
On�Line Warehouse View Maintenance�

Dallan Quass

Computer Science Department

Stanford University

quass�cs�stanford�edu

Jennifer Widom

Computer Science Department

Stanford University

widom�cs�stanford�edu

Abstract

Data warehouses store materialized views over base data
from external sources� Clients typically perform complex
read�only queries on the views� The views are refreshed peri�
odically by maintenance transactions� which propagate large
batch updates from the base tables� In current warehous�
ing systems� maintenance transactions usually are isolated
from client read activity� limiting availability and�or size of
the warehouse� We describe an algorithm called �VNL that
allows warehouse maintenance transactions to run concur�
rently with readers� By logically maintaining two versions
of the database� no locking is required and serializability is
guaranteed� We present our algorithm� explain its relation�
ship to other multi�version concurrency control algorithms�
and describe how it can be implemented on top of a conven�
tional relational DBMS using a query rewrite approach�

� Introduction

Data warehouses collect information from one or more data
sources and integrate it into a single database where it can
be queried by clients �readers� of the warehouse� The rela�
tions stored at the warehouse represent materialized views
over the data at the sources �LW��	� Because data ware�
houses often are used primarily for decision support� queries
at the warehouse tend to be long and complex� Thus� a
warehouse may contain many materialized views in order to
speed up query processing �HRU�
	�

As changes are made to the data at the sources� the
views at the warehouse become out of date� In order to
make the views consistent again with the source data� the
views can be incrementally maintained �GL��	 by propagat�
ing changes from the source data to the warehouse views�
In current commercial warehousing systems� usually changes
to the source data are queued and propagated periodically
�e�g�� once a day� to the warehouse views in a large batch up�
date transaction� called a maintenance transaction� The pe�

�This work was supported by Rome Laboratories under Air Force
Contract F���������C���� and by equipment grants from Digital and
IBM Corporations�

riodic maintenance transaction is typically the only transac�
tion to update the warehouse views�all other transactions
performed at the warehouse are read�only queries�

An important problem in data warehousing is how to ex�
ecute queries and the periodic maintenance transaction so
that they do not block one another� especially because both
queries and maintenance transactions can be long running�
One approach to avoid blocking is to violate serializabil�
ity and allow readers to see an inconsistent database state�
However� often such inconsistency is not acceptable� In fact�
readers may want to see data that is consistent across a se�
quence of queries executed over a period of several minutes
or hours while analyzing the data� During analysis it would
be unacceptable to have the results change from query to
query� We term such a long�running sequence of queries a
reader session�

How can readers be guaranteed to read a consistent data�
base state without blocking when the maintenance transac�
tion is running� Conventional two�phase locking algorithms
can
t be used because they require readers to block if they
attempt to read a data item that is modi�ed by an active
�uncommitted� maintenance transaction� and a maintenance
transaction will block if it attempts to modify a data item
that is read by an active reader� Since in data warehouses
both readers and maintenance transactions often access sig�
ni�cant portions of the database� blocking would occur fre�
quently�

��� Current approach

The approach most commonly used in commercial warehous�
ing systems for guaranteeing consistency without blocking is
to maintain the warehouse at night� during which time the
warehouse is unavailable to readers� Since readers and the
maintenance transaction never execute at the same time� �i�
they execute without blocking� �ii� readers are guaranteed
to read a consistent database state� and �iii� neither readers
nor the maintenance transaction need to place any locks�

This current approach is illustrated in Figure �� The
�gure shows three maintenance transactions executing on
three di�erent nights� The reader sessions take place only
during the day when the maintenance transactions are not
running� Unfortunately� there are two major problems with
this approach�

� As corporations become globalized there is no longer
any nighttime common to all corporate sites during
which it is convenient to make the warehouse unavail�
able to readers�



� Since the maintenance transaction must be complete
by the next morning� the time available for view main�
tenance can be a limiting factor in the number and size
of views that can be materialized at the warehouse�

��� Our approach

In this paper we propose an algorithm that� �i� allows read�
ers and the maintenance transaction to execute concurrently
without blocking� �ii� allows readers to see a consistent data�
base state throughout an entire session �i�e�� readers and the
maintenance transaction are serializable�� and �iii� allows
readers and the maintenance transaction to execute with�
out the overhead of placing locks� Using our algorithm it is
possible to make a warehouse available to readers �� hours
a day� The algorithm is a type of multi�version concurrency
control algorithm that is especially suited to view mainte�
nance in a data warehousing environment� Data warehous�
ing environments are distinct from typical database environ�
ments because at most one update �maintenance� transac�
tion is active at a time� This property allows us to develop
a new algorithm that is better tuned to data warehousing�
and is simpler and easier to implement than existing multi�
version algorithms� We call our algorithm two�version no
locking ��VNL� because up to two versions of each tuple are
available simultaneously� and readers and the maintenance
transaction do not need to place locks� The algorithm has
the following advantages in data warehousing environments
over other multi�version concurrency control algorithms�

� Little extra storage is required to maintain the extra
version information�

� The overhead in terms of additional I�O
s required for
readers and the maintenance transaction is small�

� The overhead of locking can be eliminated for both
readers and the maintenance transaction�

� �VNL can be implemented on top of existing database
management systems through query rewrite� without
the need to modify the DBMS
s existing concurrency
control or storage systems�

��� Paper outline

The remainder of the paper proceeds as follows� Section �
introduces a running example and motivates the �VNL al�
gorithm� Section � speci�es the details of the algorithm�
Section � shows how the �VNL algorithm can be imple�
mented on top of current DBMS
s through query rewrite�
Section � explains how to extend the �VNL algorithm to
the general case of nVNL �n � ��� In Section 
 we com�
pare the �VNL algorithm to two�version two�phase locking
��V�PL� and multi�version two�phase locking �MV�PL� al�
gorithms �BHG��	 and discuss the advantages of �VNL for
data warehousing environments� Conclusions and areas for
future research are presented in Section ��

� Example and Motivation

EXAMPLE ��� Consider a warehouse of sales data for a
chain of sporting goods stores� Let the warehouse contain
the following relation �materialized view� aggregating total
daily sales by city and product line�

DailySales�tt city� state� product line� date�
total sales�

The DailySales relation is an example of a summary ta�
ble� because it summarizes �aggregates� the base sales data�
Summary tables are used commonly in data warehouses to
speed up the evaluation of aggregate queries �HRU�
	�

Suppose that an analyst wanted to �nd the total sales
made by stores in each city� The analyst would issue the
following query on the DailySales relation�

SELECT city� state� SUM�total sales�
FROM DailySales
GROUP BY city� state

A common subsequent action for the analyst would be
to �drill down� in some particular area in order to get more
detail� For example� if sales in San Jose� California weren
t
as high as the analyst thought they ought to be� the analyst
could get a breakdown of sales made in San Jose in each of
the product lines by issuing the following query�

SELECT product line� SUM�total sales�
FROM DailySales
WHERE city � �San Jose� and state � �CA�
GROUP BY product line

It is important that the analyst see a consistent state
of the database across both queries� For example� it would
be disconcerting if the sum of the San Jose sales broken
down by product line that was returned by the second query
didn
t add up to the overall San Jose sales returned by the
�rst query� Therefore� if a maintenance transaction needs to
update the DailySales relation to include the e�ect of the
current day
s sales while the data is being analyzed� then
either the maintenance transaction should block until the
analyst
s session is over� or the analyst should be able to
continue reading the state of the database as it was before
the maintenance transaction took e�ect� i�e�� the session and
the maintenance transaction should be serializable�

We will revisit the DailySales example throughout the
paper� �

��� Transactions and sessions under �VNL

As mentioned in the introduction� using conventional lock�
ing to achieve serializability is undesirable� Because reader
sessions and maintenance transactions tend to be long and
complex� blocking could introduce signi�cant delays� while
at the same time locking introduces signi�cant overhead�
The current solution used by most commercial warehous�
ing systems is to only execute maintenance transactions at
night� when the warehouse is unavailable to readers� This
scenario was illustrated in Figure ��

Figure � shows a possible warehouse operation when the
�VNL algorithm is applied� �Ignore the �Database Versions�
information for now�� Note that the maintenance trans�
action can execute concurrently with reader transactions�
which means that maintenance transactions can be longer
and�or more frequent� and readers need not be disabled dur�
ing warehouse modi�cations��

A reader session accesses the state of the database that
was current as of the commit of the most recent previous
maintenance transaction� Call this transaction t�� The
reader can continue to read this state throughout a sub�
sequent maintenance transaction� t�� until t� commits and

�Figure � illustrates one� perhaps extreme� pattern of maintenance
transactions allowable using �VNL	 very long maintenance trans�
actions with only short gaps between them� In practice� mainte�
nance transactions might be shorter and gaps might be longer� The
only case in which �VNL is inappropriate is when both maintenance
transactions and gaps are very short� an unlikely scenario in a data
warehouse�



Maintenance

Transactions

Reader

Sessions

Time
night day night day night

Figure �� Current approach to warehouse querying and maintenance

another maintenance transaction� t�� begins� Once t� be�
gins� since only up to two versions of a tuple are available
in the database� the reader can no longer be guaranteed to
read a consistent database state� We then say that the ses�
sion has �expired�� and the reader is noti�ed to begin a new
session if consistency is desired�

Figure � illustrates a policy where a maintenance trans�
action is started each day at �am� All updates sent to the
warehouse during that day are applied within the scope of
this maintenance transaction� The transaction is commit�
ted at �am the following morning� A session beginning after
�am will therefore see the e�ects of that maintenance trans�
action� and is guaranteed to access a consistent database
state until �am the following morning� at which point the
session expires and a new session must be begun�

Executing a single maintenance transaction once a day is
just one policy that can be used with the �VNL algorithm�
A potential problem with this policy �or any other policy
with small gaps between maintenance transactions� is that
sessions beginning just before �am expire very quickly� at
�am the same day� This problem is alleviated somewhat by
executing maintenance transactions on a regular schedule�
since readers can anticipate when their sessions will expire�
but alternative solutions are also possible� One possibility is
to commit the maintenance transaction only when no reader
sessions are active� The disadvantage of this approach is
that it is possible for readers to �starve� the maintenance
transaction� i�e�� the maintenance transaction might wait a
very long time to commit� but the advantage is that reader
sessions never expire� Another possibility is to extend the
�VNL algorithm to the more general nVNL �n � �� case�
The nVNL algorithm is considered in Section ��

��� Intuition for �VNL

We now give the intuition behind the �VNL algorithm� We
assume that an external protocol limits maintenance trans�
actions to execute one at a time� We also assume that read�
ers and the maintenance transaction do not place any locks�
or that if the maintenance transaction does place locks� read�
ers ignore the locks� In SQL�� �MS��	� readers can be in�
structed to ignore write locks by setting the transaction iso�
lation level to �read uncommitted�� and several commercial
DBMS
s� such as Informix� support this capability�

The additional concurrency in Figure � is achieved by
making two versions of the database logically available si�
multaneously� The method for making two versions avail�
able simultaneously is explained in Section �� Even though
a reader and the maintenance transaction may access the
same tuples� they do not interfere with each other because
conceptually each operates on a di�erent database version�
For this discussion we classify a database version as either a

future version� a current version� or a previous version� At
a given point in time the versions represented in the data�
base are either a future version and a current version �when
there is an active maintenance transaction�� or a current
version and a previous version �when there is not an active
maintenance transaction��

Maintenance transactions always operate on a future ver�
sion� A reader is associated with the version that is cur�
rent at the beginning of the session� and continues to read
that version even if it becomes a previous version� until the
version expires� Figure � illustrates when the various ver�
sions are available to readers� For example� during the �rst
maintenance transaction in Figure � a current version �la�
beled version �� is available to readers while the mainte�
nance transaction creates a future version� When the �rst
maintenance transaction commits� the current version �ver�
sion �� becomes a previous version and the future version
that was created by the maintenance transaction becomes
the new current version �version ��� Readers can continue
to read version � even though it is now a previous version�
When the second maintenance transaction begins� the previ�
ous version �version �� expires� that is� it becomes unavail�
able for reading� and readers still reading this version are
noti�ed to begin a new session� The second maintenance
transaction creates a new future version� with the current
version �version �� still available to readers� It is important
to note that the process of switching versions is logical� the
tuples in the database are not modi�ed in order to switch�

� �VNL Algorithm

In this section we specify the �VNL algorithm� First we
describe the general algorithm� then we describe each com�
ponent in detail�

As alluded to in Figure �� each version of the database is
associated with a unique version number� A global variable�
currentVN� records the current version number� Variable
currentVN is � initially� In addition� a global �ag mainte�
nanceActive records whether a maintenance transaction is
currently active� �We assume a simple latching mechanism
is used to read and update these global variables� or they
can be implemented as a record in the DBMS as described
in Section ���

Each tuple in the database is extended to include� �i� a
tupleVN attribute that records the version of the database
when the tuple was last modi�ed by a maintenance trans�
action� �ii� an operation attribute that records the opera�
tion � finsert� update� deleteg last performed on the tuple�
and �iii� a set of pre�update attributes that contain the pre�
vious values of the updatable attributes of the tuple �i�e��
those attributes that could be changed by an update oper�



Maintenance

Transactions

Time

Database

Versions

Reader

Sessions

2
3

1

9am
8am

9am
8am 8am

Figure �� Warehouse querying and maintenance scenario with �VNL

ation in the maintenance transaction�� In the worst case�
storing the previous values of updatable attributes requires
approximately doubling the size of the warehouse� but as we
will see in Section ���� for summary tables the overhead of�
ten is much less� By recording the tupleVN� operation� and
previous values of updatable attributes� each tuple contains
su�cient information so that two versions of the tuple are
available� the version of the tuple that was current as of
database version tupleVN� and the version of the tuple that
was current in database version tupleVN���

When a maintenance transaction begins� it reads the
global currentVN variable and sets a local maintenanceVN
variable to currentVN��� In addition� it sets the global
maintenanceActive �ag to true�

A maintenance transaction always reads the latest ver�
sion of tuples in the database� When the maintenance trans�
action modi�es a tuple in the database� the tuple must be
modi�ed in such a way that readers can later read the pre�
update version of the tuple� The maintenance transaction
therefore updates the tupleVN and operation attributes in
the tuple with its maintenanceVN and the logical operation
�insert� update� or delete� that is performed on the tuple�
In addition� the previous values of updatable attributes are
saved in the pre�update tuple attributes� Note that in order
not to lose information about the previous state of a tuple
when it is modi�ed by a maintenance transaction� the phys�
ical operation performed on the tuple is not always the same
as the logical operation speci�ed in the maintenance transac�
tion� For example� a logical tuple delete may be translated
to a physical tuple update in order that the previous version
of the tuple still be available �see Section �����

At commit of the maintenance transaction it updates
the global currentVN with its maintenanceVN and sets the
maintenanceActive �ag to false� indicating that maintenance
is complete and there is a new current version of the data�
base�

When a reader session begins� it reads currentVN and
copies it into its local sessionVN variable� This is the ver�
sion of the database that the reader will access throughout
the session� When a reader reads a tuple� it reads the most
recent version of the tuple that is � sessionVN� If the tuple
has not been modi�ed since the session began� then the cur�
rent version of the tuple is read� On the other hand� if the
tuple has been modi�ed by an uncommitted maintenance
transaction or by a maintenance transaction that commit�
ted after the start of the reader session� then the pre�update
version of the tuple is read� Thus readers are guaranteed to
read a consistent database state without placing read locks�

The maintenance transaction need not place write locks on
the tuples it modi�es� or if it does� the reader can �and
should� ignore the write locks in order to continue without
blocking�

A reader must be able to detect if its session has expired�
which can be done in one of two ways� A reader can deter�
mine that its session has expired when it attempts to read
a tuple that has been modi�ed by more than one mainte�
nance transaction since the reader session began� In this
case the proper tuple version cannot be read because the
current and pre�update tuple versions are maintained only
for the most recent update� Alternatively� a reader can per�
form a more �global� but pessimistic check� in which the
reader
s sessionVN is compared with the global currentVN�
Both approaches are discussed in more detail in Sections ���
and ��� below�

��� Modifying the relation schema

In this section we explain how a relation schema is mod�
i�ed to represent two versions of each tuple�

Each of the relations at the warehouse needs to be ex�
tended with additional attributes� LetA � fA�� A�� � � � �Ang
be the initial set of attributes for a relation R� and let
A� � fA��A�� � � � �Akg be the subset of attributes in A that
are updatable� Then the extended schema of R is ftupleVN�
operation� A��A�� � � � � An� A

p
�
�A

p
�
� � � � �A

p
k g� where A

p
i is

used to denote the pre�update attribute corresponding to
updatable attribute Ai� Attribute tupleVN contains the
maintenanceVN of the maintenance transaction that most
recently modi�ed the tuple� operation contains the logical
operation performed by that maintenance transaction� at�
tributes fA��A�� � � � �Ang contain the current values of the
tuple attributes� and pre�update attributes fAp

��A
p
�� � � � �A

p

kg
contain the values of the updatable attributes before being
updated by the maintenance transaction� �In the case of in�
sert operations the pre�update attributes are null� and in the
case of delete operations they contain the pre�delete values��

In the worst case� when every attribute is updatable� rep�
resenting two versions of each tuple requires approximately
doubling the storage space of the warehouse� However� it
is often the case in data warehouses that many attributes
are not updatable� For example� data warehouses often
contain many summary tables� which can be thought of
as select�from�where�groupby aggregate views� Although
tuples can be inserted into or removed from a summary ta�
ble by a maintenance transaction� the values of the group�by
attributes are never updated� Only the attributes represent�



tupleVN operation city state product line date total sales pre total sales
� 	 
� 
 	
 � � �

Figure �� Modi�ed schema for DailySales relation

tupleVN operation city state product line date total sales pre total sales

� insert San Jose CA golf equip 	�
	�
�� 	����� null
� insert San Jose CA golf equip 	�
	�
�� 	���� null
� update Berkeley CA racquetball 	�
	�
�� 	
���� 	�����
� delete Novato CA rollerblades 	�
	�
�� ����� �����

Figure �� Example DailySales relation with modi�ed schema

ing the results of aggregate functions are updatable� Hence�
for summary tables the storage overhead required by the
�VNL algorithm is small�

EXAMPLE ��� Given the DailySales relation of Exam�
ple ���� Figure � shows the relation schema after being ex�
tended with the additional attributes necessary for the �VNL
algorithm� In the �gure the attribute lengths are shown un�
der each attribute� Before modi�cation� the DailySales
relation required �� bytes per tuple� After modi�cation it
requires �� bytes� an increase of approximately ���� �

��� Algorithm for readers

In this section we give the algorithm for extracting the cor�
rect version of a tuple so that a reader sees a consistent
state of the database� The general idea is that by looking
at tupleVN� the reader can tell whether it should read the
current version of the tuple or the pre�update version of the
tuple� By looking at operation and the current and pre�
update attributes the proper state for either tuple version
can be extracted�

A reader always reads the version of the tuple that was
current during database version sessionVN� meaning the
version that includes the e�ects of all maintenance trans�
actions with maintenanceVN � sessionVN� and no other
maintenance transactions� Recall that tupleVN contains
the maintenanceVN of the last maintenance transaction to
modify the tuple� There are three cases to consider�

�� sessionVN � tupleVN � Read the current version of the
tuple�

�� sessionVN � tupleVN��� Read the pre�update ver�
sion of the tuple�

�� sessionVN � tupleVN��� The session has expired�

The current version of the tuple is the state that was cur�
rent as of database version tupleVN� The pre�update version
of the tuple is the state that was current in database ver�
sion tupleVN��� The reason in case ��� that the session has
expired is that there is no way of determining the tuple
s
state at database version tupleVN�� or earlier� since only
two states of the tuple are available� In this case the reader
can be noti�ed to begin a new session�

Table � speci�es how to extract the current or pre�update
version of the tuple� depending upon the operation� For
example� in the case where the pre�update version of the
tuple is to be read and the operation � insert� the tuple
should be ignored� Note that when the table speci�es to read
pre�update attribute values� the current attribute values are
read for non�updatable attributes since they cannot change�

EXAMPLE ��� Assume that our example DailySales re�
lation� extended as described in Section ���� contains tuples
as illustrated in Figure �� If a reader with sessionVN � �
reads the relation� the following tuples would be returned
according to Table ��

city state product line date total sales

San Jose CA golf equip �������
 ������
Berkeley CA racquetball �������
 ������
Novato CA rollerblades �������
 �����

�

In Section ��� we will show how the decision procedure of
Table � can be implemented in SQL� so that the correct ver�
sion of each tuple can be extracted through a query rewrite
mechanism�

��� Algorithm for maintenance transactions

When a maintenance transaction reads a tuple� it always
reads the current version� Thus� it always follows the �rst
line of Table � for tuple reads�

When a maintenance transaction inserts� deletes� or up�
dates a tuple� several actions need to take place so that both
the current and pre�update tuple versions are maintained in
the tuple�

� In some cases the current attribute values are moved to
the pre�update attribute values so that the pre�update
version of the tuple is preserved�

� The current attribute values are set to the values spec�
i�ed by the maintenance operation�

� tupleVN is set to maintenanceVN�

� operation is set to the logical operation �insert� delete�
or update� that is performed by the maintenance trans�
action on the tuple� Note that the logical operation
performed by the maintenance transaction may not
be the same as the physical operation e�ected on the
tuple� For example� when the logical operation is dele�
tion� the tuple usually is not physically deleted from
the database because the pre�update version of the tu�
ple might be needed by readers� Once logically�deleted
tuples are no longer needed by readers� they can be
garbage collected by periodically running a process to
physically delete them� We plan to examine garbage
collection in more detail in future work�

In addition� the operation recorded in operation needs
to represent the net e�ect �SP��	 of all operations per�
formed by the maintenance transaction on the tuple�



operation
Insert Update Delete

Current Version read current read current ignore
attribute values attribute values tuple

Pre�Update Version ignore read pre�update read pre�update
tuple attribute values attribute values

Table �� Decision table for extracting the current or pre�update tuple version

Previous operation
Insert Update Delete

tupleVN impossible impossible Update tuple�
� maintenanceVN PV�nulls

CV�MV

tupleVN�maintenanceVN
operation�insert

tupleVN impossible impossible Update tuple�
� maintenanceVN CV�MV

operation�update
No Con�icting Tuple Insert tuple�

PV�nulls
CV�MV

tupleVN�maintenanceVN
operation�insert

Table �� Decision table for insert maintenance operation

Previous operation
Insert Update Delete

tupleVN Update tuple� Update tuple� impossible
� maintenanceVN PV�CV PV�CV

CV�MV CV�MV

tupleVN�maintenanceVN tupleVN�maintenanceVN
operation�update operation�update

tupleVN Update tuple� Update tuple� impossible
� maintenanceVN CV�MV CV�MV

Table �� Decision table for update maintenance operation

Previous operation
Insert Update Delete

tupleVN Update tuple� Update tuple� impossible
� maintenanceVN PV�CV PV�CV

tupleVN�maintenanceVN tupleVN�maintenanceVN
operation�delete operation�delete

tupleVN Delete tuple Update tuple� impossible
� maintenanceVN operation�delete

Table �� Decision table for delete maintenance operation



city state product line date total sales
insert� San Jose CA golf equip 	�
	�
�� 		����
insert� Novato CA rollerblades 	�
	�
�� �����
update� San Jose CA golf equip 	�
	�
�� 	������ 	��
��
delete� Berkeley CA racquetball 	�
	�
�� 	
����

Figure �� Example maintenance transaction

tupleVN operation city state product line date total sales pre total sales

� update San Jose CA golf equip 	�
	�
�� 	��
�� 	�����
� insert San Jose CA golf equip 	�
	�
�� 	���� null
� delete Berkeley CA racquetball 	�
	�
�� 	
���� 	
����
� insert Novato CA rollerblades 	�
	�
�� ����� null
� insert San Jose CA golf equip 	�
	�
�� 		���� null

Figure 
� Result of DailySales after maintenance transaction

For example� if a maintenance transaction inserts a
tuple and then updates the same tuple in the same
transaction� the net e�ect is still an insert� If opera�
tion were incorrectly set to update� readers looking for
the pre�update version of the tuple would try to read
the pre�update attribute values� instead of correctly
ignoring the tuple�

� The appropriate physical operation is performed on
the tuple�

The exact actions to perform on the tuple depend upon
the maintenance operation� the tuple
s tupleVN value� and
the tuple
s operation value� Tables �� �� and � give the
actions to perform for an insertion� update� and deletion
maintenance operation respectively� Given maintenanceVN
for the maintenance transaction and the tuple
s existing val�
ues for tupleVN and operation� the tables show the correct
physical operation to perform on the tuple so that the cur�
rent and pre�update tuple versions are preserved� In the
tables�

� CV denotes the current attribute values of the tuple�

� PV denotes the pre�update attribute values of the tu�
ple� and

� MV denotes the attribute values speci�ed in the main�
tenance operation �if the maintenance operation is an
insert or an update��

Thus� the expression �PV�CV � means set the pre�update
attribute values of the tuple equal to the corresponding cur�
rent attribute values� and �CV�MV � means to set the cur�
rent attribute values of the tuple equal to the attribute val�
ues speci�ed in the maintenance operation�

Note that since only one maintenance transaction exe�
cutes at a time� we know that tupleVN � maintenanceVN�
The �rst row in each table speci�es the actions to take when
the tuple
s version number is less than the maintenance
transaction
s version number� When tupleVN � mainte�
nanceVN� the tuple has been modi�ed previously by the
same maintenance transaction� The actions to take in this
case are speci�ed in the second row in each table� As men�
tioned previously� the operation assigned in the second row
represents the net e�ect of all operations performed on the
tuple by the maintenance transaction�

In Table � for insertions� the �rst two rows are for the
case when tuples have unique keys and a tuple having the

same key as the tuple being inserted by the maintenance
transaction is found in the database� �This case can occur
only when a tuple with the same key was previously deleted��
The third row in Table � describes the actions to take in the
more common case when a con�icting tuple is not found in
the database� For tuples that do not have unique keys� the
actions in the third row are always followed�

Some of the table cells simply specify �impossible�� These
cells represent sequences of operations that are not possible
in a valid transaction� For example� it is not possible to up�
date or delete an already�deleted tuple �Tables � and ��� and
if tuples have unique keys then it is not possible to insert
a tuple with the same key value as a previously inserted or
updated tuple �Table ��� We can however insert a tuple with
the same key as a previously deleted tuple �Table ��� and
the net e�ect of a delete and insert in the same maintenance
transaction is an update�

EXAMPLE ��� Assume again that our DailySales rela�
tion contains tuples as illustrated in Figure �� As is always
the case with summary tables� the key of the relation is the
set of group�by attributes� which in our case are city� state�
product line� and date� Suppose we execute a maintenance
transaction with a maintenanceVN of � containing the oper�
ations shown in Figure �� Executing the maintenance trans�
action results in the extended DailySales relation having
the tuples shown in Figure 
� �

In Section ��� we will show how the decision procedures
of Tables �� �� and � can be implemented in SQL� so that the
current and pre�update versions of each tuple are preserved
by a maintenance operation�

� Implementing �VNL

The �VNL algorithm can be implemented in a data ware�
housing system either by modifying the internals of the sys�
tem� or by using a query rewrite �Sto���SJGP��	 approach
in which the system itself need not be modi�ed at all� Cer�
tainly building �VNL into the system is likely to yield better
performance� but in many cases it is impractical or impos�
sible to modify the internals of an existing DBMS� A useful
property of �VNL is that it can be implemented entirely
outside of an existing DBMS by automatically modifying
the relation schema as speci�ed in Section ��� and rewriting
the maintenance and query operations� We will specify the



rewriting process by showing how to implement the decision
tables of Sections ��� and ��� using SQL�

To implement �VNL on top of an existing DBMS by
query rewrite we require that the DBMS have the following
two characteristics�

� During the time that a tuple is in the process of be�
ing modi�ed� a latch �short�duration lock� is held on
the tuple or the page to keep readers from accessing a
partly�modi�ed tuple� The latch is released as soon as
the tuple has been modi�ed� without waiting for the
transaction to commit� A write lock is not obtained
on the modi�ed tuple� or if it is� the write lock is ig�
nored by readers� In SQL��� it is possible to set the
transaction isolation level to �read uncommitted� to
tell readers to ignore write locks� and at least some
commercial DBMS
s support this capability�

� When a physical tuple update is performed� the update
is performed in place so that the new state of the tuple
�containing information regarding the current and pre�
update tuple versions� replaces the old tuple on the
page� Performing updates in place makes it impossible
for a reader scanning through a relation to read two
di�erent physical records for the same tuple� Most
DBMS
s perform updates in place� If updates are not
performed in place by the DBMS� then an update must
be issued instead as a deletion and an insertion� which
may result in key values no longer being unique since
several physical records may have the same key value
but di�erent versions� If we chose instead to build the
algorithm into a DBMS� which we plan to explore as
future work� the requirement to update in place would
not be necessary�

In order to implement the global variables currentVN
and maintenanceActive using the DBMS� they can be stored
in a single�tuple� two�attribute Version relation that is read
by readers and updated by maintenance transactions� At the
beginning of a maintenance transaction the maintenance�
Active �ag in the tuple is set to true� Just before the
commit of the maintenance transaction maintenanceVN is
written to the tuple as the new value of currentVN and
maintenanceActive is set to false� Note that if after writing
maintenanceVN into currentVN the maintenance transac�
tion aborts� readers who read the updated currentVN can
see an inconsistent database state while the maintenance
transaction is backing out� A solution to this problem would
be to update currentVN in a separate transaction that runs
just after the maintenance transaction commits�

��� Query rewrite for readers

We now explain how to rewrite reader queries to access
the correct tuple version according to the decision table
of Section ���� In the rewriting� the SQL��� CASE expres�
sion �MS��	 is used to access the current or pre�update at�
tributes as appropriate� Any time an updatable attribute
is referenced in a query it is replaced with a CASE expres�
sion that returns the current or pre�update attribute value
depending upon the tuple
s tupleVN and the reader
s ses�
sionVN� Additionally� a condition is added to the where
clause so that the appropriate tuples are ignored� We illus�
trate the rewriting with an example� the general case follows
directly�

EXAMPLE ��� Returning again to our DailySales ex�
ample relation� suppose that an analyst wanted to �nd the

total sales made by stores in each city� The following query
would be issued�

SELECT city� state� SUM�total sales�
FROM DailySales
GROUP BY city� state

Since total sales is the only updatable attribute� af�
ter rewriting the query is translated to the following� We
use �sessionVN as a placeholder for the reader
s sessionVN
value�

SELECT city� state�
SUM�CASE WHEN �sessionVN � tupleVN

THEN total sales ELSE pre total sales END�
FROM DailySales
WHERE ��sessionVN � tupleVN AND operation �� �delete��
OR ��sessionVN � tupleVN AND operation �� �insert��

GROUP BY city� state
�

Readers also need to detect when they have expired� As
discussed earlier� one approach is to detect whenever a tuple
is read with sessionVN � tupleVN�� and raise an exception�
but this approach cannot always be implemented by query
rewrite� Alternatively� the reader can determine whether it
may have read such tuples by checking whether� since the
reader started� a maintenance transaction has committed
and another begun� This check is performed by evaluat�
ing the following condition �which can be implemented by
reading the single�tuple Version relation��

�sessionVN � currentVN� or
��sessionVN � currentVN � �� and
maintenanceActive � false�

If the condition returns false� then the session is expired�

��� Modifying maintenance transactions

Insert� delete� and update statements issued by a mainte�
nance transaction are rewritten similarly to queries issued
by readers� Each type of statement is considered separately
below�

Note that in the decision tables for insert and delete
operations �Tables � and � respectively�� logical insertions
and deletions sometimes translate to physical insertions and
deletions respectively� and sometimes translate to physical
tuple updates� Furthermore� in the decision table for update
operations �Table ��� sometimes the current attribute val�
ues are preserved by copying into the pre�update attributes�
and sometimes not� It is thus not possible to rewrite an SQL
insert� update� or delete statement into a single correspond�
ing statement� Either the statements can be rewritten into
two corresponding statements� one for each type of physical
operation that might be performed� or cursors can be used
so that the decision of which physical operation to perform
can be made on a tuple by tuple basis� We will explain the
latter approach since cursors are likely to be used in the
maintenance transaction even before the rewriting�

����� Insert statement

Following the third row of Table �� an insert statement must
be modi�ed to add values for tupleVN and operation �setting
them to maintenanceVN and �insert� respectively�� and to
set the pre�update attribute values to null� If the relation
has no unique key� then these are the only changes� When
the relation has a unique key� it is possible to encounter a key
con�ict upon insertion if the tuple was previously deleted



by the same maintenance transaction� or if it was logically
deleted earlier but not garbage collected� In the case of a key
con�ict� instead of inserting the new tuple� the existing tuple
must be updated to re�ect the values of the logically�inserted
tuple� We illustrate the rewriting of an insert statement by
an example� the general case follows directly�

EXAMPLE ��� Consider insertions into DailySales�
which has as a unique key hcity� state� product line�
datei� The following pseudocode describes the insertion
process� For each tuple� �rst the insert is attempted� If a
unique key con�ict occurs� the con�icting tuple is updated
instead� Note that the second select statement in the pseu�
docode always returns a single tuple r since it selects on the
key�

For each tuple t to insert
INSERT INTO DailySales VALUES

� line � in Table �
��maintenanceVN� �insert�� t�city� t�state�
t�product line� t�date� t�total sales� null�

If insert failed due to a unique key con�ict�
Let r � � r has same key value as t

�SELECT �
FROM DailySales
WHERE city � t�city AND state � t�state
AND product line � t�product line
AND date � t�date�

If t�tupleVN � �maintenanceVN�
� line � in Table �

Update r
set r�pre total sales � null
set r�total sales � t�total sales
set r�tupleVN � �maintenanceVN
set r�operation � �insert�

Else � line � in Table �
Update r

set r�total sales � t�total sales
set r�operation � �update�

�

����� Update statement

The speci�c physical update operation corresponding to a
logical update operation on a tuple depends upon whether
the tuple has already been modi�ed �inserted or updated�
by the maintenance transaction� We can test this property
for each tuple using a cursor approach� as shown below� If
the tuple has not been modi�ed by the maintenance trans�
action� then the existing values of updatable attributes are
preserved by copying them into the pre�update attributes�
If the tuple has been modi�ed by the maintenance trans�
action� then the updatable attributes should not be copied�
We illustrate the rewriting of an update statement with an
example� again� the general case follows directly�

EXAMPLE ��� Suppose we were to add ����� to the
total sales of all tuples in our DailySales relation hav�
ing a city of �San Jose� and a date of ��������
�� The
SQL update statement appears below�

UPDATE DailySales
SET total sales � total sales � 	���

WHERE city � �San Jose� AND date � �	�
	�
���

The following pseudocode illustrates how a cursor approach
can be used to implement the above update statement�

For each tuple r in
�SELECT �
FROM DailySales
WHERE city � �San Jose�
AND date � ���	�
	����

If r�tupleVN � �maintenanceVN� � line � in Table �
Update r

set r�pre total sales � r�total sales
set r�total sales � r�total sales � ����
set r�tupleVN � �maintenanceVN
set r�operation � �update�

Else � line � in Table �
Update r

set r�total sales � t�total sales � ����

�

����� Delete statement

A logical delete operation usually corresponds to a physical
update operation� unless the tuple was previously inserted in
the same transaction �in which case the tuple is physically
deleted�� Similar to an update statement� an SQL delete
statement can be implemented using a cursor approach by
testing for each tuple the value of tupleVN and operation
and performing the appropriate action according to Table ��

EXAMPLE ��� Suppose we were to delete all tuples in
DailySales having a city of �San Jose� and a date of
��������
�� The SQL delete statement appears below�

DELETE FROM DailySales
WHERE city � �San Jose� AND date � �	�
	�
���

The following pseudocode illustrates how a cursor approach
can be used to implement the above delete statement�

For each tuple r in
�SELECT �
FROM DailySales
WHERE city � �San Jose�
AND date � ���	�
	����

If r�tupleVN � �maintenanceVN� � line � in Table �
Update r

set r�pre total sales � r�total sales
set r�tupleVN � �maintenanceVN
set r�operation � �delete�

Else � line � in Table �
If r�operation � �insert�

Delete r
Else

Update r
set r�operation � �delete�

�

��� �VNL and indexing

Traditional indexes can still be used under the �VNL algo�
rithm� Indexes on non�updatable attributes are not a�ected
by the algorithm� Note especially that for the summary ta�
bles commonly found in data warehouses� indexes are usu�
ally built on the group�by attributes� since the group�by
attributes are not updatable these indexes are not a�ected
by the use of �VNL�

Indexes on updatable attributes could also be built� but
using �VNL there are two physical attributes� a current
and a pre�update attribute� for each logical attribute� In�
dexes could be built on both the current and pre�update



attributes� However� in our rewrite approach� updatable at�
tributes always appear inside CASE expressions in the rewrit�
ten queries� Thus� to use indexes the query optimizer would
need to be able to use indexes on attributes appearing inside
CASE expressions� It is doubtful that current query optimiz�
ers have this capability�

We plan to investigate indexing issues in the context of
�VNL in more depth as future work�

� Extending �VNL to n versions

As explained earlier� if during a reader session one mainte�
nance transaction commits and another one starts� then the
reader session can expire�the �VNL algorithm only guar�
antees that a reader sees a consistent state as long as the
reader overlaps at most one maintenance transaction� This
overlap property is likely to hold for most reader sessions in
data warehousing environments� since maintenance transac�
tions tend to be long� and the �gaps� between them tend to
be relatively long as well� Nevertheless� it is conceivable that
expiration could become a problem� and in Section ��� we
discussed several alternatives for avoiding it� In this section
we elaborate on the nVNL solution�

The nVNL algorithm for a given n � � is the natural
extension of the �VNL algorithm to make n versions of the
database available at the same time� Whereas the �VNL
algorithm guarantees that a reader sees a consistent state
as long as it overlaps at most one maintenance transaction�
the nVNL algorithm guarantees that a reader sees a consis�
tent state as long as it overlaps at most n� � maintenance
transactions�

Increasing n allows us to increase the length of reader
sessions that are guaranteed never to expire� For exam�
ple� assuming i is the length of the minimum time inter�
val between two maintenance transactions� and m is the
length of the shortest maintenance transaction� then �VNL
guarantees that reader sessions lasting up to i will never
expire� �VNL� on the other hand� guarantees that reader
sessions lasting up to �i � m will never expire� In gen�
eral� nVNL guarantees that reader sessions lasting up to
�n � �� � �i �m��m never expire� Thus� n can be tuned
for the expected pattern of reader sessions and maintenance
transactions in a data warehouse in order to avoid expira�
tion� Of course the higher n is� the more overhead we incur
in storage and run�time costs�

Note that we are still assuming that maintenance trans�
actions run one at a time� The purpose of nVNL is not to
allow multiple concurrent writers� but rather to allow read�
ers to �sequentially� overlap multiple maintenance transac�
tions� Consequently� nVNL still di�ers from other multi�
version algorithms in signi�cant ways� as discussed earlier
and in Section 
 below�

For nVNL the relation schema is modi�ed as described
in Section ���� except there are n � � tupleVN attributes
�tupleVN�� � � � � tupleVNn���� n� � corresponding operation
attributes� and n � � corresponding sets of pre�update at�
tributes� Attribute tupleVNi contains the maintenanceVN
of the i�th most recent maintenance transaction to mod�
ify the tuple� operationi contains the logical operation per�
formed by that modi�cation� and the corresponding set of
pre�update attributes contains the values of the updatable
attributes before being modi�ed�

As with �VNL� we want a reader to see the version
of a tuple that was current during database version ses�
sionVN� meaning the version that includes the e�ects of
all maintenance transactions with maintenanceVN � ses�

sionVN� and no other maintenance transactions� Recall�
ing that tupleVN� denotes the largest �most recent� main�
tenanceVN� and tupleVNn�� denotes the smallest �least re�
cent� maintenanceVN� the cases for a reader are�

�� sessionVN � tupleVN�� Read the current version of
the tuple�

�� tupleVNn�� � � � sessionVN � tupleVN�� Read the
pre�update version of the tuple for the least tupleVNj �

sessionVN�

�� sessionVN � tupleVNn����� The session has expired�

To read the correct values for the tuple� Table � for �VNL is
used� For case ��� above� operation in Table � is operation�
and the �rst row in the table is followed� For case ���� oper�
ation is operationj� the second row is followed� and the j�th
set of pre�update attribute values are used�

For maintenance transactions� we follow the same de�
cision tables as for �VNL �Tables � ��� except instead of
simply overwriting tupleVN� operation� and the pre�update
attribute values� we �push back� attributes� eliminating the
existing nth version in order to make room for a new �st
version� That is� we set tupleVNi��� tupleVNi for � � i �
n� �� and similarly for the operationi
s and the pre�update
attributes� We then set tupleVN�� operation�� and the �rst
set of pre�update attributes according to Tables � �� There
are some exceptions in the tables� such as new inserts �where
most attributes are set to null� and multiple updates in the
same maintenance transaction �where rather than �pushing
back� values we overwrite the most recent ones�� Due to
space constraints we do not enumerate all the cases here�
the generalization from Tables � � is straightforward�

EXAMPLE ��� Consider our example DailySales rela�
tion using nVNL with n � �� We
ll examine a tuple for
golf equipment sales in San Jose� CA on �������
� Sup�
pose that a maintenance transaction with maintenanceVN
� � inserts the tuple with total sales � ������� then a
maintenance transaction with maintenanceVN � � updates
the total sales to ������� then a maintenance transaction
with maintenanceVN � 
 deletes the tuple� After the dele�
tion� the tuple in the extended relational schema appears as
shown in Figure ��

Using the cases described above along with Table �� we
see that a reader with sessionVN� 
 will ignore the tuple� A
reader with sessionVN� 
 but � � will read the pre�update
version of the tuple for the least tupleVN� sessionVN� that
is� a reader with sessionVN� f�� �g will see the logical tuple
with total sales � ������� and a reader with sessionVN�
� will ignore the tuple� A reader with sessionVN � � will
have expired� �

� Relationship to �V�PL and MV�PL algorithms

A large body of research has been performed on two�version
two�phase locking ��V�PL� algorithms and multi�version
two�phase locking �MV�PL� algorithms �also called transient
versioning algorithms�� In fact� several commercial DBMS
s
have implemented various forms of multi�version algorithms
�BBG����BHG��	� Multi�version algorithms can be di�er�
entiated in several ways�

� how many previous versions are kept�

� how long previous versions are stored� and

� which versions are read by readers�



city state product line date total sales tupleVN� operation� pre total sales� � � �

San Jose CA golf equip 	�
	�
�� 	��
�� � delete 	��
�� � � �

� � � tupleVN� operation� pre total sales� tupleVN� operation� pre total sales�

� � � � update 	����� � insert null

Figure �� Example �VNL tuple

In �V�PL algorithms �BHR���SR��	� when a writer mod�
i�es a tuple a new version of the tuple is created� While the
writer transaction is active� concurrent readers read the pre�
vious tuple version� Because writers write a di�erent version
than the version read by readers� readers are never blocked
by writers� Unlike our �VNL �or nVNL� algorithm� however�
�V�PL algorithms delete the previous version of modi�ed
tuples when the writer transaction commits� Deleting the
previous version of modi�ed tuples causes readers to delay
writers because the writer cannot commit until all readers
that have read the previous version of modi�ed tuples have
committed�otherwise� repeatable reads would be sacri�ced�

MV�PL algorithms �AS���BC��a�BC��b�CFL����Wei���
MPL���WYC��	 guarantee that readers and writers never
block each other�� MV�PL algorithms maintain su�cient
previous versions of each tuple �or page� if versioning is at
the page level� that readers are always guaranteed to have
the correct tuple version available� Previous versions may
be garbage collected when it is guaranteed that they are
no longer needed by any reader� With some MV�PL al�
gorithms� readers read the latest version of the tuple that
is less than the reader
s begin�timestamp �CFL���	� These
algorithms require maintaining possibly many previous ver�
sions of each tuple� By carefully choosing the previous tuple
versions that are made available to readers� other MV�PL al�
gorithms �MPL���WYC��	 guarantee that readers and writ�
ers never block each other with a maximum of three or four
tuple versions� Note that in contrast� �VNL requires only
two versions of each tuple to be available� This reduction
in the number of versions required is due to the fact that in
data warehousing environments� maintenance transactions
are known to run one at a time�

All MV�PL algorithms require overhead to access and
maintain previous tuple versions� For example� the approach
in �CFL���	 stores previous versions in a special �version
pool� on disk� where they are chained together and to the
current version� This means that readers might have to per�
form several I�O
s to access the correct version of a tuple�
Also� tuple writes involve an additional I�O for copying the
existing current version to the version pool� The approach
in �BC��b	 improves on this design by reserving a portion of
each data page for a version pool cache so that recent tuple
versions are stored on the same page� But reserving a por�
tion of each page for a version pool cache requires storage
overhead� and the global version pool must still be accessed
if the version pool cache on the page over�ows� By stor�
ing all information in a single tuple� even in the case when
most tuples in a relation are updated by maintenance trans�
actions� the �VNL algorithm requires very little overhead�
especially in the case of summary tables where only a few

�Not all multi�version algorithms are MV�PL algorithms� That
is� not all use two�phase locking to synchronize writers� But since
synchronizing writers is not the focus of this paper 
we assume main�
tenance transactions are the only writers� and they are limited to
executing one at a time by an external protocol�� and since all multi�
version algorithms use essentially the same technique for synchroniz�
ing readers� we describe only MV�PL algorithms here�

of the attributes are updatable� Furthermore� in �VNL ad�
ditional I�O
s for reading and modifying tuples are never
required� although there could be more I�O
s altogether in
a scan� say� since fewer tuples �t on a page�

�MPL��	 considers incremental versioning� storing only
the values of changed attributes in previous tuple versions�
They mention that in order to access the correct tuple ver�
sion multiple incremental versions must be read and com�
bined� but the algorithms for creating and combining the
incremental versions are not given� More importantly� im�
plementing the algorithm of �MPL��	� as with all multi�
version algorithms of which we are aware� requires signi�cant
changes to the DBMS
s underlying storage and transaction
management systems� We believe �VNL is the �rst algo�
rithm that can be implemented on top of current DBMS
s
using a query rewrite approach� Also� by assuming char�
acteristics common in a data warehouse�that maintenance
transactions run one at a time and only a few attributes in
summary tables are updatable�our �VNL algorithm pro�
vides concurrency for warehouse readers and the mainte�
nance transaction with very little overhead�

� Conclusions and Future Work

We have presented a concurrency control algorithm that is
especially suited to view maintenance in a data warehousing
environment� Using our algorithm� readers of the warehouse
can execute concurrently with a view�maintenance transac�
tion without blocking� readers and the maintenance transac�
tion are serializable �i�e�� both access consistent versions of
the database�� and readers and the maintenance transaction
do not need to place any locks� Allowing the maintenance
transaction to execute concurrently with readers has signif�
icant advantages� including making the warehouse available
to readers �� hours a day and allowing maintenance trans�
actions to be longer and�or more frequent�

Our algorithm is a type of multi�version algorithm espe�
cially suited to the data warehousing environment� It does
not su�er from the problem of readers delaying writer com�
mit that �V�PL algorithms su�er from� Nor does it su�er
from the additional I�O
s required to access and manage
multiple separate versions of each tuple that most MV�PL
algorithms su�er from� because in �VNL both versions of
each tuple are stored together in the same physical location�
Our approach is very space�e�cient when only a few at�
tributes are updatable by maintenance transactions� which
is often the case in data warehousing environments� even if
a large percentage of tuples are updated� Finally� we have
shown how our algorithm can be implemented easily on top
of current DBMS
s through query rewrite as long as the
DBMS supports the �read�uncommitted� transaction isola�
tion level and physical tuple updates are performed in�place�

We intend to pursue the following areas as future work�

� Building the algorithm into a DBMS would probably
yield better performance than implementing it through



query rewrite� Thus� we would like to implement and
compare both approaches� both from a performance
and software engineering standpoint�

� We want to compare performance in terms of num�
ber of I�O
s and storage space required between our
�VNL algorithm and MV�PL algorithms presented in
the literature�

� Tuples that have been marked deleted can be removed
once tupleVN � sessionVN�� for all active readers�
We intend to explore e�cient methods for �garbage
collecting� old tuples�

� Because tuples that have been modi�ed by the mainte�
nance transaction contain su�cient information to ex�
tract their previous version� maintenance transactions
can execute without the need to log before�images� We
plan to explore ways to allow rolling back maintenance
transactions without logging by reverting to the pre�
vious version of tuples in the database�

Acknowledgments

We thank the one thorough SIGMOD reviewer for his or her
useful comments and corrections� Janet Wiener for helpful
comments on a previous version of the paper� and Hector
Garcia�Molina for pointers to related work�

References

�AS��	 D� Agrawal and S� Sengupta� Modular syn�
chronization in multiversion databases� Version
control and currency control� In Proceedings of
ACM SIGMOD ���� International Conference
on Management of Data� pages ��� ���� �����

�BBG���	 H� Berenson� P� Bernstein� J� Gray� J� Melton�
E� O
Neil� and P� O
Neil� A critique of ANSI SQL
isolation levels� In Proceedings of ACM SIGMOD
���� International Conference on Management
of Data� pages � ��� �����

�BC��a	 P� Bober and M� Carey� Multiversion query
locking� In Proceedings of the Eighteenth In�
ternational Conference on Very Large Databases
�VLDB	� pages ��� ���� �����

�BC��b	 P� Bober and M� Carey� On mixing queries and
transactions via multiversion locking� In Pro�
ceedings of the Eighth International Conference
on Data Engineering� pages ��� ���� �����

�BHG��	 P� Bernstein� V� Hadzilacos� and N� Goodman�
Concurrency Control and Recovery in Database
Systems� Addison�Wesley� �����

�BHR��	 R� Bayer� H� Heller� and A� Reiser� Parallelism
and recovery in database systems� ACM Trans�
actions on Database Systems� �������� ��
� June
�����

�CFL���	 A� Chan� S� Fox� W� Lin� A� Nori� and D� Ries�
The implementation of an integrated concur�
rency control and recovery scheme� In Proceed�
ings of ACM SIGMOD ���� International Con�
ference on Management of Data� pages ��� ����
�����

�GL��	 T� Gri�n and L� Libkin� Incremental mainte�
nance of views with duplicates� In M� Carey and
D� Schneider� editors� Proceedings of ACM SIG�
MOD ���� International Conference on Man�
agement of Data� pages ��� ���� San Jose� CA�
May ����� �����

�HRU�
	 V� Harinarayan� A� Rajaraman� and J�D� Ull�
man� Implementing data cubes e�ciently�
In Proceedings of ACM SIGMOD ���
 Inter�
national Conference on Management of Data�
pages ��� ��
� ���
�

�LW��	 D� Lomet and J� Widom� editors� Special Is�
sue on Materialized Views and Data Warehous�
ing� IEEE Data Engineering Bulletin ������ June
�����

�MPL��	 C� Mohan� H� Pirahesh� and R� Lorie� E�cient
and �exible methods for transient versioning of
records to avoid locking by read�only transac�
tions� In Proceedings of ACM SIGMOD ���� In�
ternational Conference on Management of Data�
pages ��� ���� �����

�MS��	 J� Melton and A� Simon� Understanding the New
SQL� A Complete Guide� Morgan Kaufmann�
�����

�SJGP��	 M� Stonebraker� A� Jhingran� J� Goh� and
S� Potamianos� On rules� procedures� caching
and views in data base systems� In Proceedings
of the ACM SIGMOD International Conference
on Management of Data� pages ��� ���� �����

�SP��	 A� Segev and J� Park� Updating distributed ma�
terialized views� IEEE Transactions on Knowl�
edge and Data Engineering� �������� ���� June
�����

�SR��	 R� Stearns and D� Rosenkrantz� Distributed
database concurrency controls using before�
values� In Proceedings of ACM SIGMOD ����
International Conference on Management of
Data� pages �� ��� �����

�Sto��	 M� Stonebraker� Implementation of integrity
constraints and views by query modi�cation�
In Proceedings of ACM SIGMOD ��
� Inter�
national Conference on Management of Data�
pages 
� ��� �����

�Wei��	 W� Weihl� Distributed version management
for read�only actions� IEEE Transactions on
Software Engineering� SE��������� 
�� January
�����

�WYC��	 K� Wu� P� Yu� and M� Chen� Dynamic �nite
versioning� An e�ective versioning approach to
concurrent transaction and query processing� In
Proceedings of the Ninth International Confer�
ence on Data Engineering� pages ��� ��
� �����


