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Abstract

Data warehouses store materialized views over base data
from external sources. Clients typically perform complex
read-only queries on the views. The views are refreshed peri-
odically by maintenance transactions, which propagate large
batch updates from the base tables. In current warehous-
ing systems, maintenance transactions usually are isolated
from client read activity, limiting availability and/or size of
the warehouse. We describe an algorithm called 2VNL that
allows warehouse maintenance transactions to run concur-
rently with readers. By logically maintaining two versions
of the database, no locking is required and serializability is
guaranteed. We present our algorithm, explain its relation-
ship to other multi-version concurrency control algorithms,
and describe how it can be implemented on top of a conven-
tional relational DBMS using a query rewrite approach.

1 Introduction

Data warehouses collect information from one or more data
sources and integrate it into a single database where it can
be queried by clients (readers) of the warehouse. The rela-
tions stored at the warehouse represent materialized views
over the data at the sources [LW95]. Because data ware-
houses often are used primarily for decision support, queries
at the warehouse tend to be long and complex. Thus, a
warehouse may contain many materialized views in order to
speed up query processing [HRU96].

As changes are made to the data at the sources, the
views at the warehouse become out of date. In order to
make the views consistent again with the source data, the
views can be incrementally maintained [G1.95] by propagat-
ing changes from the source data to the warehouse views.
In current commercial warehousing systems, usually changes
to the source data are queued and propagated periodically
(e.g., once a day) to the warehouse views in a large batch up-
date transaction, called a maintenance transaction. The pe-
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riodic maintenance transaction is typically the only transac-
tion to update the warechouse views—all other transactions
performed at the warehouse are read-only queries.

An important problem in data warehousing is how to ex-
ecute queries and the periodic maintenance transaction so
that they do not block one another, especially because both
queries and maintenance transactions can be long running.
One approach to avoid blocking is to violate serializabil-
ity and allow readers to see an inconsistent database state.
However, often such inconsistency is not acceptable. In fact,
readers may want to see data that is consistent across a se-
quence of queries executed over a period of several minutes
or hours while analyzing the data. During analysis it would
be unacceptable to have the results change from query to
query. We term such a long-running sequence of queries a
reader session.

How can readers be guaranteed to read a consistent data-
base state without blocking when the maintenance transac-
tion is running? Conventional two-phase locking algorithms
can’t be used because they require readers to block if they
attempt to read a data item that is modified by an active
(uncommitted) maintenance transaction, and a maintenance
transaction will block if it attempts to modify a data item
that is read by an active reader. Since in data warechouses
both readers and maintenance transactions often access sig-
nificant portions of the database, blocking would occur fre-
quently.

1.1 Current approach

The approach most commonly used in commercial warehous-
ing systems for guaranteeing consistency without blocking is
to maintain the warehouse at night, during which time the
warehouse is unavailable to readers. Since readers and the
maintenance transaction never execute at the same time: (i)
they execute without blocking, (ii) readers are guaranteed
to read a consistent database state, and (iii) neither readers
nor the maintenance transaction need to place any locks.

This current approach is illustrated in Figure 1. The
figure shows three maintenance transactions executing on
three different nights. The reader sessions take place only
during the day when the maintenance transactions are not
running. Unfortunately, there are two major problems with
this approach:

e As corporations become globalized there is no longer
any nighttime common to all corporate sites during
which it is convenient to make the warehouse unavail-
able to readers.



e Since the maintenance transaction must be complete
by the next morning, the time available for view main-
tenance can be a limiting factor in the number and size
of views that can be materialized at the warehouse.

1.2  Our approach

In this paper we propose an algorithm that: (i) allows read-
ers and the maintenance transaction to execute concurrently
without blocking, (ii) allows readers to see a consistent data-
base state throughout an entire session (i.e., readers and the
maintenance transaction are serializable), and (iii) allows
readers and the maintenance transaction to execute with-
out the overhead of placing locks. Using our algorithm it is
possible to make a warehouse available to readers 24 hours
a day. The algorithm is a type of multi-version concurrency
control algorithm that is especially suited to view mainte-
nance in a data warehousing environment. Data warehous-
ing environments are distinct from typical database environ-
ments because at most one update (maintenance) transac-
tion is active at a time. This property allows us to develop
a new algorithm that is better tuned to data warehousing,
and is simpler and easier to implement than existing multi-
version algorithms. We call our algorithm two-version no
locking (2VNL) because up to two versions of each tuple are
available simultaneously, and readers and the maintenance
transaction do not need to place locks. The algorithm has
the following advantages in data warehousing environments
over other multi-version concurrency control algorithms:

o Little extra storage is required to maintain the extra
version information.

¢ The overhead in terms of additional 1/O’s required for
readers and the maintenance transaction is small.

e The overhead of locking can be eliminated for both
readers and the maintenance transaction.

e 2VNL can be implemented on top of existing database
management systems through query rewrite, without
the need to modify the DBMS’s existing concurrency
control or storage systems.

1.3 Paper outline

The remainder of the paper proceeds as follows. Section 2
introduces a running example and motivates the 2VNL al-
gorithm. Section 3 specifies the details of the algorithm.
Section 4 shows how the 2VNL algorithm can be imple-
mented on top of current DBMS’s through query rewrite.
Section 5 explains how to extend the 2VNL algorithm to
the general case of nVNL (n > 2). In Section 6 we com-
pare the 2VNL algorithm to two-version two-phase locking
(2V2PL) and multi-version two-phase locking (MV2PL) al-
gorithms [BHG8&7] and discuss the advantages of 2VNL for
data warehousing environments. Conclusions and areas for
future research are presented in Section 7.

2 Example and Motivation

EXAMPLE 2.1 Consider a warehouse of sales data for a
chain of sporting goods stores. Let the warehouse contain
the following relation (materialized view) aggregating total
daily sales by city and product line.

DailySales(tt city, state, product_line, date,
total sales)

The DailySales relation is an example of a summary ta-
ble, because it summarizes (aggregates) the base sales data.
Summary tables are used commonly in data warehouses to
speed up the evaluation of aggregate queries [HRU96].

Suppose that an analyst wanted to find the total sales
made by stores in each city. The analyst would issue the
following query on the DailySales relation:

SELECT city, state, SUM(total_sales)
FROM DailySales
GROUP BY city, state

A common subsequent action for the analyst would be
to “drill down” in some particular area in order to get more
detail. For example, if sales in San Jose, California weren’t
as high as the analyst thought they ought to be, the analyst
could get a breakdown of sales made in San Jose in each of
the product lines by issuing the following query:

SELECT productline, SUM(total sales)
FROM DailySales

WHERE city = “San Jose” and state = “CA”
GROUP BY productline

It is important that the analyst see a consistent state
of the database across both queries. For example, it would
be disconcerting if the sum of the San Jose sales broken
down by product line that was returned by the second query
didn’t add up to the overall San Jose sales returned by the
first query. Therefore, if a maintenance transaction needs to
update the DailySales relation to include the effect of the
current day’s sales while the data is being analyzed, then
either the maintenance transaction should block until the
analyst’s session is over, or the analyst should be able to
continue reading the state of the database as it was before
the maintenance transaction took effect; :.e., the session and
the maintenance transaction should be serializable.

We will revisit the DailySales example throughout the
paper. i

2.1 Transactions and sessions under 2VNL

As mentioned in the introduction, using conventional lock-
ing to achieve serializability is undesirable. Because reader
sessions and maintenance transactions tend to be long and
complex, blocking could introduce significant delays, while
at the same time locking introduces significant overhead.
The current solution used by most commercial warehous-
ing systems is to only execute maintenance transactions at
night, when the warehouse is unavailable to readers. This
scenario was illustrated in Figure 1.

Figure 2 shows a possible warehouse operation when the
2VNL algorithm is applied. (Ignore the “Database Versions”
information for now.) Note that the maintenance trans-
action can execute concurrently with reader transactions,
which means that maintenance transactions can be longer
and/or more frequent, and readers need not be disabled dur-
ing warehouse modifications.’

A reader session accesses the state of the database that
was current as of the commit of the most recent previous
maintenance transaction. Call this transaction ¢;. The
reader can continue to read this state throughout a sub-
sequent maintenance transaction, tz, until {2 commits and

1Figure 2 illustrates one, perhaps extreme, pattern of maintenance
transactions allowable using 2VNL: very long maintenance trans-
actions with only short gaps between them. In practice, mainte-
nance transactions might be shorter and gaps might be longer. The
only case in which 2VNL is inappropriate is when both maintenance
transactions and gaps are very short, an unlikely scenario in a data
warehouse.
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Figure 1: Current approach to warehouse querying and maintenance

another maintenance transaction, ts, begins. Once t3 be-
gins, since only up to two versions of a tuple are available
in the database, the reader can no longer be guaranteed to
read a consistent database state. We then say that the ses-
sion has “expired,” and the reader is notified to begin a new
session if consistency is desired.

Figure 2 illustrates a policy where a maintenance trans-
action is started each day at 9am. All updates sent to the
warehouse during that day are applied within the scope of
this maintenance transaction. The transaction is commit-
ted at 8am the following morning. A session beginning after
8am will therefore see the effects of that maintenance trans-
action, and is guaranteed to access a consistent database
state until 9am the following morning, at which point the
session expires and a new session must be begun.

Executing a single maintenance transaction once a day is
just one policy that can be used with the 2VNL algorithm.
A potential problem with this policy (or any other policy
with small gaps between maintenance transactions) is that
sessions beginning just before 8am expire very quickly, at
9am the same day. This problem is alleviated somewhat by
executing maintenance transactions on a regular schedule,
since readers can anticipate when their sessions will expire,
but alternative solutions are also possible. One possibility is
to commit the maintenance transaction only when no reader
sessions are active. The disadvantage of this approach is
that it is possible for readers to “starve” the maintenance
transaction, i.e., the maintenance transaction might wait a
very long time to commit, but the advantage is that reader
sessions never expire. Another possibility is to extend the
2VNL algorithm to the more general nVNL (n > 2) case.
The nVNL algorithm is considered in Section 5.

2.2 Intuition for 2VNL

We now give the intuition behind the 2VNL algorithm. We
assume that an external protocol limits maintenance trans-
actions to execute one at a time. We also assume that read-
ers and the maintenance transaction do not place any locks,
or that if the maintenance transaction does place locks, read-
ers ignore the locks. In SQL92 [MS93], readers can be in-
structed to ignore write locks by setting the transaction iso-
lation level to “read uncommitted,” and several commercial
DBMS’s, such as Informix, support this capability.

The additional concurrency in Figure 2 is achieved by
making two versions of the database logically available si-
multaneously. The method for making two versions avail-
able simultaneously is explained in Section 3. Even though
a reader and the maintenance transaction may access the
same tuples, they do not interfere with each other because
conceptually each operates on a different database version.
For this discussion we classify a database version as either a

future version, a current version, or a previous version. At
a given point in time the versions represented in the data-
base are either a future version and a current version (when
there is an active maintenance transaction), or a current
version and a previous version (when there is not an active
maintenance transaction).

Maintenance transactions always operate on a future ver-
sion. A reader is associated with the version that is cur-
rent at the beginning of the session, and continues to read
that version even if it becomes a previous version, until the
version expires. Figure 2 illustrates when the various ver-
sions are available to readers. For example, during the first
maintenance transaction in Figure 2 a current version (la-
beled version 1) is available to readers while the mainte-
nance transaction creates a future version. When the first
maintenance transaction commits, the current version (ver-
sion 1) becomes a previous version and the future version
that was created by the maintenance transaction becomes
the new current version (version 2). Readers can continue
to read version 1 even though it is now a previous version.
When the second maintenance transaction begins, the previ-
ous version (version 1) expires; that is, it becomes unavail-
able for reading, and readers still reading this version are
notified to begin a new session. The second maintenance
transaction creates a new future version, with the current
version (version 2) still available to readers. It is important
to note that the process of switching versions is logical: the
tuples in the database are not modified in order to switch.

3 2VNL Algorithm

In this section we specify the 2VNL algorithm. First we
describe the general algorithm, then we describe each com-
ponent in detail.

As alluded to in Figure 2, each version of the database is
associated with a unique version number. A global variable,
current VN, records the current version number. Variable
currentVN 1s 1 imtially. In addition, a global flag mainte-
nanceActive records whether a maintenance transaction is
currently active. (We assume a simple latching mechanism
is used to read and update these global variables, or they
can be implemented as a record in the DBMS as described
in Section 4.)

