Snakes and Sandwiches: Optimal Clustering Strategies for

a Data Warehouse

H. V. Jagadish*
U of Mllinois, Urbana-Champaign
jag@cs.uiuc.edu

Abstract

Physical layout of data is a crucial determinant of perfor-
mance in a data warehouse. The optimal clustering of data
on disk, for minimizing expected 1/O, depends on the query
workload. In practice, we often have a reasonable sense of
the likelihood of different classes of queries, e.g., 40% of
the queries concern calls made from some specific telephone
number in some month. In this paper, we address the prob-
lem of finding an optimal clustering of records of a fact table
on disk, given an expected workload in the form of a prob-
ability distribution over query classes.

Attributes in a data warehouse fact table typically
have hierarchies defined on them (by means of auxiliary
dimension tables). The product of the dimensional hierarchy
levels forms a lattice and leads to a natural notion of
query classes. Optimal clustering in this context is a
combinatorially explosive problem with a huge search space
(doubly exponential in number of hierarchy levels). We
identify an important subclass of clustering strategies called
lattice paths, and present a dynamic programming algorithm
for finding the optimal lattice path clustering, in time linear
in the lattice size. We additionally propose a technique
called snaking, which when applied to a lattice path, always
reduces its cost. For a representative class of star schemas,
we show that for every workload, there is a snaked lattice
path which is globally optimal. Further, we prove that
the clustering obtained by applying snaking to the optimal
lattice path is never much worse than the globally optimal
snaked lattice path clustering. We complement our
analyses and validate the practical utility of our techniques
with experiments using TPC-D benchmark data.

* This work was largely performed when the author was at
AT&T Labs—Research, Florham Park, NJ 07932, USA.

tCurrently on leave from Concordia University, Canada. This
work was largely performed when the author was visiting AT&T

Labs—Research, Florham Park, NJ 07932, USA.

Laks V. S. Lakshmanan'
I[IT — Bombay
laks@math.iith.ernet.in

Divesh Srivastava
AT&T Labs—Research

divesh@research.att.com

1 Introduction

There is tremendous current interest in data warehous-
ing and OLAP applications. OLAP applications typ-
ically view data as having multiple logical dimensions
(e.g., product, location), with natural hierarchies de-
fined on each dimension, and analyze the behavior of
various measure attributes (e.g., sales, volume) in terms
of the dimensions. Such an organization is called a star
schema. OLAP queries typically involve selections and
groupbys on certain dimensions of the star schema, of-
ten aggregating measure attributes, over a very large
number of tuples in the fact table.

Viewing a fact table together with its various dimen-
sion tables as a multi-dimensional grid, we call a vector
of (dimension, value) pairs a grid query. When all the
values are from the leaf levels of the associated dimen-
sion hierarchies, the grid query corresponds to an indi-
vidual cell in the multi-dimensional grid. When one or
more values are from higher up in their dimension hier-
archies, the query corresponds to subgrids (rectangles
in two dimensions — see Figure 1). The result returned
by a grid query could be all the selected tuples, an ag-
gregate (e.g., sum), or some other function; this detail
does not concern us. In our experience, almost all data
analysis queries issued against a data warehouse are grid
queries. Even a typical OLAP session involving opera-
tions such as cube, rollup, and drilldown, repeatedly
invokes various grid queries.

Database performance, particularly for data intensive
OLAP queries, is largely determined by the cost of I/O
required to process each query. This I/O, in turn,
depends on how records are physically laid out on
disk. We know that there can be no linear clustering
of records that will permit all queries over a multi-
dimensional space to be answered efficiently. However,
given a query workload, it 1s possible to define an
optimal clustering of records on disk that minimizes the
expected I/0O cost. For realistic data warehouses, the
number of possible grid queries (which is the product
of the sizes of the hierarchies in each dimension) is
likely to be extremely large, even compared to the

number of queries issued over a long time period. This
makes the obtaining of stable workloads in terms of the
distribution of individual queries extremely hard, if not
impossible. Fortunately, there is a viable alternative,
that of specifying workloads in terms of query classes,
instead of in terms of individual queries.

We define the notion of a (grid) query class based on
the levels associated with the dimension values defining
the grid query. Since the number of query classes (which
1s the product of the number of levels in each dimension
hierarchy) is likely to be several orders of magnitude
smaller than the number of possible individual queries,
statistics compiled over the query stream can be used
to obtain a fairly good and stable characterization of
the distribution of queries across query classes. For
instance, a data warehouse administrator may know
that 30% of the queries ask about sales of jeans by
type of jeans across some state; an additional 25% of
the queries may ask about overall sales of jeans by
individual city; and so forth (see Figure 1). One can
now address the problem of obtaining an optimal disk
clustering of records for this notion of a workload. More
precisely, we address the following problem:

Given an anticipated workload in terms of the
frequencies of queries belonging to different
query classes, how can one exploit this informa-
tion to obtain (efficiently) a good clustering that
minimizes the expected disk I/O cost?

Our contributions in this paper are as follows:

e We define an important class of clustering strate-
gies called (monotone) lattice paths, for which the
optimal strategy can be computed efficiently using
a dynamic programming algorithm (Sections 3 and
4). Our algorithm is linear in the size of the lat-
tice of query classes, and quadratic in the number
of dimensions.

e We introduce an improvement called snaking, which
is very cheap to compute for a given lattice path,
and which when applied to a lattice path always
reduces the expected I/0O cost, over all workloads

(Section 5).

We analytically establish that for the case of two
dimensions with complete binary tree hierarchies,
the desired global optimal strateqy is always some
snaked lattice path. Our proof technique suggests
this 1s likely to be the case in general. We also prove
that the clustering obtained by applying snaking to
the optimal lattice path has an expected cost within
a factor of 2 of the optimal snaked lattice path.

e We complement our analyses and validate the
practical utility of our techniques with results

jeans
>
&
dim B 2 g
3 =
[2] 2]
» 5 » 5
2 g8 B 8
. I
dim A abany) g 2, 3 4
NY Q) !
.5 newyork | g 6 1 7 8
8 any
2 _________________________

ottawa | g 10 1 12
ONT (Q2)
toronto | 13 14 15 16

Figure 1: Example Dimension Hierarchies on Two-
Dimensional Sales Data with Row Major Clustering

obtained from experiments using TPC-D benchmark
data (Section 6).

For lack of space, we only sketch the proofs of
some results and suppress the others, all of which are
discussed in detail in [14].

2 Motivating Example

A point that cannot be emphasized enough is that
the choice of clustering strategy can make orders of
magnitude difference in 1/O cost, and hence in query
performance. The problem we are seeking to address is
one in which the benefit obtained can be significant.

Example 1 [A Typical (Toy) Data Warehouse]
Consider the schema of Figure 1, with relations:

location(state, city, 1id)
jeans (type, gender, jid)
sales(lid, jid, sale)

Typical OLAP queries are given below, where type
has the domain {levi’s, gitano}, gender has the domain
{men’s, women’s}, etc.

