
Parametric Polymorphism
Lecture Notes for cs173, Fall 2001

sk , rob , anddbtucker

October 31, 2001

I am Lambda Man!
—Lambda Man (Don Blaheta), in a special cs173 guest appearance

So far we’ve only been working with number lists. What other types of lists might we
want? Surely a list ofbool’s would be useful. How about a list of functions? A list of
continuations?

Clearly we want the ability to create a list of any type. We would like to be able to de-
clare, for example, something is of typeA list, whereA is a type variable. In addition,
we want to write generic functions that work on these lists.

Let’s assume we have a Scheme with type annotations and static type checking. In this
typed Scheme, we can writemapas follows:

(define(map f : (num→ num)
l : nlist) : nlist

(cond
[(empty? l) empty]
[else(cons(f (first l))

(map f (rest l)))]))

This functionmapwill not work generically, since we’ve hardcoded the types inside
the function. Let’s apply a standard CS technique: If we aren’t sure of a value, we can
parameterize it and supply it later. We will let thetype variables AandB be arguments
to map:

(definemap
(lambda (A B)

(lambda (f : (A→ B) L : A list) : B list
(cond

[(empty? L) empty]
[else(cons(f (first L))

(map f (rest L)))])))

This function won’t parse, sinceA andB aren’t annotated with types. Furthermore,
even if it did parse, it isn’t legal because types (e.g.,num, bool) are not values in the

1



language. We’ll address these problems later, and continue with the example for now.

The functionmaptakes typesA andB and returns a function which operates on lists of
the specified types. Let’s see how we could usemapto square a list of numbers:

(define ls (list 1 2 3))

(define(square x: num) : num(∗ x x))

((map num num) square ls)

The above definition ofmap isn’t right—in the recursive call tomap, it doesn’t pass
the types as arguments. We can fix that problem by simply passingA andB along:

(definemap
(lambda (A B)

(lambda (f : (A→ B) L : A list) : B list
(cond

[(empty? L) empty]
[(cons? L) (cons(f (first L))

((map A B) f (rest L)))])))

We have another problem—what is the type ofcons? It takes an element of typeA and
a list of typeA list, then returns a list of typeA list. Soconsis parameterized over
the typeA just asmapis. In fact, all the constructors, predicates, and selectors created
when we defined theA list datatype are parameterized overA. The contracts to these
functions follow:

cons: A → (A × A list → A list)
empty : A → A list
first : A → (A list → A)
rest : A → (A list → A list)
cons?: A → (A list → bool)
empty? : A → (A list → bool)

(definemap
(lambda (A B)

(lambda (f : (A→ B) L : A list) : B list
(cond

[((empty? A) L) (empty B)]
[((cons? A) L) ((cons B) (f ((first A) L))

((map A B) f ((rest A) L)))])))

This treatment of parameterized types raises several questions:

1. Are types values?

2. Since we can create functions over types, and apply functions to types, can’t we
just compute everything with types?

2



3. SinceA andB are specified as parameters tomap, and all function parameters
must be annotated with their types, what are the types ofA andB themselves?

We don’t want types to be values in our language, since it breaks the distinction we
have made between a static universe of types, and a dynamic one of values. Once we
conflate the two, what good do types do us? If we can involve them in computations,
then type checking could become undecidable, in which case they become useless.

The solution is to evaluate the code in two phases. In the first phase, we do all the
necessary computations over types. To mark this difference, we denote functions over
types (or,type functions) usingΛ. The functionmapbelow is one example of a type
function. Each of the functions with contracts listed above is also a type function. We
use the syntax{ft t1 ... tn} whereft is a type function andti are actual types to denote
type application:

(definemap
(Λ (A B)

(lambda (f : (A→ B) L : A list) : B list
(cond

[({empty? A} L) {empty B}]
[({cons? A} L) ({cons B} (f ({first A} L))

({map A B} f ({rest A} L)))])))

The first phase evaluates the type functions and type applications which perform type
elaboration. After this phase, all types are explicitly known. The second phase evalu-
ates the resulting program.

There’s something subtle going on in phase one. At run-time, actual types are passed
into mapas variablesA andB. Phase one then elaborates{empty? A B}, {empty B},
{cons? A}, etc with type information. But what about when we get to the recursive call,
{map A B}? In order to elaborate this with type information, we need to pass in the
explicit types assigned toA andB back tomap. This could go on forever if we aren’t
careful. It turns out that the compiler needs to bail us out. The compiler will (hope-
fully) recognize that each recursive call tomapis exactly the same, and thus phase one
will terminate.

We really have two different languages here, one for type expansion, and one for the
regular evaluation. How do we prevent the evaluation of the type expansion language
from diverging? One solution is to impose a second type system on top of that lan-
guage, where this second type system is strongly normalizing.

Note that we have expanded the legal set of types: We now allow typevariables(e.g.,
A andB in mapabove), which were not previously in our grammar. We do have type
variables in our proof rules, but these are used so that we don’t have to write typing
rules with specific types hardcoded in the rules.

3



The kind of polymorphism we’ve seen here is calledparametric polymorphismwhich
is a kind ofexplicit polymorphism. It seems to be a real pain to program in this lan-
guage, since we have to explicitly write down a type every time we use a function.
Who would want to program in such a language? In fact, many people do—this is
effectively what C++ template programmers write, especially when they use the STL.
(They don’t always realize this, since many of these type abstractions and applications
are hidden in the STL routines, and anyway the syntaxes—function application vs.
template specialization—are quite different.)

4