Each tuple in the database is extended to include: (i) a
tuple VN attribute that records the version of the database
when the tuple was last modified by a maintenance trans-
action, (ii) an operation attribute that records the opera-
tion € {insert, update, delete} last performed on the tuple,
and (iil) a set of pre-update atiributes that contain the pre-
vious values of the updatable attributes of the tuple (i.e.,
those attributes that could be changed by an update oper-
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Figure 2: Warehouse querying and maintenance scenario with 2VNL

ation in the maintenance transaction). In the worst case,
storing the previous values of updatable attributes requires
approximately doubling the size of the warehouse, but as we
will see in Section 3.1, for summary tables the overhead of-
ten is much less. By recording the tuple VN, operation, and
previous values of updatable attributes, each tuple contains
sufficient information so that two versions of the tuple are
available: the version of the tuple that was current as of
database version tuple VN, and the version of the tuple that
was current in database version tuple VN—1.

When a maintenance transaction begins, it reads the
global currentVN variable and sets a local maintenance VN
variable to currentVN4+1. In addition, it sets the global
maintenanceActive flag to true.

A maintenance transaction always reads the latest ver-
sion of tuples in the database. When the maintenance trans-
action modifies a tuple in the database, the tuple must be
modified in such a way that readers can later read the pre-
update version of the tuple. The maintenance transaction
therefore updates the tuple VN and operation attributes in
the tuple with its maintenance VN and the logical operation
(insert, update, or delete) that is performed on the tuple.
In addition, the previous values of updatable attributes are
saved in the pre-update tuple attributes. Note that in order
not to lose information about the previous state of a tuple
when it is modified by a maintenance transaction, the phys-
tcal operation performed on the tuple is not always the same
as the logical operation specified in the maintenance transac-
tion. For example, a logical tuple delete may be translated
to a physical tuple update in order that the previous version
of the tuple still be available (see Section 3.3).

At commit of the maintenance transaction it updates
the global currentVN with its maintenance VN and sets the
maintenanceActive flag to false, indicating that maintenance
is complete and there is a new current version of the data-
base.

When a reader session begins, it reads currentVN and
copies 1t into its local session VN variable. This is the ver-
sion of the database that the reader will access throughout
the session. When a reader reads a tuple, it reads the most
recent version of the tuple that is < session VN. If the tuple
has not been modified since the session began, then the cur-
rent version of the tuple is read. On the other hand, if the
tuple has been modified by an uncommitted maintenance
transaction or by a maintenance transaction that commit-
ted after the start of the reader session, then the pre-update
version of the tuple is read. Thus readers are guaranteed to
read a consistent database state without placing read locks.

The maintenance transaction need not place write locks on
the tuples it modifies, or if it does, the reader can (and
should) ignore the write locks in order to continue without
blocking.

A reader must be able to detect if its session has expired,
which can be done in one of two ways. A reader can deter-
mine that its session has expired when it attempts to read
a tuple that has been modified by more than one mainte-
nance transaction since the reader session began. In this
case the proper tuple version cannot be read because the
current and pre-update tuple versions are maintained only
for the most recent update. Alternatively, a reader can per-
form a more “global” but pessimistic check, in which the
reader’s session VN is compared with the global currentVN.
Both approaches are discussed in more detail in Sections 3.2
and 4.1 below.

3.1 Modifying the relation schema

In this section we explain how a relation schema is mod-
ified to represent two versions of each tuple.

Each of the relations at the warehouse needs to be ex-
tended with additional attributes. Let A = {A1, Az,..., A}
be the initial set of attributes for a relation R, and let
A’ ={A1, As, ..., A} be the subset of attributes in A that
are updatable. Then the extended schema of R is {tuple VN,
operation, A1, Az,...,An, AV, AY ... AL }, where A? is
used to denote the pre-update attribute corresponding to
updatable attribute A;. Attribute tuple VN contains the
maintenance VN of the maintenance transaction that most
recently modified the tuple, operation contains the logical
operation performed by that maintenance transaction, at-
tributes {A1, A2,..., A} contain the current values of the
tuple attributes, and pre-update attributes {A7, AY, ... AV}
contain the values of the updatable attributes before being
updated by the maintenance transaction. (In the case of in-
sert operations the pre-update attributes are null, and in the
case of delete operations they contain the pre-delete values.)

In the worst case, when every attribute is updatable, rep-
resenting two versions of each tuple requires approximately
doubling the storage space of the warehouse. However, it
is often the case in data warehouses that many attributes
are not updatable. For example, data warehouses often
contain many summary tables, which can be thought of
as select-from-where-groupby aggregate views. Although
tuples can be inserted into or removed from a summary ta-
ble by a maintenance transaction, the values of the group-by
attributes are never updated. Only the attributes represent-



tuple VN
4

operation

1

city
20

state

productline
12

date | totalsales | pre_total_sales
4 4 4

Figure 3: Modified schema for DailySales relation

| tuple VN | operation | city | state | productline | date | total_sales | pre_total sales |
3 insert San Jose | CA golf equip 10/14/96 10,000 null
4 insert San Jose | CA golf equip 10/15/96 1,500 null
4 update Berkeley | CA racquetball | 10/14/96 12,000 10,000
4 delete Novato CA | rollerblades | 10/13/96 8,000 8,000

Figure 4: Example DailySales relation with modified schema

ing the results of aggregate functions are updatable. Hence,
for summary tables the storage overhead required by the
2VNL algorithm is small.

EXAMPLE 3.1 Given the DailySales relation of Exam-
ple 2.1, Figure 3 shows the relation schema after being ex-
tended with the additional attributes necessary for the 2VNL
algorithm. In the figure the attribute lengths are shown un-
der each attribute. Before modification, the DailySales
relation required 42 bytes per tuple. After modification it
requires 51 bytes, an increase of approximately 20%. a

3.2 Algorithm for readers

In this section we give the algorithm for extracting the cor-
rect version of a tuple so that a reader sees a consistent
state of the database. The general idea is that by looking
at tuple VN, the reader can tell whether it should read the
current version of the tuple or the pre-update version of the
tuple. By looking at operation and the current and pre-
update attributes the proper state for either tuple version
can be extracted.

A reader always reads the version of the tuple that was
current during database version sessionVN, meaning the
version that includes the effects of all maintenance trans-
actions with maintenance VN < session VN, and no other
maintenance transactions. Recall that tuple VN contains
the maintenanceV VN of the last maintenance transaction to
modify the tuple. There are three cases to consider:

1. sesstonVN > tuple VN : Read the current version of the
tuple.

2. session VN = tupleVN—1. Read the pre-update ver-
sion of the tuple.

3. session VN < tuple VN—1: The session has expired.

The current version of the tuple is the state that was cur-
rent as of database version tuple VN. The pre-update version
of the tuple is the state that was current in database ver-
sion tuple VN—1. The reason in case (3) that the session has
expired 1s that there is no way of determining the tuple’s
state at database version tuple VN—2 or earlier, since only
two states of the tuple are available. In this case the reader
can be notified to begin a new session.

Table 1 specifies how to extract the current or pre-update
version of the tuple, depending upon the operation. For
example, in the case where the pre-update version of the
tuple is to be read and the operation = insert, the tuple
should be ignored. Note that when the table specifies to read
pre-update attribute values, the current attribute values are
read for non-updatable attributes since they cannot change.

EXAMPLE 3.2 Assume that our example DailySalesre-
lation, extended as described in Section 3.1, contains tuples
as illustrated in Figure 4. If a reader with sessionVN = 3
reads the relation, the following tuples would be returned
according to Table 1.

[ cty [ state | productline | date [ total_sales |
San Jose | CA golf equip 10/14/96 10,000
Berkeley | CA | racquetball | 10/14/96 10,000
Novato CA | rollerblades | 10/13/96 8,000

[}

In Section 4.1 we will show how the decision procedure of
Table 1 can be implemented in SQL, so that the correct ver-
sion of each tuple can be extracted through a query rewrite
mechanism.

3.3 Algorithm for maintenance transactions

When a maintenance transaction reads a tuple, it always
reads the current version. Thus, it always follows the first
line of Table 1 for tuple reads.

When a maintenance transaction inserts, deletes, or up-
dates a tuple, several actions need to take place so that both
the current and pre-update tuple versions are maintained in
the tuple:

e In some cases the current attribute values are moved to
the pre-update attribute values so that the pre-update
version of the tuple is preserved.

e The current attribute values are set to the values spec-
ified by the maintenance operation.

o tuple VN is set to maintenance VN.

e operation is set to the logical operation (insert, delete,
or update) that is performed by the maintenance trans-
action on the tuple. Note that the logical operation
performed by the maintenance transaction may not
be the same as the physical operation effected on the
tuple. For example, when the logical operation is dele-
tion, the tuple usually is not physically deleted from
the database because the pre-update version of the tu-
ple might be needed by readers. Once logically-deleted
tuples are no longer needed by readers, they can be
garbage collected by periodically running a process to
physically delete them. We plan to examine garbage
collection in more detail in future work.

In addition, the operation recorded in operation needs
to represent the net effect [SP89] of all operations per-
formed by the maintenance transaction on the tuple.



Current Version

Pre-Update Version

operation

Insert Update Delete

read current read current ignore

attribute values | attribute values tuple
ignore read pre-update | read pre-update
tuple attribute values | attribute values

Table 1: Decision table for extracting the current or pre-update tuple version

tuple VN

tuple VN

Insert Update Delete
mmpossible | impossible | Update tuple:
< maintenance VN PV ¢nulls
CVMV
tuple VN<—maintenance VN
operation+insert
1mmpossible | impossible | Update tuple:
= maintenance VN CVMV
operation+<update
No Conflicting Tuple | Insert tuple:
PV ¢nulls
CVMV
tuple VN<—maintenance VN
operation+insert

Previous operation

Table 2: Decision table for insert maintenance operation

Insert

Previous operation

Update Delete
tuple VN Update tuple: Update tuple: 1mpossible
< maintenance VN PV&CV PV&CV
CVMV CVMV
tuple VN<—maintenance VN tuple VN<—maintenance VN
operation+<update operation+<update
tuple VN Update tuple: Update tuple: 1mpossible
= maintenance VN CVMV CVMV
Table 3: Decision table for update maintenance operation
Previous operation
Insert Update Delete
tuple VN Update tuple: Update tuple: 1mpossible
< maintenance VN PV&CV PV&CV
tuple VN<—maintenance VN tuple VN<—maintenance VN
operation+delete operation+—delete
tuple VN Delete tuple Update tuple: 1mpossible
= maintenance VN operation+delete

Table 4: Decision table for delete maintenance operation




city state | productline date total _sales
insert: San Jose | CA golf equip 10/16/96 11,000
insert: Novato CA rollerblades | 10/13/96 6,000
update: | San Jose | CA golf equip 10/14/96 | 10,000 — 10,200
delete: Berkeley | CA racquetball | 10/14/96 12,000
Figure 5: Example maintenance transaction
| tuple VN | operation | city | state | productline | date | total_sales | pre_total sales |
5 update San Jose | CA golf equip 10/14/96 10,200 10,000
4 insert San Jose | CA golf equip 10/15/96 1,500 null
5 delete Berkeley | CA racquetball | 10/14/96 12,000 12,000
5 insert Novato CA | rollerblades | 10/13/96 6,000 null
5 insert San Jose | CA golf equip 10/16/96 11,000 null

Figure 6: Result of DailySales after maintenance transaction

For example, if a maintenance transaction inserts a
tuple and then updates the same tuple in the same
transaction, the net effect is still an insert. If opera-
tion were incorrectly set to update, readers looking for
the pre-update version of the tuple would try to read
the pre-update attribute values, instead of correctly
ignoring the tuple.

e The appropriate physical operation is performed on
the tuple.

The exact actions to perform on the tuple depend upon
the maintenance operation, the tuple’s tuple VN value, and
the tuple’s operation value.  Tables 2, 3, and 4 give the
actions to perform for an insertion, update, and deletion
maintenance operation respectively. Given maintenance VN
for the maintenance transaction and the tuple’s existing val-
ues for tuple VN and operation, the tables show the correct
physical operation to perform on the tuple so that the cur-
rent and pre-update tuple versions are preserved. In the
tables,

e (C'V denotes the current attribute values of the tuple,

e PV denotes the pre-update attribute values of the tu-
ple, and

e MYV denotes the attribute values specified in the main-
tenance operation (if the maintenance operation is an
insert or an update).

Thus, the expression “PV<++CV” means set the pre-update
attribute values of the tuple equal to the corresponding cur-
rent attribute values, and “CV++ MV” means to set the cur-
rent attribute values of the tuple equal to the attribute val-
ues specified in the maintenance operation.

Note that since only one maintenance transaction exe-
cutes at a time, we know that tuple VN < maintenanceVN.
The first row in each table specifies the actions to take when
the tuple’s version number is less than the maintenance
transaction’s version number. When tuple VN = mainte-
nance VN, the tuple has been modified previously by the
same maintenance transaction. The actions to take in this
case are specified in the second row in each table. As men-
tioned previously, the operation assigned in the second row
represents the net effect of all operations performed on the
tuple by the maintenance transaction.

In Table 2 for insertions, the first two rows are for the
case when tuples have unique keys and a tuple having the

same key as the tuple being inserted by the maintenance
transaction is found in the database. (This case can occur
only when a tuple with the same key was previously deleted.)
The third row in Table 2 describes the actions to take in the
more common case when a conflicting tuple is not found in
the database. For tuples that do not have unique keys, the
actions in the third row are always followed.

Some of the table cells simply specify “impossible.” These
cells represent sequences of operations that are not possible
in a valid transaction. For example, it is not possible to up-
date or delete an already-deleted tuple (Tables 3 and 4), and
if tuples have unique keys then it is not possible to insert
a tuple with the same key value as a previously inserted or
updated tuple (Table 2). We can however insert a tuple with
the same key as a previously deleted tuple (Table 2), and
the net effect of a delete and insert in the same maintenance
transaction is an update.

EXAMPLE 3.3 Assume again that our DailySales rela-
tion contains tuples as illustrated in Figure 4. As is always
the case with summary tables, the key of the relation is the
set of group-by attributes, which in our case are city, state,
product_line, and date. Suppose we execute a maintenance
transaction with a maintenance VN of 5 containing the oper-
ations shown in Figure 5. Executing the maintenance trans-
action results in the extended DailySales relation having
the tuples shown in Figure 6. a

In Section 4.2 we will show how the decision procedures
of Tables 2, 3, and 4 can be implemented in SQL, so that the
current and pre-update versions of each tuple are preserved
by a maintenance operation.

4 Implementing 2VNL

The 2VNL algorithm can be implemented in a data ware-
housing system either by modifying the internals of the sys-
tem, or by using a query rewrite [Sto75,SJGP90] approach
in which the system itself need not be modified at all. Cer-
tainly building 2VNL into the system is likely to yield better
performance, but in many cases it is impractical or impos-
sible to modify the internals of an existing DBMS. A useful
property of 2VNL is that it can be implemented entirely
outside of an existing DBMS by automatically modifying
the relation schema as specified in Section 3.1 and rewriting
the maintenance and query operations. We will specify the



rewriting process by showing how to implement the decision
tables of Sections 3.2 and 3.3 using SQL.

To implement 2VNL on top of an existing DBMS by
query rewrite we require that the DBMS have the following
two characteristics:

e During the time that a tuple is in the process of be-
ing modified, a latch (short-duration lock) is held on
the tuple or the page to keep readers from accessing a
partly-modified tuple. The latch is released as soon as
the tuple has been modified, without waiting for the
transaction to commit. A write lock is not obtained
on the modified tuple, or if it is, the write lock is ig-
nored by readers. In SQL-92 it is possible to set the
transaction isolation level to “read uncommitted” to
tell readers to ignore write locks, and at least some
commercial DBMS’s support this capability.

e When a physical tuple update is performed, the update
is performed in place so that the new state of the tuple
(containing information regarding the current and pre-
update tuple versions) replaces the old tuple on the
page. Performing updates in place makes it impossible
for a reader scanning through a relation to read two
different physical records for the same tuple. Most
DBMS’s perform updates in place. If updates are not
performed in place by the DBMS, then an update must
be issued instead as a deletion and an insertion, which
may result in key values no longer being unique since
several physical records may have the same key value
but different versions. If we chose instead to build the
algorithm into a DBMS, which we plan to explore as
future work, the requirement to update in place would
not be necessary.

In order to implement the global variables currentVN
and maintenanceActive using the DBMS, they can be stored
in a single-tuple, two-attribute Version relation that is read
by readers and updated by maintenance transactions. At the
beginning of a maintenance transaction the maintenance-
Active flag in the tuple is set to true. Just before the
commit of the maintenance transaction maintenance VN is
written to the tuple as the new value of currentVN and
maintenanceActive is set to false. Note that if after writing
maintenance VN into currentVN the maintenance transac-
tion aborts, readers who read the updated currentVN can
see an inconsistent database state while the maintenance
transaction is backing out. A solution to this problem would
be to update currentVN in a separate transaction that runs
just after the maintenance transaction commits.

4.1 Query rewrite for readers

We now explain how to rewrite reader queries to access
the correct tuple version according to the decision table
of Section 3.2. In the rewriting, the SQIL-92 CASE expres-
sion [MS93] is used to access the current or pre-update at-
tributes as appropriate. Any time an updatable attribute
is referenced in a query it is replaced with a CASE expres-
sion that returns the current or pre-update attribute value
depending upon the tuple’s tuple VN and the reader’s ses-
stonVN. Additionally, a condition is added to the where
clause so that the appropriate tuples are ignored. We illus-
trate the rewriting with an example; the general case follows
directly.

EXAMPLE 4.1 Returning again to our DailySales ex-
ample relation, suppose that an analyst wanted to find the

total sales made by stores in each city. The following query
would be issued:

SELECT city, state, SUM(total_sales)
FROM DailySales
GROUP BY city, state

Since total_sales is the only updatable attribute, af-
ter rewriting the query is translated to the following. We
use :session VN as a placeholder for the reader’s session VN
value.

SELECT city, state,
SUM(CASE WHEN :sessionVN > tuple VN
THEN total sales ELSE pre_total _sales END)
FROM DailySales
WHERE (:sessionVN > tuple VN AND operation <> “delete”)
OR (:sessionVN < tupleVN AND operation <> “insert”)
GROUP BY city, state
O

Readers also need to detect when they have expired. As
discussed earlier, one approach is to detect whenever a tuple
is read with session VN < tuple VN—1 and raise an exception,
but this approach cannot always be implemented by query
rewrite. Alternatively, the reader can determine whether it
may have read such tuples by checking whether, since the
reader started, a maintenance transaction has committed
and another begun. This check is performed by evaluat-
ing the following condition (which can be implemented by
reading the single-tuple Version relation):

(sessionVN = currentVN) or
((session VN = currentVN — 1) and

maintenanceActive = false)

If the condition returns false, then the session is expired.

4.2 Modifying maintenance transactions

Insert, delete, and update statements issued by a mainte-
nance transaction are rewritten similarly to queries issued
by readers. Each type of statement is considered separately
below.

Note that in the decision tables for insert and delete
operations (Tables 2 and 4 respectively), logical insertions
and deletions sometimes translate to physical insertions and
deletions respectively, and sometimes translate to physical
tuple updates. Furthermore, in the decision table for update
operations (Table 3), sometimes the current attribute val-
ues are preserved by copying into the pre-update attributes,
and sometimes not. It is thus not possible to rewrite an SQL
insert, update, or delete statement into a single correspond-
ing statement. Either the statements can be rewritten into
two corresponding statements, one for each type of physical
operation that might be performed, or cursors can be used
so that the decision of which physical operation to perform
can be made on a tuple by tuple basis. We will explain the
latter approach since cursors are likely to be used in the
maintenance transaction even before the rewriting.

4.2.1 Insert statement

Following the third row of Table 2, an insert statement must
be modified to add values for tuple VN and operation (setting
them to maintenance VN and “insert” respectively), and to
set the pre-update attribute values to null. If the relation
has no unique key, then these are the only changes. When
the relation has a unique key, it is possible to encounter a key
conflict upon insertion if the tuple was previously deleted



by the same maintenance transaction, or if it was logically
deleted earlier but not garbage collected. In the case of a key
conflict, instead of inserting the new tuple, the existing tuple
must be updated to reflect the values of the logically-inserted
tuple. We illustrate the rewriting of an insert statement by
an example; the general case follows directly.

EXAMPLE 4.2 Consider insertions into DailySales,
which has as a unique key (city, state, productline,
date). The following pseudocode describes the insertion
process. For each tuple, first the insert is attempted. If a
unique key conflict occurs, the conflicting tuple is updated
instead. Note that the second select statement in the pseu-
docode always returns a single tuple r since it selects on the
key.

For each tuple ¢ to insert
INSERT INTO DailySales VALUES
% line 3 in Table 2
(:maintenance VN, “insert”, t.city, ¢.state,
t.product_line, ¢.date, t.total sales, null)
If insert failed due to a unique key conflict,
Let r = % r has same key value as t
(SELECT *
FROM DailySales
WHERE city = f{.city AND state = {.state
AND productline = ¢.product_line
AND date = ¢.date)
If t.tuple VN < :maintenance VN,
% line 1 in Table 2
Update r
set r.pre_total_sales = null
set r.total_sales = t.total_sales
set r.tuple VN = :maintenance VN

set r.operation = “insert”
Else % line 2 in Table 2
Update r
set r.total_sales = t.total_sales
set r.operation = “update”

4.2.2 Update statement

The specific physical update operation corresponding to a
logical update operation on a tuple depends upon whether
the tuple has already been modified (inserted or updated)
by the maintenance transaction. We can test this property
for each tuple using a cursor approach, as shown below. If
the tuple has not been modified by the maintenance trans-
action, then the existing values of updatable attributes are
preserved by copying them into the pre-update attributes.
If the tuple has been modified by the maintenance trans-
action, then the updatable attributes should not be copied.
We illustrate the rewriting of an update statement with an
example; again, the general case follows directly.

EXAMPLE 4.3 Suppose we were to add 1,000 to the
total sales of all tuples in our DailySales relation hav-
ing a city of “San Jose” and a date of “10/13/96.” The
SQL update statement appears below.

UPDATE DailySales
SET total_sales = total_sales + 1000
WHERE city = “San Jose” AND date = “10/13/96”

The following pseudocode illustrates how a cursor approach
can be used to implement the above update statement.

For each tuple r in
(SELECT *
FROM DailySales
WHERE city = "San Jose"

AND date = "10/13/96")
If r.tuple VN < :maintenance VN, % line 1 in Table 3
Update r

set r.pre_total_sales = r.total_sales
set r.total_sales = r.total_sales 4+ 1000
set r.tuple VN = :maintenance VN
set r.operation = “update”
Else % line 2 in Table 3
Update r
set r.total_sales = ¢.total_sales 4+ 1000

4.2.3 Delete statement

A logical delete operation usually corresponds to a physical
update operation, unless the tuple was previously inserted in
the same transaction (in which case the tuple is physically
deleted). Similar to an update statement, an SQL delete
statement can be implemented using a cursor approach by
testing for each tuple the value of tupleVN and operation
and performing the appropriate action according to Table 4.

EXAMPLE 4.4 Suppose we were to delete all tuples in
DailySales having a city of “San Jose” and a date of
“10/13/96.” The SQL delete statement appears below.

DELETE FROM DailySales
WHERE city = “San Jose” AND date = “10/13/96"

The following pseudocode illustrates how a cursor approach
can be used to implement the above delete statement.

For each tuple r in
(SELECT *
FROM DailySales
WHERE city = "San Jose"

AND date = "10/13/96")
If r.tuple VN < :maintenance VN, % line 1 in Table 4
Update r

set r.pre_total_sales = r.total_sales
set r.tuple VN = :maintenance VN

set r.operation = “delete”
Else % line 2 in Table 4
If r.operation = “insert”
Delete r
Else
Update r
set r.operation = “delete”

4.3 2VNL and indexing

Traditional indexes can still be used under the 2VNL algo-
rithm. Indexes on non-updatable attributes are not affected
by the algorithm. Note especially that for the summary ta-
bles commonly found in data warehouses, indexes are usu-
ally built on the group-by attributes; since the group-by
attributes are not updatable these indexes are not affected
by the use of 2VNL.