Q1: select sum (sales)
from sales, location, jeans
where gsales.lid = location.lid and
sales.jid = jeans.jid and
location.state = NY and
jeans.type = levi’s
Q2: select location.city, jeans.type,
sum (sales)
from sales, location, jeans
where gsales.lid = location.lid and

1 2 5 6 6 7 10 1

3 4 7 8 5 8 9 12

9 10 13 14 4 3 14 13

1 12 15 16 1 2 15 16
@ (b)

Figure 2: Some More Possible Clustering Strategies:
(a) Quadrant Based (Z Curve), (b) Hilbert Curve.

sales.jid = jeans.jid and
location.state = ONT
group by location.city, jeans.type

The first query simply fetches all tuples correspond-
ing to the sale of levi’s jeans in state NY and performs
an aggregate operation on them. Query (Q2), on the
other hand, performs a selection and a groupby and es-
sentially accesses all tuples corresponding to the sale of
jeans in state ONT. Figure 1 shows the fact tuples ac-
cessed by (Q1) and (Q2) pictorially. (jeans = levi’s,
location = NY) and (jeans = any, location = ONT)
are the grid queries corresponding to (Q1) and (Q2), re-
spectively.

Figure 1 shows a simple row major strategy, denoted
P in the sequel, for clustering the sales data cells.
Figure 2 shows two additional clustering strategies for
the same data: strategy (a), denoted Pa, first locally
orders the cells inside each (2 x 2) subgrid in a row
major fashion, and then orders the four (2 x 2) subgrids
themselves row major; strategy (b) corresponds to the
well-known Hilbert curve [6, 12], denoted HZ.

For each expected query, one can compute the cost
of evaluating the query given a clustering strategy. We
use the number of seeks (non-sequential disk accesses)
required as a simple analytical measure of query cost. In
doing so, we follow the footsteps of existing literature.

The expected cost, by this measure, is the same for all
queries in a query class. As such, we compute costs per
query class, and name query classes based on the level
in the hierarchy that is selected in each dimension. (The
nomenclature for the query classes will be explained
in Section 3, immediately after this example). TFor
example, in Figure 1, the grid query (jeans = men’s
levi’s jeans, location = toronto), corresponding to one
cell, is in class (0, 0); whereas the query (jeans = any,
location = any), corresponding to the whole grid, is
in class (2,2).

Table 1 shows the average (over all queries in the
query class) cost of the various query classes under each
clustering strategy. In each table entry, the average
cost is written in the form (total cost over all queries

Query Strategy
Class | P | P | H | P. | P
(0,0) [[16/16 | 16/16 | 16/16 | 16/16 | 16/16
(1,1) || 8/4 | 4/4 | 4/4 | 6/a | 4/4
(2,2) 11 | 11 | 1 | 11 | 11
(1,0) || 16/8 | 16/8 | 10/8 | 14/8 | 12/8
(1) || 8/8 | 8/8 | 10/8 | 8/8 | 8/8
(2,0) || 16/4 | 16/4 | 8/4 | 13/4 | 12/4
(02) || 4/4 | 8/4 | 9/4 | 4/4a | 6/4
(21) || 8/2 | 472 | 2/2 | s5/2 | 3/2
(1,2) 2/2 | 2/2 | 3/2 | 2/2 | 2/2
Table 1: Average Query Class Cost
Strategy
Workload | Ao | P, | HF | P | P
1 17/9 | 15/9 | 49/36 | 14/9 | 25/18
2 13/6 | 11/6 | 31/24 | 21/12 | 9/6
3 1 | 5/4 | 3/2 1 9/8

Table 2: Expected Workload Cost

in class)/(number of queries in the query class). The
last two columns show the costs for the snaked versions
P; and Ps, of the lattice paths P; and Ps, and will be
discussed in Section 5.

Table 2 shows the expected cost of each strategy for
each of the following three workloads:

1. All query classes are equally likely,

2. None of the query classes (0, 1), (0,2), (1, 1) is likely,
and the remaining query classes are equally likely,

3. Only the query classes (0,0),(0,1),(0,2),(1,2) are
likely, and with equal probability.

One can see that even for this very small example,
one strategy can easily have close to twice the cost of
another. If we increase the grid size, this difference
becomes more dramatic. Table 3 shows how the relative
costs of the three strategies under the three workloads
above vary as we increase the fanout. In each case, we
show the savings, in expected cost, of the best strategy
(among Py, P», H2) w.r.t. the worst. We observe wide
variation in the expected cost of the three strategies for
different workloads and fanout. Even with a modest

| Workload || fanout = 2 | fanout = 4 | fanout = 32 |

1 72% 61% 52%
2 60% 42% 27%
3 67% 30% 0.7%

Table 3: Relative Costs for Varying Fanouts

=2

(2.0 0.2

(0,0
Figure 3: Lattice Associated with the Star Schema of
Figure 1. f(A, i) = f(B,i) =2, 1 <i<2.

fanout of 32 in each of the two levels in either hierarchy
over a two-dimensional attribute space, we see well over
a factor of 140 difference in cost for workload 3. |

3 Basic Notions

Let S be a star schema with k& dimensions, denoted

1,..., k. For easier comprehension, we will use the
letters A, B, ... to denote the dimensions, in place of
numbers 1,2,... when the number of dimensions is

fixed and small. Assume that the hierarchy associated
with each dimension is a balanced tree, i.e., the length
of a path from the root to any leaf is the same. We will
discuss in Section 4.1 how to relax this assumption. We
count the levels of the hierarchy from the leaves (level
0) up. Assume that dimension d has a hierarchy with
£glevels, 1 < d < k. Welet f(d, i), for dimension d and
level 1 <17 < {4, denote the average fanout, at level ¢,
of the hierarchy associated with dimension d.

Definition 1 [Query Class] A query class is a k-
vector of level numbers of the form (41, ..., ¢) such that
0< i1 <lh,,0< i, < b m

For example, in Figure 1, as explained in Section 1,
the grid query (men’s levi’s jeans, toronto) (which is
one cell) is in class (0,0), whereas the query (any, any)
(which is the whole grid) is in class (2, 2).

Consider the set £ = {(i1,...,4%) | 0 < 4 <
Ly, ., 0 < i < L} of all query classes, and define
a partial order < on £ as (i1, ...,4) < (J1,- Jk)
iff o < g1,..,0 < jg. It is straightforward to see
that (£, <) is a complete lattice, with the least element
1 =(0,...,0) and the greatest element T = ({1, ...,).
We call (£, <) the query class lattice associated with
star schema S. With this, we can formalize the notion
of a workload that we have discussed informally so far.

Definition 2 [Workload] Given a query class lattice
L, a workload is a probability distribution over the set
of all query classes in L. |

For @ = (i1,...,3) and ¥ = (j1,...,jx) in £, we say
v 1s a d-successor of 4 if j1 = i1, ..., Jg—1 = lg_1,jq =

ta+1,Jd41 = %41, .-y Jk = k. In this case we define the
weight of the edge (4, ¥) as wt(d,¥) = f(d,iq + 1). For
example, wt((1,1),(2,1)) would be the fanout f(A,2)
of dimension A at level 2. We say ¥ is a successor of i,
provided 3d : 1 < d < k such that ¥ is a d-successor of
«. As usual, @ < ¢ abbreviates u < v & u # v. Figure 3
shows the query class lattice associated with the star
schema of Figure 1. In that figure, (0,0) (resp., (2,2))
is the least (resp., greatest) element, and (1,0) (resp.,
(0,1)) is the A-successor (resp., B-successor) of (0,0).

Definition 3 [Monotone Lattice Path] A mono-
tone lattice path is a sequence of points (dy, ..., @) such
that: (i) 41 = L, (ii) @ = T, and (iii) @41 is a succes-
sorof i, 1 <i<t—1. [|

Each monotone lattice path corresponds to a clus-
tering strategy, as illustrated in Section 2. Each edge
(4, 7) in a lattice path, where @ = (41, ...,4,..., ;) and
7= (i1, ...,ig+ 1, ..., 4), specifies one loop over sibling
entries at level iy of dimension d. Loops are specified
from inner-most to outer-most, and when executed re-
sult in a linear ordering of all the cells in the corre-
sponding k-dimensional grid. In the sequel, a lattice
path shall mean a monotone lattice path.

Example 2 [Lattice Paths]

Strategy P in Example 1 corresponds to the lat-
tice path (L = (0,0),(0,1),(0,2),(1,2),(2,2) = T),
whereas strategy P, corresponds to

(L =(0,0,(0,1),(1,1),(1,2),(2,2) = T). m

Clearly, there is no benefit to distributing records
belonging to a single cell (that is, matching on all
k dimensional attributes). Therefore, the clustering
problem is one of selecting a linearization order over
the cells in a multi-dimensional space. For analytical
purposes, the number of continuous fragments of this
linearization curve required to cover all cells selected by
a query) 1s known to serve as a pretty good surrogate
for the expected 1/O cost of query . This is standard
in previous literature on clustering.

An arbitrary clustering strategy S (not necessarily a
lattice path) is represented as a path passing through all
the cells in the k-dimensional data grid associated with
the fact table F'. We classify each edge on this path
as diagonal or non-diagonal: an edge is non-diagonal
if the two cells connected by this edge differ in only
one dimension. Otherwise an edge is diagonal. A
clustering strategy is called diagonal if it includes at
least one diagonal edge. Otherwise it is non-diagonal.
Clearly, the row-wise strategy, corresponding to the
lattice path P, (Example 2) in Figure 1, is diagonal.
The Hilbert ordering is an example of a non-diagonal
clustering strategy.

We can go further and define the fype of an edge
more precisely as the set of dimensions in which the

cells at its end-points differ. Each non-diagonal edge
is aligned along exactly one of the dimensions, so there
are exactly k non-diagonal edge types. However, there
are a combinatorial number of diagonal edge types.

Definition 4 [Characteristic Vector] Let S be a k-
dimensional star schema and 7 = 7, ..., 7+ be any fixed
enumeration of the set of all possible edge types over
the k-dimensional grid associated with S. Let S be any
clustering strategy. Then the characteristic vector (cv)
of S is defined as CV(S) = (e1, ..., e:), where ¢; is the
number of edges of type 7; that are on 5. |

For two dimensions with complete n-level binary hi-
erarchies on either dimension, we denote the cv as
(@1, ooy @n; by, o by din, diay ooy din, o, dpp), which we
sometimes abbreviate to (&; E; cf) For example, Strategy
Py of Figure 1 has the cv, CV(Py) = (8,4;0,0;0,2;0,1),
meaning it has 8 (resp., 4) edges of type A (resp., As),
2 (resp., 1) diagonal edges of type Dis (resp., Das),
and 0 edges of all other types. The Hilbert strategy
(Figure 2(b)) has the cv CV(H2) = (6, 1;6,2;0,0;0,0).
Note the 0 diagonal edges and the almost even dis-
tribution of edges between corresponding levels of the
two dimensions. We often truncate ¢vs with 0 di-
agonal entries by dropping all diagonal entries, as in

CV(H2) = (6,1;6,2).

4 Optimal Lattice Path

Let R = (i,...,i) be any path in a lattice, L,
such that ;41 i1s a successor of @;, 1 < ¢ < s —1
(it need not connect L and T). Define the length
of R as the product of the weights of edges on R,
e, len(R) = [l cics_q wt(t;, dip1). We define the
length of an empty path from a point to itself as
1. Let P be a monotone lattice path and # be
a point in L that is not on P. Then the dis-
tance between # and P is defined as distp(i) =
min{len(R) | R is a monotone path segment between
@ and some point on P}. Intuitively, distp (i) corre-
sponds to the average cost of the clustering strategy
P on a typical query in the class 4. E.g., in Fig-
ure 3, distp, (0,1) = 1, while distp, (2,0) = 2 x 2 = 4.
Let p be any workload such that ;(v) = py, for each
query class . We then define the (expected) cost
of the monotone path P as the sum of its distances
from all points in the lattice, weighted by the prob-
ability of each point in the given workload. That is,
cost,(P) = Za’eﬁ(p{j x dist p(#)). This is the expected
cost of the clustering strategy P over the given workload
. We wish to minimize this cost.

We next develop a dynamic programming algorithm
for finding the cheapest path. We begin with the
following key lemma. For a point ¢ € £, we define
the sublattice rooted at i as Ly = {V | v € L & i < v}

E.g., in Figure 3, L1 1) is the diamond consisting of the
points {(1,1),(2,1),(1,2),(2,2)}.

Lemma 1 [Principle of Optimality]: If a path

P = (U1,¥s,...,% = T) is an optimal path w.r.t.
workload p in Ly , then the segment R = (Va2 ..., U)

15 necessarily optimal w.r.t. i in E{)»Q. |
The proof follows from the additive nature of the cost
metric and Bellman’s principle of optimality. We omit
it here. For a given workload p, we use Pﬁpt to denote
the optimal lattice path w.r.t. . Figure 4 shows an
algorithm, for the two-dimensional case, for finding the
optimal lattice path as well as its expected cost over a
given workload. The following theorem establishes the
correctness and complexity of this algorithm.

Theorem 1 [Optimal Lattice Path]: Algorithm
Find-Optimal-Lattice-Path finds the optimal lattice path
over a giwen workload as well as its expected cost
correctly. It takes time linear in the size of the query
class lattice.

Proof. The correctness of the algorithm follows from
the following observations, and Lemma 1:

1. For a query class ({7, j), if the optimal path from (¢, §)
to (m,n) passes through (¢, + 1), then its expected
cost for the set of query classes (¢/,j),i < ¢ < m
5 pig + LA+ 1) X piga o F(Am) x e
F(A, i+ 1) X pp ;, which is equal to rawg (s, j). A
similar remark holds w.r.t. raw4 (%, j).

2. The cost of the optimal path from (¢,7) to (m,n)
is the minimum between cost, (i + 1, j) + rawa (i, j)
and cost,(i,j+ 1) + rawg(i, j).

3. Finally, the problem is completely characterized by
the following recurrences:

costy(m,n) = pmn. (1)
raw (i, n) = pin, 0<i<m. (2)
rawg(m,j) = pmj, 0<7<n. (3)
rawa(t,j) = pij+ f(B,j+1) X rawa(i,j+ 1),

0<i<m, 0<j<n-—1. (4)
rawp(i,5) = pi;+ f(A14+1) xraws(i+1,7),
0<i<m—1,0<j<n. (5)
costy(m,j) = pmy+ costu(m,j+1),
0<;<n—1 (6)
cost,(i,n) = pin+ costu(i+1,n),
0<i<m—1. (7)
cost,(1,7) = min{cost, (i+1,7)+ rawa(s,y),
cost,(i,7+ 1)+ raws(s, j)},
t<m, j<n. (8)

Computing each raw, () (as also rawpg()) entry requires
1 addition and (at most) 1 multiplication. Thus,

Algorithm Find-Optimal-Lattice-Path(f, m, n, u);
/ /1 — workload;

//f(A,7) = fanout of dimension A at level 7, etc.;

//m (n) = number of levels in dimension A (B).
//output: cost,(0,0) — optimal cost;

//opt_path(0,0) — optimal path.

costy(m,n) = pm,n;
opt_path(m,n) = ((m,n));
for (i=m;1>0; i——) rawa(i,n) = pin;
for (j=mi §20; ——) rawp(m, i) = pmg;
for(j=n;72>0; j——)+
for (i=m;1>1; 1 ——)
| sl) = pimn A X ot)

for (t=m;1>0; 1——)-
for (j=n;32>1; j—-)
rawa(i,j — 1) = pij—1 + f(B,J) X raw4(i,5);
}

for(t=m;1>1; i ——)A
costu(? — 1,n) = pi—1,n + costu(i,n);
opt_path(t—1,n) = (i — 1,n) - opt_path(i,n)

for(j=n72>1; j——)+
costu(m,j — 1) = pm,j—1 + costu(m, 7);
opt_path(m,j —1) = (m,j — 1) - opt_path(m, j)
3
for(t=m—1;:>0; ¢ ——){
for(j=n—-1;7>0; j——){
if (costu(i41,7) + rawa(s, j) <
costu(i,5+ 1) + rawp(i, 7)) {
optpath(i,j) = (4,7) - optpath(i + 1, 7);
cost,(i,7) = costu(i 4+ 1,7) + rawa(s, 5)

else {
optpath(i,j) = (i,7) - opt-path(i,j 4 1);
costu(i,7) = costpu(s, 5+ 1) + rawp(s, 5);

Figure 4: Finding the Optimal Lattice Path

computing all raws() and rawp() entries requires a
total of 2(m + 1)(n + 1) additions and 2(m + 1)(n + 1)
multiplications. Computing each cost, () entry requires
at most 2 additions and at most 1 comparison. Thus,
computing all cost,() entries requires a total of 2(m +
1)(n + 1) additions. The overall complexity is thus
4(m~+1)(n+1) additions, 2(m+1)(n+1) multiplications,
and (m+ 1)(n+ 1) comparisons, which is clearly linear
in the query lattice size. |

A naive examination of the search space has com-
plexity (27+")! for a two-dimensional star schema with
complete binary hierarchies of m and n levels on the
two dimensions. This is doubly exponential in the total
number of hierarchy levels. In contrast, our dynamic
programming algorithm finds the optimal lattice path
in time O((m + 1)(n + 1)).

Extension of the algorithm for finding the optimal
path in & > 2 dimensions is conceptually simple, and

has been implemented by us. The interested reader is
referred to [14] for further details.

4.1 Unbalanced Hierarchies

In all our discussion so far, we have assumed that
the hierarchy on each dimension is balanced, in that
the length of the path from every leaf to the root
is the same. This is indeed often the case in data
warehousing, so such a requirement may not prove to
be too restrictive.

However, we do not need to make this assumption.
Instead, we can simply add dummy intermediate nodes
(with one parent and one child each) at any levels
of the hierarchy as necessary, to create an extended
hierarchy that is balanced. This extended hierarchy
now has a clearly defined concept of levels. Some
fanouts will be 1, but that creates no problems since
our algorithm presented above works with the level-wise
average fanout.

5 Improvement by Snaking

Recall (from Section 3) that each lattice path leads
to clustering strategy as follows. Each edge (i,%) in
a lattice path, where @ = (i1,...,%4,...,%) and ¢ =
(41, ..oy igt+]1, ..., ig), specifies one loop over sibling entries
at level iy of dimension d. Loops are specified from
inner-most to outer-most, and when executed result in
a linear ordering of all the cells in the corresponding k-
dimensional grid. We can obtain a snaked clustering
from the same lattice path, by simply reversing the
direction of the loop index each time we traverse any
loop. We call the resulting clustering a snaked lattice
path. This 1s formalized below.

Definition 5 [Snaking] TLet P = (L = d,...,% =
T) be a lattice path. Then the snaked lattice path
corresponding to P, denoted P, is obtained by reversing

the clustering order of alternate #; queries in the data
grid, for each 1 =2, ...,t — 1. |

Note that the snaking is applied to the clustering
order and not really to the lattice path itself. We
abuse terminology for convenience. Snaking can be
applied to any lattice path and will never increase its
expected cost, no matter what the workload, and on
most workloads, will reduce its expected cost. The
intuition 1s that a snaked lattice path has no diagonal
edges. Figure 5 illustrates the idea of snaking.

From this point onward in this paper, we restrict our
presentation to a two-dimensional star schema where
each dimension has an n level hierarchy (i.e., the top-
most level is n and the bottom-most level is 0) with a
fanout of 2 at each level. The resulting data grid is a
square with 2" rows and 2" columns.

The astute reader will see how to extend our argu-
ments to the more general case. We have the proofs

1 2 4 3 1 2 8 7

8 7 5 6 4 3 5 6

6 15 13 14 16 15 9 10

9 10 2 1 13 14 12 11
@ (b)

Figure 5: Lattice Paths P} and P> from Example 1 with
Snaking Applied: (a) Py and (b) Pa.

for the general case for several of the results established
below. The proofs involve considerable notation, and
are not presented here.

5.1 Optimality of Snaked Lattice Paths

We wish to compare snaked lattice paths against
arbitrary clustering strategies. For this purpose, we
shall use the notion of characteristic vector, defined in
Section 3. Recall the notation for cvs as well as the
notion of edge types from Section 3. We begin with a
lemma establishing some properties of such vectors.

Lemma 2 [Constraints on Characteristic Vec-
tors] : All clustering strategies (on a two-dimensional
grid with n-level complete binary hierarchies on either
dimension) must satisfy the following constraints.

al S 2277,—1
ay +a2 S 22n—1 +22n—2
<
E?:lai S 2?2122n_i
bl S 22n—1
bl —|—b2 S 22n—1 +22n—2
<
E?:lbi S 2?2122n_i
ai +by +diy < 22T
a1 +b +bs+dii+din < 22n—1+22n—2+
22n—3
<
ap + X7 0 + X di < 2?2-112271—2'
<
Yiliai+0 + X7 din < 2?2-112271—2'
Yiiai +b1 + b2+ EEZ}z)):(Lmdij < 2?2-122271—2'
<

S+ S bi + S i

2n o2n—1
=) iti2

Proof Sketch. The last constraint (the only equality)
comes from the fact that the number of cells is 227 so

any path passing through all points must have exactly
227 _ 1 edges. For each of the remaining inequalities,
the underlying rationale is one of the following: (i) the
total number of edges of the type indicated that exist
is bounded by the RHS; or (ii) if the LHS exceeds the
indicated bound, the strategy must contain a cycle, and
hence cannot be a clustering strategy. For instance,
a; < 22771 because this is the total number of edges
of type A;. As another example, consider X7 ja; <
¥r_ 22n-i Clearly, the RHS = 27(2" — 1). This is
explained by the fact that there are 2" columns each
of which contains 27 cells. Thus the total number of
edges of type A; where 1 < ¢ < n, cannot be more than

n n 3 3 ZV
27(2" —1). Similarly, Eleai—1—22»1:1172'—1—252.5)):(171)@7 <

applies because there are 2°?~f~% queries in
the query class (¢,¢). The only edges that can occur
inside each (¢, ¢) grid query are of type A; for some
i1 <1 < { or type Bj, for some j: 1 < j < ¢,
or of type D;;, for some 7,j: 1 <+ < /£, 1< 35 <q,
and the number of such edges per (£,¢) query is at
most 2¢ x 29 — 1 = 2042 — 1, thus implying the total
number of such edges in the whole grid is no more than
22n—£—q(2£+q _ 1) — 22n—1 4+t 22n—£—q.]

L+q62n—i
Ei:l 2

Definition 6 [Consistent Characteristic Vector]
A characteristic vector 1s consistent if it satisfies the
constraints in Lemma 2. []

Let @ = (d; E; J), v=(a; 1_74; cf) be any two consistent
cvs. We define the partial order, 4 < #, provided:
(i) for some @ 1 < i < n, we have a; = aj, Vj:
1 <j <4, and ifi < n, then a;y1 > a},, and (ii) for
some q: lgqgn,wehavebj:b}, Vi 1<j<gq,and
if ¢ < n, then bgq1 > b;_l_l. As an example, for n = 2,
(8,4;2,1) < (1,11;1,2) < (0,12;1,2).! We say that ¢
is <-minimal provided for every u such that @ < v, we
have # = ¢. For example, (8,4;2,1) and (8,3;3,1) are
two examples of <-minimal vectors. At this time, we
do not know whether every consistent vector is indeed
the ¢v of some clustering strategy. However, none of
our proofs depends on this detail. For a special class
of consistent vectors, however, we have the following
result.

Lemma 3 [Characteristic Vector for Snaked Lat-
tice Path]: Let ¥ = (d; E; 6) be a consistent, non-
diagonal, and <-minimal vector, such that all entries
a;, b; are powers of 2. Then ¥ must be the ¢v of some
snaked lattice path. |

We extend the definition of cost, to cover arbitrary?

consistent vectors ¢ = (d; E; cf)
cost(7) = Y0 Lo, Pid X (1/2771) x
(22" — (22:1% + Ty be + EE;&)):(Ll)dij)»

I Recall that when all diagonal entries are 0, we drop them all.
?Regardless of whether 7 is the CV of some strategy or not.

Lemma 4 [Sub-Optimality of Diagonal Strate-
gies]: Let Sy be any diagonal strategy. Then there
exists a consistent non-diagonal vector v such that for
every workload p, cost, (V) < cost,(Sq).

Proof Sketch. This is a rather intuitive result. The
key idea in our proof is that we can show that any

consistent vector ¥, = (d; b d) can be transformed into
- 4
—/

another ¥oy: = (@';b ;d) with the following properties:
(i) @i <aj, 1 <@ <m; (i) b < b, 1 <@ <ong (i) df; =
0, 1 <4,j <njand (iv) af + b} = a; + b; + dij, Vi, j.
Now, applying this transformation to @, = CV(Sy),
each edge e of type D;; in Sy is covered by a unique
edge, say f, which is of type A; or of type By, in ¥sy;.
Clearly, f favors every query class that e favors. From
the extended definition of cost, for consistent vectors, it
then follows that cost,(Vout) < cost,(Vin) = cost,(Sq).

We exhibit such a transformation by an elegant
inductive application of the following pivotal claim,
stated only for the base case here, for brevity.

Claim 1: 321,31 : 21 + 31 = din & U2 =gep (a1 +
1,y lny by +y1, ., 0050, da, .o, dyp) 18 consistent.

It should be obvious that for any workload g,
cost, (Un) < cost,(V;,). Intuitively, we split the diq
diagonal edges in Uy, (i.e., Sq) into a1 edges of type A;
and by edges of type Bi, while preserving consistency.

|

Theorem 2 [Global Optimality]: For every work-
load, there exists a snaked lattice path which achieves
the global optimal expected cost. More precisely, V
workload yi: 3 a snaked lattice path P: V strategy S':
cost, (P) < cost,(9).

Proof Sketch: Let p be a given workload. Choose P
to be any snaked lattice path with the least expected
cost cost,(P) among all such paths. Let S’ be any
other strategy. We need to show costu(ﬁ) < cost, ().
By Lemma 4, we know there is a consistent vector
U with zero diagonal edges such that cost, (V) <
cost, (CV(S")) = cost,(S"). Thus, it suffices to show
that costu(ﬁ) < cost, (V).
a set of snaked lattice paths S;, and showing that
cost, (V) cannot be simultaneously (strictly) less than
the expected cost cost (S) of all snaked lattice paths S
in the set. We call thls sandwich construction, because
the cost of our subject strategy S’ is “sandwiched”
between the costs of snaked lattice paths.

