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Abstract

Performance tuning in modern database systems requires a lot of expertise, is very time consuming and
often misdirected. Tuning attempts often lack a methodology that has a holistic view of the database.
The absence of historical diagnostic information to investigate performance issues at first occurrence
exacerbates the whole tuning process often requiring that problems be reproduced before they can be
correctly diagnosed. Even when the problem root cause is identified, fixing it often requires a very high
level of expertise that very few DBA possess. Thisis especially true for the inherently complex activity of
QL Tuning, requiring a high level of expertise in several domains. query optimization, access design,
and SQL design.

In this paper we describe how Oracle overcomes these challenges and provides a way to perform
automatic performance diagnosis and tuning. The ability to self-tune isa critical aspect towards building
a self-managed database, which was one of the key objectives for the latest version of Oracle, OraclelQg,
that was released in early 2004.

1 Introduction

In today’s around-the-clock economy, the importance of an efficient and reliable IT infrastructure for the success
of an enterprise hardly needs any explanation. As businesses increasingly rely on this infrastructure, system
performance becomes more important than ever before. Businesses are building more and bigger databases,
and database administrators (DBAS) are expected to take on this ever-increasing load. Hiring highly skilled
administrative staff to manage such complex environments results in spiraling management costs, making self-
managing technologies a must-have for modern database systems [4].

In this context, being able to effectively analyze system performance is crucial for ensuring good quality of
service. Database systems traditionally expose a plethora of measurements and statistics about their operation
and it can be hard to get an overall view of what is happening in the system. Identification of the root cause of
a performance problem is not easy [10, 3, 2]. It is not uncommon for DBAS to spend large amounts of time and
resources fixing performance symptoms, only to find that this has marginal effect on system performance. Lack
of a holistic view of the database leads to incorrect diagnosis, misdirected tuning efforts and over-configured
systems, increasing the total cost of ownership. [9, 3, 8].

Even when the proper methodology for analysis is followed, it is often found that the available data stops
short of what is required to fully diagnose the root cause. Lack of adequate statistics is a very common issue
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because collecting appropriate ones is prohibitively expensive, especially since a very broad class of statistics is
required to address a very large spectrum of potential issues. Worse, to be effective, statistics collection must be
continuous and enabled by default, since a performance problem can strike any time. Additionaly, statistics need
to be persisted since the analysis of a performance issue is often performed long after this issue has occurred.

When appropriate statistics are not available, an option is to reproduce the problem while collecting a larger
set of targeted statistics, in the hope that this would be enough to complete the performance diagnosis. In real
world, this solution is rarely feasible because it requires a full-scale test system and a way to simulate/reproduce
a full-scale workload. This is either impossible to do or far too expensive to be practical.

Recognizing these challenging demands, Oracle 10g introduces a sophisticated self-managing database that
automatically monitors, adapts, and fixes itself. This paper provides a overview of Oracle’s self-tuning architec-
ture along with a more detailed presentation of two automatic tuning solutions: Automatic Database Diagnostic
Monitor (ADDM) which automatically diagnoses the bottlenecks affecting the total database throughput and
provides actionable recommendations to alleviate them; and the Automatic SQL Tuning Advisor which provides
comprehensive tuning recommendations for a SQL workload that span query optimization, access path analysis
and statement restructuring.

2 Self-Tuning Architecture

Oracle’s tuning framework developed in Oraclel0g for self-managing

gg;;;gg databases is centered around the three phases of the self-managing loop:
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The phases in the self-tuning loop refer to a particular tuning cycle
Recommendations — — (e.g. total database tuning cycle via ADDM, or a SQL Tuning cycle),
and there could be many such tuning cycles occurring concurrently each
in different phases. A tuning cycle could contain other tuning cycles.
In fact the system is designed with precisely such a hierarchical model
in mind; a system-wide top-down throughput based tuning methodology
is used wherein ADDM acts as the central advisor that directs further
tuning activity in the system by invoking other subsystem specific advisors based on top issues affecting overall
throughput. Figure 1 illustrates the relationship between the Statistics Collection and Storage components and
the Advisors.

Before we briefly explore each stage in the self-tuning loop, we would like to introduce the key concept of
Database Time that has enabled us to successfully tackle inter-component database wide tuning.

Figure 1: The Self-Managing
Database Framework.

2.1 Database Time

Traditionally, performance of various subsystems of the database is measured using different metrics. For ex-
ample, the efficiency of the data-block buffer cache is expressed as a percentage in buffer hit-ratio; the 1/O



subsystem is measured using average read and write latencies. Using such disparate metrics to find the perfor-
mance impact of a particular component over the total database throughput is extremely hard, if not infeasible.
We addressed this issue in Oraclel0g by introducing the concept of Database Time or simply DbTime in this
paper, a new time based measure.

DbTime is defined as the sum of the time spent inside the database processing user requests. It is only a
portion of the response time perceived by the user since it does not include time spent in the intervening layers
like the network or the middle tiers. It is directly proportional to the number and duration of user requests, and
can be higher or lower that the corresponding wall-clock time. It is a measurement of the total amount of work
done by the database, and the rate at which the database time is consumed can be thought of as the database load
average, similar to the OS load average.

DbTime serves as a common currency for the measurement of a subsystem’s performance impact. For
example, the performance impact of an under-sized buffer cache would be measured as the total database time
spent in performing additional 1/0 requests that could have been avoided if the buffer cache was larger.

2.2 Observe Phase

This phase is automatic, enabled by default and continuous in Oracle10g. It’s reponsibility is to collect and store
an extensive set of statistics. Oracle10g has been extensively instrumented to obtain precise timing information,
both CPU and wait times, for a wide range of database operations. In addition, the observe phase records samples
of database sessions activity at a frequency of one every second, to allow for fine grain analysis of user activity;
it collects various statistics on resource usage, both at database and OS level, to help identifying any resource
bottlenecks; finally it maintains statistics for highly used database entities, like high-load SQL statements and
on often accessed objects like tables and indices.

Statistics collected by the observe phase are stored in the Automatic Workload Repository (AWR). AWR is
a persistent store of performance data for Oracle10g and can be thought of as the Oracle performance dataware-
house. Statistics in AWR are organized chronologically, using hourly delta snapshots of in-memory statistics.
The AWR is self-managed,; it accepts policies for data retention and proactively purges data should it encounter
space pressure. The same data is also used for feedback analysis, i.e. to analyze the result of tuning actions
undertaken as part of previous analysis.

2.3 Diagnose Phase

Activities in this phase refer to the analysis of various parts of the database system using data in AWR or in
in-memory views. The analysis is performed by a set of Advisors. Oracle10g introduces many advisors, each re-
sponsible for analyzing and optimizing the performance of its respective sub-components. ADDM and the SQL
Tuning Advisor are presented later in this paper; other advisors include: Segment Advisor that analyzes space
wastage by objects due to internal and external fragmentation; Memory Advisors that continuously monitor the
database instance and auto-tune the memory utilization between the various memory pools for shared memory
and process private memory [5]; Undo Advisor that provides optimal sizing of the Undo space.

2.4 Resolve Phase

The various advisors, after having performed their analysis, provide as output a set of recommendations that can
be implemented or applied to the database. Each recommendation is accompanied by a benefit, in DbTime units,
which the workload would experience should the recommendation be applied. The recommendations may be
automatically applied by the database (e.g., the memory resizing by the memory advisors) or it may be initiated
manually. This constitutes the Resolve phase.



Applying recommendations to the system closes an iteration of that particular tuning loop. The influence
of the recommendations on the workload will then be observed in future performance measurements. Further
tuning loops may be initiated until the desired level of performance is attained.

3 ADDM

The Automatic Database Diagnostic Monitor (ADDM) in Oracle 10g automates the entire process of diagnosing
performance issues and suggests relevant tuning recommendations with the primary objective of maximizing the
total database throughput. This advisor is executed out-of-the-box once every hour, each time an AWR snapshot
is produced. Results of these analyses are kept by default for a month making it very easy for the DBA to address
past performance issues.

Automatic performance diagnosis is very challenging because modern database systems have complicated
interactions between their sub-components and have the ability to work with a variety of applications. This
results in a very large list of potential performance issues such an automatic analysis could identify. Also, as
new database technologies and applications are introduced, and older ones are made obsolete, it is pivotal that
automatic diagnostic and tuning solutions can easily be adapted to accommodate such changes.

ADDM was designed with the following objectives:

e Should posses a holistic view of the database and understand the interactions between various database
components.

e Should be capable of distinguishing symptoms from the actual root-cause of performance bottlenecks.
e Should provide mechanisms to diagnose performance issues on their first occurrence.
e Should easily keep up with changing technologies.

ADDM uses DbTime to identify database components that require investigation and also to quantify perfor-
mance bottlenecks. Identifying the component consuming the most database time is equivalent to finding the
single database component that when tuned will provide the greatest benefit. In other words, it is looking for
ways to process a given set of user requests in the least amount of database time.

3.1 DBTime-graph and ADDM Methodology

The first step in automatic performance tuning is to correctly identify the root causes of performance problems,
Only then is it possible to explore effective tuning recommendations to solve or alleviate the issue. ADDM looks
at the database time spent in two independent dimensions: the first dimension looks at the database time spent in
various phases of processing user requests, and includes categories like "connecting to the database’, optimizing
SQL statements’, executing SQL statements’; the second dimenstion looks at the database time spent using or
waiting for various database resources used in processing user requests, and includes both hardware resources
like CPU and I/O devices, and software resources like database locks and application locks.

ADDM looks at the database time spent in each category under both these dimensions and drills down into
the categories that had consumed significant database time. This two dimensional correlation gives ADDM a
very good judgment in zooming in to the more significant performance issues. The drill down process can be
represented using a directed-acyclic-graph as shown in Figure 2, which we call the DBTime-graph.

It should be noted that this DBTime-graph is not a decision tree for a rule-based diagnosis system, where a
set of rules is organized in the form of a decision tree that is traversed either to find the goal given a particular set
of data or to find the data given a particular goal [1]. The DBTime-graph has various properties that differentiates
itself from rule-based decision trees: (a) each node in this graph looks at the amount of database time consumed
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Figure 2: A Sample DBTime-Graph.

by a particular database component or resource; (b) all nodes in this graph are gauged with the same measure -
DbTime; (c) all the children of a particular node are unconditionally explored whenever the database time spent
in that node is significant; and (d) database time attributed to a particular node should be completely contained
in the database time attributed to each of its parents. Any node that complies with all these properties can be
added to the DBTime-graph making it easy to evolve with changing technologies, unlike the decision tree of a
rule-based diagnosis system [1].

ADDM explores this DBTime-graph starting at the root-node and visiting all the children of a node if the
database time consumed is significant. Branch nodes in this graph identify the performance impact of what is
usually a symptom of a bottleneck, whereas the terminal nodes identify particular root-causes that can explain
all the symptoms that were significant along the path in which the terminal node was reached. For example,
in Figure 2, the branch node "1/0 Capacity” would measure database time spent in all 1/0 requests. Whenever
significant database time was spent in 1/0 requests all the children of the ”’1/O Capacity” node would be explored,
which are the two terminal nodes in this example. The “Undersized Buffer Cache” node would look for a
particular root-cause, which is to see if the data-block buffer cache was undersized causing excessive number of
I/0 requests. The "Insufficient 1/O Bandwidth” node would look for hardware issues that could slow down all
1/0 requests.