Indexes on updatable attributes could also be built, but
using 2VNL there are two physical attributes, a current
and a pre-update attribute, for each logical attribute. In-
dexes could be built on both the current and pre-update



attributes. However, in our rewrite approach, updatable at-
tributes always appear inside CASE expressions in the rewrit-
ten queries. Thus, to use indexes the query optimizer would
need to be able to use indexes on attributes appearing inside
CASE expressions. It is doubtful that current query optimiz-
ers have this capability.

We plan to investigate indexing issues in the context of
2VNL in more depth as future work.

5 Extending 2VNL to n versions

As explained earlier, if during a reader session one mainte-
nance transaction commits and another one starts, then the
reader session can expire—the 2VNL algorithm only guar-
antees that a reader sees a consistent state as long as the
reader overlaps at most one maintenance transaction. This
overlap property is likely to hold for most reader sessions in
data warehousing environments, since maintenance transac-
tions tend to be long, and the “gaps” between them tend to
be relatively long as well. Nevertheless, it is conceivable that
expiration could become a problem, and in Section 2.1 we
discussed several alternatives for avoiding it. In this section
we elaborate on the nVNL solution.

The nVNL algorithm for a given n > 2 is the natural
extension of the 2VNL algorithm to make n versions of the
database available at the same time. Whereas the 2VNL
algorithm guarantees that a reader sees a consistent state
as long as it overlaps at most one maintenance transaction,
the nVNL algorithm guarantees that a reader sees a consis-
tent state as long as it overlaps at most n — 1 maintenance
transactions.

Increasing n allows us to increase the length of reader
sessions that are guaranteed never to expire. For exam-
ple, assuming i is the length of the minimum time inter-
val between two maintenance transactions, and m is the
length of the shortest maintenance transaction, then 2VNL
guarantees that reader sessions lasting up to i will never
expire. 3VNL, on the other hand, guarantees that reader
sessions lasting up to 2: + m will never expire. In gen-
eral, nVNL guarantees that reader sessions lasting up to
(n — 1) % (¢ + m) — m never expire. Thus, n can be tuned
for the expected pattern of reader sessions and maintenance
transactions in a data warehouse in order to avoid expira-
tion. Of course the higher n is, the more overhead we incur
in storage and run-time costs.

Note that we are still assuming that maintenance trans-
actions run one at a time: The purpose of nVNL is not to
allow multiple concurrent writers, but rather to allow read-
ers to (sequentially) overlap multiple maintenance transac-
tions. Consequently, nVNL still differs from other multi-
version algorithms in significant ways, as discussed earlier
and in Section 6 below.

For nVNL the relation schema is modified as described
in Section 3.1, except there are n — 1 tuple VN attributes
(tuple VNy, ..., tuple VN, _1), n — 1 corresponding operation
attributes, and n — 1 corresponding sets of pre-update at-
tributes. Attribute tuple VN; contains the maintenance VN
of the i-th most recent maintenance transaction to mod-
ify the tuple, operation; contains the logical operation per-
formed by that modification, and the corresponding set of
pre-update attributes contains the values of the updatable
attributes before being modified.

As with 2VNL, we want a reader to see the version
of a tuple that was current during database version ses-
ston VN, meaning the version that includes the effects of
all maintenance transactions with maintenance VN < ses-

ston VN, and no other maintenance transactions. Recall-
ing that tuple VN, denotes the largest (most recent) main-
tenance VN, and tuple VN, _; denotes the smallest (least re-
cent) maintenance VN, the cases for a reader are:

1. sessionVN > tuple VN;: Read the current version of
the tuple.

2. tupleVNp_1 — 1 < sessionVN < tupleVN;: Read the
pre-update version of the tuple for the least tuple VN; >
session VN.

3. session VN < tuple VN,,_1—1: The session has expired.

To read the correct values for the tuple, Table 1 for 2VNL is
used. For case (1) above, operationin Table 1 is operation;
and the first row in the table is followed. For case (2), oper-
ation is operation;, the second row is followed, and the j-th
set of pre-update attribute values are used.

For maintenance transactions, we follow the same de-
cision tables as for 2VNL (Tables 2-4), except instead of
simply overwriting tuple VN, operation, and the pre-update
attribute values, we “push back” attributes, eliminating the
existing nth version in order to make room for a new 1st
version. That is, we set tuple VN;y1 < tuple VN; for 1 <1 <
n — 2, and similarly for the operation;’s and the pre-update
attributes. We then set tuple VN, operation;, and the first
set of pre-update attributes according to Tables 2—4. There
are some exceptions in the tables, such as new inserts (where
most attributes are set to null) and multiple updates in the
same maintenance transaction (where rather than “pushing
back” values we overwrite the most recent ones). Due to
space constraints we do not enumerate all the cases here;
the generalization from Tables 2—4 is straightforward.

EXAMPLE 5.1 Consider our example DailySales rela-
tion using nVNL with n = 4. We’'ll examine a tuple for
golf equipment sales in San Jose, CA on 10/14/96. Sup-
pose that a maintenance transaction with maintenance VN
= 3 inserts the tuple with total_sales = 10,000, then a
maintenance transaction with maintenance VN = 5 updates
the total_sales to 10,200, then a maintenance transaction
with maintenance VN = 6 deletes the tuple. After the dele-
tion, the tuple in the extended relational schema appears as
shown in Figure 7.

Using the cases described above along with Table 1, we
see that a reader with session VN> 6 will ignore the tuple. A
reader with session VN < 6 but > 2 will read the pre-update
version of the tuple for the least tuple VN > session VN, that
is, a reader with session VN € {3, 4} will see the logical tuple
with total sales = 10,000, and a reader with session VN =
2 will ignore the tuple. A reader with sessionVN < 2 will
have expired. a

6 Relationship to 2V2PL and MV2PL algorithms

A large body of research has been performed on two-version
two-phase locking (2V2PL) algorithms and multi-version
two-phase locking (MV2PL) algorithms (also called transient
versioning algorithms). In fact, several commercial DBMS’s
have implemented various forms of multi-version algorithms
[BBG195,BHGS7]. Multi-version algorithms can be differ-

entiated in several ways:
e how many previous versions are kept,
e how long previous versions are stored, and

e which versions are read by readers.



| city | state | productline | date

| total_sales | tuple VN | operation) | pre_total sales; |

[ San Jose | CA | golfequip [ 10/14/96 |

10,200

| 6 | delete | 10,200 | cee

| tuple VN | operations | pre_total_salesy | tuple VN3 | operations | pre_total saless |

. | 5 | update | 10,000

3 | insert | null |

Figure 7: Example 4VNL tuple

In 2V2PL algorithms [BHR80,SR81], when a writer mod-
ifies a tuple a new version of the tuple is created. While the
writer transaction is active, concurrent readers read the pre-
vious tuple version. Because writers write a different version
than the version read by readers, readers are never blocked
by writers. Unlike our 2VNL (or nVNL) algorithm, however,
2V2PL algorithms delete the previous version of modified
tuples when the writer transaction commits. Deleting the
previous version of modified tuples causes readers to delay
writers because the writer cannot commit until all readers
that have read the previous version of modified tuples have
committed—otherwise, repeatable reads would be sacrificed.