Let @ = (a1, ..., an; b1, ..., by). W.lo.g. we can assume
that ¥ is <-minimal, for it it is not, we can always

This we do by identifying

pick a <-minimal vector w such that & < ¢. If all ¢;’s
and all b;’s are powers of 2, we are done on account of
Lemma 3. Otherwise, let ¢ (resp., j) be the smallest
integer such that a; (resp., b;) is not a power of 2.
Now, consider the vectors @, = (ay,...,a;_1,2%" 7179

. 2n—i—j+1 7 —
ai+1,...,an,b1,...,bj_1,2 noi=it ,bj+1,...,bn) and Vg =

(al, ey @1, 22n—i—j+1’ Aigly --ey On); bi, ..., bj_l, 22n—i—j’
bit1,...,0n). We can show: (i) both ¢; and ¥» are
consistent; and (i) on every workload g, cost, (V) >
cost, (V1) or cost, (V) > cost,(U2), and (iil) v7 and ¥
are <-minimal. Call @, ¥, the sandwiching vectors
of ¥. Now, apply this technique iteratively to both
¥1 and ¥y, yielding the sandwiching vectors o1, U129
for ¢, and similarly the sandwiching vectors ¥y, ¥29
for 5. Then for any given workload w, (cost, (V) >
cost, (V1)) V (cost, (V) > cost,(v2)) and (cost,(v;) >
cost, (Vin)) V (cost,(V;) > cost,(Viz)), 1 = 1,2, which
together implies (cost, (V) > costu(ﬁ'n)) \ (costu(7) >
cost, (V12)) V (cost (V) > cost,(Va1)) V (cost, (V) >
cost,; (U22)). Repeated application of this technique to
the resulting set of sandwiching vectors will eventually
yield a set of vectors, say uy,...,U,, such that each
u; 1s the characteristic vector of some snaked lattice
path, say S;. It follows from the construction that
cost, (V) > cost,, (U;) = cost,(S;), forsome i: 1 < i < n.
The theorem follows. |

The following example illustrates the constructions
used in Lemma 4 and Theorem 2.

Example 3 Consider a two-dimensional star schema
with a three-level binary hierarchy on each dimension.
Consider a diagonal strategy S; whose characteristic
vector is ¥, = (20,5,1;21,3,1;4,0,0,0,4,0,0,0,4),
where the diagonal entries are listed in the order
di1,...,d13,...,dss. We can find a consistent vector
with zero diagonal entries, from ;,, using Lemma 4
as follows. As the reader can verify, one valid
way to split diy = 4 1s 21 = 4,y1 = 0, which
gives (24,5,1;21,3,1;0,0,0,0,4,0,0,0,4), a consistent
vector. Again, a valid way to split dos = 41s 3 = 4 and
y2 = 0, yielding (24,9,1;21,3,1;0,0,0,0,0,0,0,0,4).
Finally, dss = 4 also can be split into #3 = 4,y3 = 0,
giving Vo = (24,9,5;21,3,1;0,0,0,0,0,0,0,0,0) =
(24,9,5;21,3,1), dropping the all-zero diagonal entries.
This is also consistent and has expected cost no more
than ¥;,. Now, ¥y is not <-minimal. There are several
<-minimal vectors ¢ such that ¢ < v,,:, one of which
is & = (27,8,3;21,3,1). Now, applying the sandwich
construction technique used in the proof of Theorem 2,
we have that 4 is sandwiched by @; = (32, 8,3;16,3,1)
and @y = (16,8,3;32,3,1). But then #; is sandwiched
by #11 = (32,8,2;16,4,1) and #2 = (32,8,4;16,2,1)
while s is sandwiched by ds; = (16,8,2;32,4,1)
and Uz = (16,8,4;32,2,1). The vectors 4;;, 1 <
1,7 < 2 correspond to snaked lattice paths. The
reader is invited to verify that on any workload g,
cost,,(t) cannot be simultaneously less than all the costs
cost,(t;;), for 1 < 4,j < 2. By piecing the preceding
lemmas and theorems together, we can see that for some
i,j, cost,(d;;) < cost,(Sq). The vector d;; actually
corresponds to a snaked lattice path, s. |

5.2 The Benefit Due to Snaking

In this subsection, we attempt to quantify the benefit
derived from snaking. For this purpose, consider any
lattice path P and any query class (é,7) that is not
on P. Recall that distp(i,j) (defined in Section 4)
corresponds to the average cost for a typical (i,7)
query under strategy P. We extend this notation to
distﬁ(i,j), to indicate the average cost of a typical

(¢,7) query under strategy P. Define the benefit to
query class (4, j) from snaking as the ratio benp(i,j) =
distp(i,j)/distﬁ(i,j). The benefit to a query class
represents the amount by which 1ts cost is improved
by trading diagonal edges for snake edges.
dimensions, snake edges correspond to type A; or type
B; edges. For example, consider the lattice path
Ps = ((0,0),(0,1),(1,1),(2,1),(2,2)) and the query
class (2,0). distp,(2,0) = 4, whereas distﬁ;(Q,O) =

10/4, thus yielding a benefit of 4/(10/4) = 1.6.

In two

Theorem 3 [Limit on Benefit of Snaking]: For
any workload p and any lattice path clustering strategy
P, let P be the result of applying snaking to P. Then
cost,(P)/cost,(P) < 2.

Proof. Let P be an arbitrary lattice path and
(i,7) any query class. Let (q,f) be the point on
P such that distp(7,j) is actually the length of the
path segment connecting (¢,) and (g, ¢) in the lattice,
as defined in Section 4. In this case, we must
have either ¢ = 7 or £ = j, so assume { = j
wlog. Let CV(P) = (a1,...,an;b1,...,0,). Then
distp(i,j) = 2i—q’ and dlstﬁ(l,j) = (22n - (Elsssl'as—l—
Elstsjbt))/QZ”_i_j. distﬁ(i,j) is minimized when the
number of snake edges, ie., (Xi<i<ias + Xi<i<sbe),
1s maximized. This happens when the successor of
(r, +1) on Pis (r+ 1,4+ 1), forall ¢ < r <
1. In this case, distﬁ(i,j) = (27" — (2271 4
92n=2 4 .4 92n—q=j 4 92n—q=j=2 | 9In—q—j=3 4 .
22n—i—j))/22n—i—j — 2i—q _ (22n—q—j—2 + 22n—q—j—3 +
ot 22n—i—j—1)/22n—i—j — 2i—q _ 22n—i—j—1(2i—q _
1)/2%—i=J = 21-4(1/2)(21=9—1). Thus, the benefit to
class (i, j) w.r.t. the path P is benp(i,j) = 279/(20"9—
(1/2)(21=¢ — 1)) = 1/(1 — (1/2)(1 — 1/2°~9)). This
benefit is clearly maximized when i — ¢ is maximum,
which is the case when ¢ = n and ¢ = 0, regardless
of j. So, the maximum benefit to (n,j) for any j is
/(1= (1/2)(1 = 1/27) = 1/(1/2+ 1/27+) < 2.

Clearly, for a workload v, costl,(P)/costl,(ﬁ) Is
maximized when v(n,j) =1, and v(z,y) = 0,V(z,y) #
(n,7). In this case, costl,(P)/costl,(ﬁ) = benp(n,j) =
1/(1/241/27 1) < 2. []

We have the following corollary asserting that the
snaked optimal lattice path is not much worse than the
optimal snaked lattice path.

Corollary 1 Let p be a workload, Pﬁpt be an opti-

mal lattice path for u, and Pﬁpt be 1ts snaked wver-
ston. Suppose S is a lattice path distinct from Pﬁpt

and S is the optimal snaked lattice path. Then

cost, (PgP') [cost,, (S) < 2. [|

In words, the snaked optimal lattice path never
performs more than twice worse than the optimal
snaked lattice path, for a two-dimensional grid with
complete n-level binary hierarchies. We conjecture
that a tighter bound exists. In the proof above, we
considered the maximum improvement snaking could
provide to any lattice path, and the proof shows that the
maximum improvement happens for very poor paths.
If one starts with paths that are close to the optimal
lattice path clustering, we expect that the improvement
factor will be much less than 2.

