
The Swine Before Perl

Shriram Krishnamurthi
Brown University and PLT

Why We’re Here

Any sufficiently complicated C or Fortran
program contains an ad hoc, informally-
specified, bug-ridden, slow implementation
of half of Common Lisp.

—Phil Greenspun’s
Tenth Law of Programming

Our Corollary

Any sufficiently useful C or Fortran program
needs to be “sufficiently complicated”

We’re here to provide the heavy lifting

I’m here to motivate how Scheme does this

The Swine: PLT Scheme

“Whatever: can you
program in it?”

Books

n Teach Yourself Scheme in Fixnum Days

n How to Use Scheme

n Extensive manuals and user support

n It’s all free of cost

Software #1: MzScheme

n Quick, textual shell: ideal for scripting
n Rich module system
n Rich mixin-based object system
n Embeddable in applications
n Garbage collection across C/C++/Scheme
n Libraries for lots of 3- and 4-letter

acronyms (XML, CGI, ODBC, COM, …)

Software #2: DrScheme

n Fully-graphical programming environment

n Full portability: Unix, Mac and Windows

n Special support for beginning Schemers

Software #3: Type Inference

n Two PhD theses and counting

n Graphically displays inferred types

n Let’s see how it works …

Software #4: Web Server

n Dynamic content generation is a breeze

n HTML/XML transformation is a breeze

n Trivially build use-once security policies

n For dynamic content, 8x speed of Apache

The Gems

The Gems

n Closures
n Continuations

The Gems

n Closures
n Continuations

The Crown Jewels

The Gems

n Closures
n Continuations

The Crown Jewels

n That stupid parenthetical syntax
n Macros
n Tail calls

The Gems

n Closures
n Continuations

The Crown Jewels

n That stupid parenthetical syntax
n Macros
n Tail calls

The
Lesser
Gems

A Pearl

On Stealing Beauty –
Where you should start

Problem

Pattern-matcher for streams:

n Consumes a stream of input tokens
n Must be easy to write and read
n Must be fairly fast
n Must integrate well into rest of code

Let’s Think About Automata

I want to be able to write

automaton see0
see0 : 0 à see1
see1 : 1 à see0

see0

see1

01

Another Example

car, cdr, cadr, cddr, cdar, caddr, …

init : c à more more : a à more
d à more

end : r à end r à end

init more end
c

a

d

r r

Let’s Look at That Again

automaton init
init : c à more
more : a à more

d à more
r à end

end : r à end

How would you implement it?

Natural Solution

If stream ends, accept
If no next state found, reject
If next state found, continue

init more end

c ramore endmore
d more

r end

First Version

n Development time: 12 minutes
n Bugs: 2
n Performance (PLT Scheme):
n 10000 elements: 50 ms
n 100000 elements: 440 ms
n 1000000 elements: 4316 ms

The Code
(define b-machine-states
'((init (c more))
(more (a more)

(d more)
(r end))

(end (r end))))

(define (b-machine stream)
(letrec ([walker (lambda (state stream)

(or (empty? stream)
(let ([transitions

(cdr (assv state b-machine-states))])
(let ([1st (first stream)])
(let ([new-state (assv 1st transitions)])
(if new-state

(walker (cadr new-state) (rest stream))
false))))))])

(walker 'init stream)))

What’s The Essence?

n Per state, fast conditional dispatch table

n An array of states

n Quick state transition

A Message From Our Sponsors

We will encourage you to develop the three
great virtues of a programmer: laziness,
impatience, and hubris.

—Larry Wall and Randal L Schwartz

A Message From Our Sponsors

We will encourage you to develop the three
great virtues of a programmer: laziness,
impatience, and hubris.

—Larry Wall and Randal L Schwartz

Thinking Virtuously

n Per state, fast conditional dispatch table

n An array of states

n Quick state transition

Thinking Virtuously

n Per state, fast conditional dispatch table

n An array of states

n Quick state transition

Compiler writers call this “case … switch”

Thinking Virtuously

n Per state, fast conditional dispatch table

n An array of states

n Quick state transition

Compiler writers call this “case … switch”

Function pointers offer random access

Thinking Virtuously

n Per state, fast conditional dispatch table

n An array of states

n Quick state transition

Compiler writers call this “case … switch”

Function pointers offer random access

If only function calls were implemented
as “goto”s ...

In Other Words:
init State Would Become

init ≡
(procedure (stream)
(or (empty? stream)

(case (first stream)
[c (more (rest stream))]
[else false])))

In Other Words:
init State Would Become

init ≡
(procedure (stream)
(or (empty? stream)

(case (first stream)
[c (more (rest stream))]
[else false])))

more

In Other Words:
more State Would Become

more ≡
(procedure (stream)
(or (empty? stream)

(case (first stream)
[a (more (rest stream))]
[d (more (rest stream))]
[r (end (rest stream))]
[else false])))

In Other Words:
more State Would Become

more ≡
(procedure (stream)
(or (empty? stream)

(case (first stream)
[a (more (rest stream))]
[d (more (rest stream))]
[r (end (rest stream))]
[else false]))) end

In Other Words:
The Whole Code Would Become
(define b

(letrec ([init
(procedure (stream)

(or (empty? stream)
(case (first stream)
[c (more (rest stream))]
[else false])))]

[more
(procedure (stream)

(or (empty? stream)
(case (first stream)
[a (more (rest stream))]
[d (more (rest stream))]
[r (end (rest stream))]
[else false])))]

[end
(procedure (stream)

(or (empty? stream)
(case (first stream)
[r (end (rest stream))]
[else false])))])

init))

In Other Words:
The Whole Code Would Become
(define b

(letrec ([init
(procedure (stream)

(or (empty? stream)
(case (first stream)
[c (more (rest stream))]
[else false])))]

[more
(procedure (stream)

(or (empty? stream)
(case (first stream)
[a (more (rest stream))]
[d (more (rest stream))]
[r (end (rest stream))]
[else false])))]

[end
(procedure (stream)

(or (empty? stream)
(case (first stream)
[r (end (rest stream))]
[else false])))])

init))

Scoreboard

n Laziness:

n Impatience: nope; too much code

n Hubris: …

In General

(state : (label à target) ...)