Once a terminal node identifies a root-cause, it measures its impact in DbTime units. It then explores ways
that can solve or alleviate the problem and comes up with actionable tuning recommendations based on the
various workload measurements gathered. The nodes also estimate the maximum possible database time that
could be saved by the suggested tuning recommendations, which need not necessarily be equal to the database
time attributed to the root-cause.

It is interesting to note that ADDM doesn’t traverse the entire DBTime-graph, rather it prunes the uninterest-
ing sub-graphs. This is possible only because a node’s database time is contained in the database time attributed
to its parents. Consequently the cost of an ADDM analysis depends only on the number of actual performance
problems that were affecting the database, and not on the actual load on the database or the number of issues
that ADDM could potentially diagnose.

3.2 Workload Measurements

ADDM analysis can only be done if the appropriate data is available. Our first and most important requirement
is that we collect all the data ADDM needs for each node in the DBTime-graph. ADDM needs data for the
following operations: quantifying the impact in DbTime for the database components and operations; finding
recommendations for alleviating root-cause problems and estimating the potential benefit in DbTime units. Our
second requirement is the “minimal intrusion principle”; it states that the act of collecting measurements for
performance diagnostics should not cause a significant degradation in performance. All the data collection is
done as part of the AWR snapshot mechanism described earlier. The various types of measurements include:



Database Time Measurements: The first priority in an ADDM analysis is to establish the main components
that consume significant database time. This measurement is a cumulative non-decreasing function of time
whose value over any time period can be got by a difference of the respective values from the start and end
points. Direct measurements can only be done on database operations that usually take significant time to finish.
The decision about which operations should be measured must be based on the cost of measurement (i.e. start
and end a timer) and the expected length and quantity of such operations. For example, measuring the total time
spent in 1/O operations is reasonable while measuring the time spent in critical sections is not. Our solution to
capture short duration operations is to use sampling, both frequency-based as well as time-based sampling.

Active Session History: We use regular time-based sampling to capture the activity in a system since it is
not practical to collect a complete system trace of operations. This enables ADDM to narrow down root-causes
of problems and give effective recommendations. We call the collection of sampled data the ”Active Session
History” (ASH). Each sample contains information about what the database server is doing on behalf of each
connected user (a.k.a. “session”) at the time of sampling. We only collect data for sessions that are actively
using the database during the sample time. If a specific operation consumes significant database time during the
analysis period, there is a high probability that this operation will appear in a significant number of samples in
ASH. This enables ADDM to diagnose such operations even if we do not measure them directly.

System Configuration Data: We collect system configuration data related to database settings. Since
database settings do not change very often we maintain a full log of changes. This data can be crucial to giving
recommendations for fixing specific problems. Examples of such data are size of memory components (like
buffer cache), number of CPUs used by the system, special query optimizer settings.

Simulation Data: Sometimes, estimating the impact of a specific area of the database requires a simulation
of various possible alternatives. For example to find that the buffer cache is the root-cause of an /O issue we
must determine that we spent time reading data blocks that were in the buffer cache at some point in time and
were replaced. In other words, we need to determine how many read 1/0 operations could have been saved given
an infinite buffer cache. Our solution is to simulate and quantify the effect of various cache sizes.

4 SQL Tuning Advisor

The inherently complex activity of SQL Tuning requires a high level of
expertise in several domains: query optimization, to improve the exe-
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chitecture. The advantage of using the Oracle query optimizer as the basis for
Automatic SQL Tuning is multifold: tuning is done by the same com-
ponent that is responsible for selecting the execution plan; future enhancements to the query optimizer are
automatically considered; customized optimizer settings can be used based on the execution history of the SQL
statement. The SQL Tuning Advisor acts as the front-end, accepting one or more SQL statements and passing it
to the Automatic Tuning Optimizer along with other input parameters, such as a time limit. It then displays the



results in the form of tuning recommendations, each with a rationale and an estimate of the benefit in DBTime
units

4.1 SQL Profiling

The query optimizer relies on data and system statistics to function properly and by employing probabilistic
models on these base statistics the query optimizer derives various data size estimates. Some of the main reasons
for a sub-optimal plan include: missing or stale base statistics, wrong estimation of intermediate result sizes,
and inappropriate optimization parameter settings.

To overcome these limitatione we introduce SQL profiling, a new concept that denotes the capability within
the optimizer to obtain auxiliary information specific to a SQL statement based on 1) statistics analysis, 2)
estimates analysis, and 3)parameters settings. A SQL Profile object is then built from this auxiliary information.

Once the user, acting on the recommendation generated, accepts a SQL Profile, it is stored in Oracle’s data
dictionary. When this SQL statement (same text with potentially different host variables and/or literal values)
is subsequently presented to the system the optimizer will retrieve the SQL Profile from the dictionary and use
it along with other statistics to build a well-tuned execution plan. The use of a SQL Profile remains completely
transparent to the user, and more importantly its creation and use don’t require changes to the application source
code. The following is done as part of profiling:

Statistics Analysis: The goal here is to verify whether statistics are missing or stale. The Automatic Tuning
Optimizer checks each of the statistics required during plan generation. It uses sampling to check the accuracy
of the stored statistic. Iterative sampling with increasing sample size is used to meet this objective to obtain
greater accuracy if needed. If a statistic is found to be stale, auxiliary information is generated to compensate
for staleness. If it is missing, auxiliary information is generated to supply the missing statistic.

Estimates Analysis: One of the main features of a cost-based query optimizer is its ability to derive the size
of intermediate results. Errors in estimates result in sub-optimal plans and can be caused by a combination of
factors like uniform distribution assumption, column correlation and an inadequate statistical model for complex
predicates. During SQL profiling, various standard estimates are validated by running parts of the query on a
sample of the input dataset. When errors are found, compensatory information is added to the SQL Profile.

Parameter Settings Analysis: Here the past execution history of a SQL statement is used to determine the
best optimizer settings. For example, the history may show that the output of a SQL statement is often partially
consumed, consequently a setting to produce the first n rows is generated, where n is derived from this execution
history.

4.2 Access Path Analysis

Creating suitable indexes is a well-known tuning technique that can significantly improve the performance of
SQL statements. The Automatic Tuning Optimizer recommends the creation of indexes based on what-if anal-
ysis of various predicates and clauses present in the SQL statement being tuned. The recommendation is given
only if the performance can be improved by a large factor.

4.3 SQL Structure Analysis

Often a SQL statement can be high-load simply due to the way it is written. This usually happens when there
are different, but not semantically equivalent ways to write a statement to produce same result. It is important to
understand that the optimizer, as part of regular plan generation process, already does semantically equivalent
transformations. Semantic equivalence can be established when certain conditions are met; for example, a
particular column in a table has the non-null property. However, these constraints may not exist in the database



but instead are enforced by the application. The Automatic Tuning Optimizer performs a cost-based what-if
analysis to identify missed query rewrite opportunities and issues recommendations.

5 Conclusions

In this paper we describe the Oracle’s Self Tuning Architecture and how it enables a comprehensive automatic
tuning solution. We then described two automatic tuning solutions: ADDM and SQL Tuning Advisor.

ADDM seeks to improve the overall throughput of the database via a comprehensive top-down performance
analysis of the system. By using database time in conjunction with the two-dimensional DBTime-graph ADDM
is able to quickly isolate the root causes of performance bottlenecks and provide very specific actionable recom-
mendations, obtained by using fine-grained sampling data. Please refer to [7] for more details.

The SQL Tuning Advisor is based on the Automatic Tuning Optimizer, an extension of the Oracle query
optimizer. We have described the multipronged approach to SQL Tuning, and the unique concept of SQL
Profiling that results in a SQL Profile object associated with the SQL statement and used subsequently during
plan generation. For more information please refer to [6].
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