5.3 A Performance Guarantee

Theorem 3 (see Corollary 1) says that the performance
of the snaked optimal lattice path can never be more
than twice worse than that of the optimal snaked lattice
path. Together with the global optimality result of
Theorem 2, this yields that the snaked optimal lattice
path is at most twice worse than the global optimum
clustering strategy. This is significant, since we can
find, in time linear in the query lattice size, a strategy
whose expected cost is within a factor of at most 2 of
the optimal cost.

6 Experimental Evaluation

To validate the practical usefulness of our analyses and
techniques we conducted a number of experiments using
the TPC-D benchmark. In this section, we describe our
experiments and report our findings.

6.1 Experimental Set-Up

We used the Lineltem table from the TPC-D benchmark
as our fact table. This is by a good measure the
largest table in the benchmark suite. Together with
this, we used the Parts table, with parts themselves
being grouped by Manufacturer for the parts dimension,
and the Supplier table for the supplier dimension. While
there are several time fields in the Lineltem table
(namely, ShipDate, CommitDate, ReceiptDate), we
picked the ShipDate attribute for the time dimensional
hierarchy ShipDate—Month— Year.

In all, we thus had 3 dimensions parts, supplier,
and time and a corresponding three dimensional data
set with very different fanouts along the three dimen-
sions (e.g., 12 months, 7 years, 5 manufacturers sup-
plying an average of 40 parts, and 10 suppliers). Each
cell in this data set was populated with zero or more
records. The typical size of a record was 125 Bytes. We
used a page size of 8K Bytes.

Once we chose a linearization (i.e., clustering) order,
we packed the data along that linear order, splitting
cells (but not records) across page boundaries. TFor
any query, we could then count the number of pages
retrieved as well as the number of seeks required.

In reporting these costs, for number of pages trans-
ferred, we normalized by the minimum number of pages
that would need to be transferred, assuming that the
data was perfectly clustered for each query. This is sim-
ply the total number of bytes required by the records
selected divided by the page size, rounded up to the
nearest integer. For seeks; the minimum number is just
1 per query, if there is perfect clustering, so no normal-
ization is required.

We studied the TPC-D benchmark queries, and
derived the access patterns to the Lineltem table based
on these queries. For instance, query 5 needs Lineltem
records selected by year and (supplier) region, with
no selection on the parts attribute. Query 9 applies
a selection by (supplier) nation, year, and part-type.
Enumerating thus, we found that 7 of the 17 different
query types defined, used Lineltem as the basic fact
table, and could potentially be represented as a grid
query. (The remaining queries either did not use the
Lineltem table at all, or did so only after joining it with
a large Order table).

We then mapped these 7 query types to appropriate
grid query classes, making slight modifications to the
queries as needed to fit our choices of dimension
hierarchies. We then devised various workloads by
altering the proportions of the different classes of
queries in our expected query mix. In all we present
results below for the following workloads.

6.2 Generation of Workloads

For each dimension, we separately considered three
probability distributions; as follows. We divided the
total probability of 1: either (a) evenly (e.g., 0.33, 0.33,
0.34 for dimensions with 3 levels, and 0.5, 0.5 for 2-
level dimensions), or (b) ramping up: (0.1, 0.3, 0.6)
for the three levels, and (0.2, 0.8) for the two levels,
or (¢) ramping down (0.6, 0.3, 0.1) for the three levels
and (0.8, 0.2) for the two levels. By considering all
possible combinations of such individual distributions,
we generated a total of 27 (=3 x 3 x 3) workloads, and
ran our experiments on all workloads.

6.3 Observed Experimental Results

We measured the cost of the following strategies:
(1) optimal lattice path, (ii) snaked optimal lattice path,
and (iii) the six possible row major strategies. In
reporting the results, for each workload, we only show
the cost of the best and worst row major orderings
for that workload. Of course, these orderings vary
depending on the workload. We ran 27 different

Avg. Normalized Blocks Read
Workload (Avg. Number of Seeks Per Query)
Pﬁpt Pﬁpt best row | worst row

major major

1 1.53 1.52 2.08 5.28
(8.41) | (7.71) | (10.85) | (39.96)

5 2.22 2.19 1.49 3.98
(5.30) | (5.10) | (6.60) (22.60)

7 1.24 1.25 1.91 5.25
(4.08) | (3.73) | (5.53) (52.08)

13 1.70 1.65 1.68 9.94
(4.83) | (4.75) | (5.81) (40.98)

25 1.74 1.74 1.74 6.34
(4.26) | (3.83) | (4.14) (31.67)

Table 4: Performance for Different Workloads

Fanout || P ¢ P © | best row | worst row
major major
4 1.45 1.44 1.57 3.84
10 1.42 1.39 1.72 4.39
40 1.24 1.25 1.91 5.25

Table 5: Normalized Blocks Read for Workload 7

workloads, and present a selection of the results
observed in Table 4, including workload 5, which was
the worst case for our algorithm. In all cases, the
number of seeks per query was least for the snaked
optimal lattice path, in some cases winning by an order
of magnitude. In two cases out of 27, the win was
marginal, and the number of blocks read was slightly
greater than for the best row major ordering. This s not
too surprising since the number of blocks read is only
loosely correlated with the number of seeks, which is the
metric we optimize for. We also have randomness in the
way grid cells are mapped across block boundaries.
Tables 5 and 6 shows the variation in the actual
normalized number of blocks read, and the normalized
number relative to the snaked optimal lattice path,
as the fanout (on the parts dimension) increases.
We used the workload (indicated as number 7 in
Table 5) corresponding to setting low probabilities in

Fanout || P ¢ P © | best row | worst row
major major
4 1.01 1.00 1.09 2.66
10 1.02 1.00 1.24 3.15
40 0.99 1.00 1.53 4.22

Table 6: Normalized Blocks Read Relative to];;j?t for
Workload 7

lower levels of the time and parts hierarchies and
higher probability at the higher levels, while keeping the
opposite in the supplier dimension. We observe that
as the fanout increases, the advantage of the snaked
optimal lattice path increases.

7 Related Work

The data intensive nature of OLAP queries and their
online response requirements has triggered substantial
work on optimizing such queries. Previous approaches
to this problem have been based on using materialized
views [8, 10, 20, 1], indices [9, 16], and caching [19,
2]. While all these approaches are important to
improve the overall query response time of OLAP
queries, they do not take into account the order
in which cells are laid out on disk. Among these
approaches, probably the work closest to ours is that
of Deshpande et al. [2]. They partition the multi-
dimensional space of an OLAP dataset into regions
called chunks, taking the dimension hierarchies into
account when choosing chunk boundaries. These
chunks are then used as a (fine granularity) unit of
caching in an OLAP system. Chunks are similar to
(though coarser-grained than) our notion of grid cells,
and their idea of chunking along hierarchy boundaries
in each dimension is based on similar intuitions. Unlike
our approach where we determine the optimal ordering
of laying out of grid cells on the disk, [2] always
chooses a row-major ordering to obtain a linearization
of chunks. Our algorithms and results can be applied in
a straightforward fashion to improve the performance of
the chunked file organization described in [2].