MV2PL algorithms [AS89,BC92a,BC92b,CFLT82, Weis?7,
MPL92, WY C93] guarantee that readers and writers never
block each other.” MV2PL algorithms maintain sufficient
previous versions of each tuple (or page, if versioning is at
the page level) that readers are always guaranteed to have
the correct tuple version available. Previous versions may
be garbage collected when it is guaranteed that they are
no longer needed by any reader. With some MV2PL al-
gorithms, readers read the latest version of the tuple that
is less than the reader’s begin-timestamp [CFL182]. These
algorithms require maintaining possibly many previous ver-
sions of each tuple. By carefully choosing the previous tuple
versions that are made available to readers, other MV2PL al-
gorithms [MPL92 WY (C93] guarantee that readers and writ-
ers never block each other with a maximum of three or four
tuple versions. Note that in contrast, 2VNL requires only
two versions of each tuple to be available. This reduction
in the number of versions required is due to the fact that in
data warehousing environments, maintenance transactions
are known to run one at a time.

All MV2PL algorithms require overhead to access and
maintain previous tuple versions. For example, the approach
in [CFLY82] stores previous versions in a special “version
pool” on disk, where they are chained together and to the
current version. This means that readers might have to per-
form several 1/O’s to access the correct version of a tuple.
Also, tuple writes involve an additional 1/O for copying the
existing current version to the version pool. The approach
in [BC92b] improves on this design by reserving a portion of
each data page for a version pool cache so that recent tuple
versions are stored on the same page. But reserving a por-
tion of each page for a version pool cache requires storage
overhead, and the global version pool must still be accessed
if the version pool cache on the page overflows. By stor-
ing all information in a single tuple, even in the case when
most tuples in a relation are updated by maintenance trans-
actions, the 2VNL algorithm requires very little overhead,
especially in the case of summary tables where only a few

?Not all multi-version algorithms are MV2PL algorithms. That
is, not all use two-phase locking to synchronize writers. But since
synchronizing writers is not the focus of this paper (we assume main-
tenance transactions are the only writers, and they are limited to
executing one at a time by an external protocol), and since all multi-
version algorithms use essentially the same technique for synchroniz-
ing readers, we describe only MV2PL algorithms here.

of the attributes are updatable. Furthermore, in 2VNL ad-
ditional 1/O’s for reading and modifying tuples are never
required, although there could be more 1/O’s altogether in
a scan, say, since fewer tuples fit on a page.

[MPL92] considers incremental versioning, storing only
the values of changed attributes in previous tuple versions.
They mention that in order to access the correct tuple ver-
sion multiple incremental versions must be read and com-
bined, but the algorithms for creating and combining the
incremental versions are not given. More importantly, im-
plementing the algorithm of [MPL92], as with all multi-
version algorithms of which we are aware, requires significant
changes to the DBMS’s underlying storage and transaction
management systems. We believe 2VNL is the first algo-
rithm that can be implemented on top of current DBMS’s
using a query rewrite approach. Also, by assuming char-
acteristics common in a data warehouse—that maintenance
transactions run one at a time and only a few attributes in
summary tables are updatable—our 2VNL algorithm pro-
vides concurrency for warehouse readers and the mainte-
nance transaction with very little overhead.

7 Conclusions and Future Work

We have presented a concurrency control algorithm that is
especially suited to view maintenance in a data warehousing
environment. Using our algorithm, readers of the warehouse
can execute concurrently with a view-maintenance transac-
tion without blocking, readers and the maintenance transac-
tion are serializable (i.e., both access consistent versions of
the database), and readers and the maintenance transaction
do not need to place any locks. Allowing the maintenance
transaction to execute concurrently with readers has signif-
icant advantages, including making the warehouse available
to readers 24 hours a day and allowing maintenance trans-
actions to be longer and/or more frequent.

Our algorithm is a type of multi-version algorithm espe-
cially suited to the data warehousing environment. It does
not suffer from the problem of readers delaying writer com-
mit that 2V2PL algorithms suffer from. Nor does it suffer
from the additional 1/O’s required to access and manage
multiple separate versions of each tuple that most MV2PL
algorithms suffer from, because in 2VNL both versions of
each tuple are stored together in the same physical location.
Our approach is very space-efficient when only a few at-
tributes are updatable by maintenance transactions, which
is often the case in data warehousing environments, even if
a large percentage of tuples are updated. Finally, we have
shown how our algorithm can be implemented easily on top
of current DBMS’s through query rewrite as long as the
DBMS supports the “read-uncommitted” transaction isola-
tion level and physical tuple updates are performed in-place.

We intend to pursue the following areas as future work.

e Building the algorithm into a DBMS would probably
yield better performance than implementing it through



query rewrite. Thus, we would like to implement and
compare both approaches, both from a performance
and software engineering standpoint.

e We want to compare performance in terms of num-
ber of 1/O’s and storage space required between our
2VNL algorithm and MV2PL algorithms presented in
the literature.

e Tuples that have been marked deleted can be removed
once tuple VN < sessionVN—1 for all active readers.
We intend to explore efficient methods for “garbage
collecting” old tuples.

e Because tuples that have been modified by the mainte-
nance transaction contain sufficient information to ex-
tract their previous version, maintenance transactions
can execute without the need to log before-images. We
plan to explore ways to allow rolling back maintenance
transactions without logging by reverting to the pre-
vious version of tuples in the database.
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