à
(procedure (stream)
(or (empty? stream)

(case (first stream)
[label (target (rest stream))]
...

[else false])))

In General

(state : (label à target) ...)

à
(procedure (stream)
(or (empty? stream)

(case (first stream)
[label (target (rest stream))]
...

[else false])))

Even More Generally
(_ init-state

(state : (cndn -> new-state) ...)
...)

à
(letrec ([state

(procedure (stream)
(or (empty? stream)

(case (first stream)
[cndn (new-state (rest stream))]
...
[else false])))]

...)
init-state)

Even More Generally
(_ init-state

(state : (cndn -> new-state) ...)
...)

à
(letrec ([state

(procedure (stream)
(or (empty? stream)

(case (first stream)
[cndn (new-state (rest stream))]
...
[else false])))]

...)
init-state)

In Fact, That’s the Code!

(define-syntax automaton
(syntax-rules (-> :)
[input pattern

output pattern]))

This is a Scheme macro

The Automaton

automaton init
init : c à more
more : a à more

d à more
r à end

end : r à end

In Scheme

(automaton init
(init : (c à more))
(more : (a à more)

(d à more)
(r à end))

(end : (r à end)))

What a Schemer really sees

(automaton init
(init : (c à more))
(more : (a à more)

(d à more)
(r à end))

(end : (r à end)))

With Clients

(define (v s)
((if (eq? (first s) 'c)

(automaton init
(init : (c -> loop))
(loop : (a -> loop)

(d -> loop)
(r -> end))

(end : (r -> end)))
(automaton see0
(see0 : (0 -> see1))
(see1 : (1 -> see0))))

s))

Second Version

n Development time: 5 minutes
n Bugs: 0
n Performance:
n 10000 elements: 30 ms
n 100000 elements: 310 ms
n 1000000 elements: 3110 ms

Scoreboard

n Laziness:

n Impatience:

n Hubris: stay tuned

What Really Happened

The traditional implementation is an
Interpreter

The macro system implements a
Compiler

from Scheme++ to Scheme – and lets you
reuse the existing Scheme compiler

Macros

n Clean, convenient spec of automata

n Permits nested ... – “pattern matching”

n Easy to create domain-specific language

n Each module can have different macros

Tail Calls

Ensures that
state transition =

goto =
loop for free!

Notice tail recursion isn’t enough!
(Oh, and try generating loop code …)

Stupid Parenthetical Syntax

(automaton see0
(see0 (0 -> see1))
(see1 (1 -> see0)))

is clearly ugly, evil, and an insidious plot
hatched by misbegotten academics

Smart Parenthetical Syntax

<automaton see0
<state name=“see0”>
<trn> <from> 0 </from>

<to> see1 </to> </trn> </state>
<state name=“see1”>
<trn> <from> 1 </from>

<to> see0 </to> </trn> </state>
</automaton>

is a hip, cool, great new idea

Python vs. Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

– at what price?

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

– at what price?

• We got macros – you got five minutes?

Python vs. PLT Scheme
(python.org)

n Standard object system
n Regular expressions, Internet connectivity
n Many builtin data types
n One standard implementation
n Relatively main-stream syntax
n Main-stream control structures

– at what price?

• We got macros – you got five minutes?
• Real Programmers use map/filter/fold, tail calls, …

Take-Home Morals

Take-Home Morals

n If you claim to be smart, be really smart
about reuse

Take-Home Morals

n If you claim to be smart, be really smart
about reuse

n Scheme fits together particularly cleverly –
you won’t get it just by reading about it,
you’ll only think you did

Take-Home Morals

n If you claim to be smart, be really smart
about reuse

n Scheme fits together particularly cleverly –
you won’t get it just by reading about it,
you’ll only think you did

n People who don’t understand this use of
tail calls don’t get it

Take-Home Morals

n If you claim to be smart, be really smart
about reuse

n Scheme fits together particularly cleverly –
you won’t get it just by reading about it,
you’ll only think you did

n People who don’t understand this use of
tail calls don’t get it

n Take a real languages course in college

Scoreboard

n Laziness:

n Impatience:

n Hubris:

A Parting Thought

A Parting Thought

n A REPL is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

A Parting Thought

n A REPL is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

n In code:

A Parting Thought

n A REPL is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

n In code:
Print (Eval (Read ()))); Loop

A Parting Thought

n A REPL is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

n In code:
Print (Eval (Read ()))); Loop

n A Print-Eval-Read Loop

A Parting Thought

n A REPL is a Read-Eval-Print Loop:
Read, then Evaluate, then Print, then Loop

n In code:
Print (Eval (Read ()))); Loop

n A Print-Eval-Read Loop
n A Print-Eval-Read Loop

Obligatory URL

http://www.plt-scheme.org/

(Thanks: Matthias, Matthew, Robby, John, Paul, Paul,
Jamie, Philippe, Dorai, and dozens others)

