Note that we are aware of a total of 47 points’ worth of possible exploits for the CS166 version
of the project, and 43 points’ worth of possible exploits for the CS162 version. You should aim
to submit a number of exploits in the first week, or else you’ll be left having to find almost
every vulnerability that we’re aware of existing in the second week in order to get full credit.

4.1.1 Week 1

Due 11:59pm, Thursday March 22

Exploits submitted during the first week will be given a 50% bonus (that is, they will be worth 150% of the
score that they would normally be given). The requirements for the exploits submitted during the first week
are as follows:

• Exploit (50%) - all code, payloads, etc, required to perform the exploit. All of your exploits MUST
be scripted to receive credit.

• README (50%) - a detailed README documenting the following:

– The exploit severity category your exploit falls into, including a justification. The exploit that you
submit should demonstrate this severity category (for example, if you claim data modification,
your exploit should actually modify data in a way that the TAs can verify).

3

/course/cs666
README
README

CS166 Computer Systems Security Spring 2018

– A detailed explanation of how you believe the components that your exploit attacks work. This
should include a detailed explanation of how you came to this belief that is detailed enough to
convince a third party that your model is correct.

– A detailed description of how your exploit works with your model of the components’ functioning.
This should be detailed enough to convince a third party that your approach is likely to work
even without trying it themselves

– An in-depth analysis of how the vulnerability that your exploit exploits could be fixed.

Note that the README is worth 50% of the credit for a reason - we expect you to take the README just as
seriously as the exploits themselves. We will adhere to this expectation in grading.

4.1.2 Week 2

Due 11:59pm, Thursday April 5 Exploits submitted during the second week will not be given any bonus.
The requirements for the exploits submitted during the second week are as follows:

• Exploit (70%) - all code, payloads, etc, required to perform the exploit. All of your exploits MUST
be scripted to receive credit.

• README (30%) - a detailed README documenting the following:

– The exploit severity category your exploit falls into, including a justification. The exploit that you
submit should demonstrate this severity category (for example, if you claim data modification,
your exploit should actually modify data in a way that the TAs can verify).

– A detailed description of how your exploit works, including references to relevant sections/lines
of code or relevant comments in the source. This should be detailed enough to convince a third
party that your approach is likely to work even without trying it themselves.

– An in-depth analysis of how the vulnerability that your exploit exploits could be fixed.

The same note about the seriousness of the README applies here as it does for week 1 exploits.

4.1.3 Interactive Grading

After the project is over, there will be interactive grading in which you will meet with a TA and demonstrate
all of your exploits. We will send out details about this once the project is over.

5 CS162

For students in CS162, at least one exploit must clean up after itself. That is, at least one exploit must, in
addition to performing whatever malicious action it is designed for, remove all evidence of itself ever having
existed. For example, if the exploit payload is a handin, then the exploit should overwrite this handin with
a non-malicious one so that future investigation will not reveal that the exploit was ever used.

The exploit which cleans up after itself can be one submitted in either the first or second week. The only
requirement is that the exploit would normally (without cleanup) leave evidence of itself. If you’re unsure
of what qualifies, please ask the TAs. Whichever exploit you choose as the exploit to clean up after itself
should have a note saying this in its README.

For this exploit, you will be given a score on a scale from 0 through 1 of how successfully your exploit cleans
up after itself. 0 is given for an exploit which makes no attempt at cleaning up after itself, while 1 is given
for an exploit which cleans up after itself so well that even an in-depth analysis of filesystem metadata,

4

README
README
README
README
README

CS166 Computer Systems Security Spring 2018

system logs, and so forth, will not reveal that it was ever used. As a matter of principle, a score of 1 is likely
impossible, since it would probably require root privileges, and we are not aware of any exploits which will
give you root privileges on your VMs. However, that doesn’t mean that you can’t get close.

This score will be multiplied by the score for the exploit overall, and this product will be the score that you
are given on this exploit. Note that if none of your exploits clean up after themselves, we will
simply pick one, and give it a 0 score for cleanup, and thus you will not get credit for that
exploit.

6 Handing In

6.1 Week 1

In order to hand in your week 1 submission, run cs166_handin handin_cs166_week1 (or, for CS162 stu-
dents, cs166_handin handin_cs162_week1) from a directory containing all of your week 1 exploits. Each
exploit should be in its own subdirectory, each with its own separate README and exploit code, payloads, etc.

6.2 Week 2

In order to hand in your week 2 submission, run cs166_handin handin_cs166_week2 (or, for CS162 stu-
dents, cs166_handin handin_cs162_week2) from a directory containing all of your week 2 exploits. Each
exploit should be in its own subdirectory, each with its own separate README and exploit code, payloads, etc.

7 Hints

There’s a binary in your VM called whoami at /home/whoami which is essentially a more powerful version of
the normal whoami command - it prints the uid, euid, gid, and egid of the process that it runs as (and thus,
by default, that its parent process runs as). This may be useful in testing some of your exploits.

You may find the following tools useful. All of these are installed on your VMs. See their manpages for
details on how to use them.

• strace

• gdb

• objdump

• strings

• readelf

• go tool nm - print a list of the sections of a Go binary with byte offsets (for help, do go tool nm -h)

• ps

A general note of advice: Do not fall into the trap of thinking that you should only look for certain types
of vulnerabilities, such as those that have been shown in class. Many of the vulnerabilities in this project
will either be new to you, or will at the very least not be exactly the same as you have seen before. Two
approaches will be very useful to you here. First, you should aim to understand how the components you
are attacking work. The better you understand how they work, the more likely you will be to be able to
spot potential vulnerabilities. Second, if things seem suspicious to you, follow that instinct. If, for example,

5

cs166_handin handin_cs166_week1
cs166_handin handin_cs162_week1
README
cs166_handin handin_cs166_week2
cs166_handin handin_cs162_week2
README
whoami
/home/whoami
whoami
strace
gdb
objdump
strings
readelf
go tool nm
go tool nm -h
ps

CS166 Computer Systems Security Spring 2018

you see a component behaving in a way that you think might be vulnerable, poke at it more. See if you
can really nail down exactly how it works. Once you’ve done that, see if you can find a place where the
design of the software—how it was intended to work—is mismatched with how it actually works in practice.
As an example of this sort of thinking, consider the examples of vulnerable setuid programs discussed in
class. Imagine how the developer might have believed that the setuid script was secure, and then consider
the details of the system that invalidate that assumption.

You will likely find that, having discovered a vulnerability, it is no simple task to construct an exploit for
it. Do not be surprised if this happens—constructing an exploit is the practice to a vulnerability’s theory.
As the saying goes, “in theory, theory works in practice; in practice, it doesn’t.” Do not be afraid to search
online for tools or techniques that can help turn the exploit from theory into practice (but make sure to
stay within the bounds of the collaboration policy). It is expected that you may need to teach yourself more
than has been covered in lecture, at least when it comes to the technical details of getting some of your
exploits working. If you find yourself at a point where you feel that you haven’t been taught how to do
something, that’s fine—none of the vulnerabilities in this assignment require particularly complex, subtle,
or extravagant techniques to exploit, so you should feel confident that you can do it if you set your mind to
it.

6

	Introduction
	Problem
	Assignment
	First Week vs Second Week
	Grading
	Week 1
	Week 2
	Interactive Grading

	CS162
	Handing In
	Week 1
	Week 2

	Hints