A closely related problem is that of organizing multi-
dimensional arrays to make their access on secondary
and tertiary memory devices fast and efficient, given
a workload of access patterns. Sarawagi and Stone-
braker [21] consider access patterns specified by the size
(in each dimension) of n-dimensional rectangles; hierar-
chies on the dimensions were not considered in the ac-
cess patterns. They consider the decomposition of the
multi-dimensional array into chunks, and propose some
heuristics to determine a uniform shape for the chunks
that reduces the average number of blocks fetched for a
specified access pattern. The chunks are always stored
in axis order, and [21] additionally determines a good
ordering of the array axes to reduce average seek time,
given the access pattern.

Tt is well-known [11, 18, 22] that there is no good or-
dering of data points in a multi-dimensional space that
will permit arbitrary range queries to be answered ef-
ficiently. [22] established, given a uniform distribution
of key values, that a k attribute selection on a database
with N records has a file access cost of O(NF-1/k),
More recent results have shown similar results indepen-
dent of any data distribution assumptions.

Nonetheless, it is certainly the case that some
orderings are (substantially) worse than others. Several
linearizations have been proposed, including the “Z-
curve” (or bit interleaving) [17], the Gray-code curve [3,
4], the Hilbert curve [6, 12], and variants (cf [15]).
There have been several analyses of the expected
performance of many of these linearization curves,
including [7, 13]. In [5, 12] it was shown that the Hilbert
curve was the best linear ordering for a wide variety of
applications.

Our results show that there are many circumstances
where snaked lattice path clusterings achieve a much
better performance than many of the strategies above,
including the Hilbert curve.

8 Conclusions and Future Work

Physical layout of data is crucial to data warehouse
performance. We considered the problem of finding
optimal ways to cluster records of a fact table in a data
warehouse, so as to minimize the expected 1/O over a
given workload, expressed as a probability distribution
over query classes. The search space of this problem
1s doubly exponential in the total number of hierarchy
levels. By exploiting the lattice structure formed by the
product of dimensional hierarchy levels, we identified an
important subclass of clustering strategies called lattice
paths. Lattice path clusterings can be arbitrarily better
than the well-known Hilbert curve clustering on some
workloads, while it can be more expensive than Hilbert
on others. We proposed the notion of snaking, which
when applied to a lattice path, always reduces its cost.
In the full paper, we show that on a representative class
of two-dimensional star schemas with n-level complete
binary hierarchies on either dimension, the expected
cost of the Hilbert strategy is sandwiched between two
fixed snaked lattice paths, on every workload. We also
showed that on the same class of schemas, for every
workload, there is a snaked lattice path which is globally
optimal. While the performance of a snaked optimal
lattice path can be worse than that of the optimal
snaked lattice path, it cannot be more than twice worse.

We complemented our analyses and validated the
practical utility of our techniques with experiments
using TPC-D benchmark data.

Acknowledgements

We thank Tom Mitchell for asking thought-provoking
questions on how to adapt the design of databases in
response to learned workload characteristics. We are
grateful to Flip Korn and Nick Koudas for comments
on an earlier draft of this paper. Lakshmanan’s work
was supported in part by a grant from NSERC Canada.

References

(1]

[2]

[10]

[11]

E. Baralis, S. Paraboschi, and E. Teniente. Ma-
terialized view selection in a multidimensional
database. In Proceedings of the International Con-
ference on Very Large Databases, 1997.

P. M. Deshpande, K. Ramaswamy, A. Shukla, and
J. F. Naughton. Caching multidimensional queries
using chunks. In Proceedings of the ACM SIGMOD
Conference on Management of Data, Seattle, WA
1998.

C. Faloutsos. Multiattribute hashing using gray
codes. In Proceedings of the ACM SIGMOD
Conference on Management of Data, Washington,

DC, 1985.

C. Faloutsos. Gray codes for partial match and
range queries. [EEE Transactions on Software
Engineering, 1987.

C. Faloutsos and Y. Rong. Spatial access methods
using fractals: Algorithms and performance eval-
uation. Technical Report Tech. Report UMTACS-
TR-89-31, University of Maryland, 1990.

C. Faloutsos and S. Roseman. Fractals for sec-
ondary key retrieval. In Proceedings of the ACM
Symposium on Principles of Database Systems,

pages 247252, 1989.

C. Faloutsos, H. V. Jagadish, and Y. Manolopou-
los. Analysis of the n-dimensional quadtree de-
composition for arbitrary hyper-rectangles. /EEE
Transactions on Knowledge and Data FEngg,

9(3):373-383, May/June 1997.

A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-query processing in data warehousing
environments. In Proceedings of the International
Conference on Very Large Databases, 1995.

H. Gupta, V. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index selection for OLAP. 1In
Proceedings of the IEEE International Conference
on Data Engineering, pages 208-219, 1997.

V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In Proceedings
of the ACM SIGMOD Conference on Management
of Data, pages 205-216, 1996.

J. M. Hellerstein, E. Koutsoupias, and C. H. Pa-
padimitriou. On the analysis of indexing schemes.
In Proceedings of the ACM Symposium on Princi-
ples of Database Systems, pages 249-256, 1997.

[12]

[17]

[18]

[19]

[20]

[21]

[22]

H. V. Jagadish. Linear clustering of objects with
multiple attributes. In Proceedings of the ACM
SIGMOD Conference on Management of Data,
pages 332-342, 1990.

H. V. Jagadish. Analysis of the hilbert curve for
representing two-dimensional space. Information
Processing Letters, 62(1):17-22, April 1997.

H. V. Jagadish, L. V. S§. Lakshmanan, and D. Sri-
vastava. Snakes and sandwiches: Optimal clus-
tering strategies for a data warehouse. Technical
report, AT&T Labs Research and Concordia Uni-
versity, 1999. (in preparation).

X. Liu. On the ordering of multi-attribute data
mn wnformation retrieval systems. Ph. D. Thesis,
University of British Columbia, Canada, 1995.

P. O’Neil and D. Quass. Improved query per-
formance with variant indexes. In Proceedings of
the ACM SIGMOD Conference on Management of
Data, pages 38-49, 1997.

J. A. Orenstein and T. H. Merett. A class of data
structures for associative searching. In Proceedings
of the ACM Symposium on Principles of Database
Systems, pages 181-190, 1984.

V. Samoladas and D. P. Miranker. A lower bound
theorem for indexing schemes and its application
to multidimensional range queries. In Proceedings
of the ACM Symposium on Principles of Database
Systems, pages 44-51, 1998.

P. Scheuermann, J. Shim, and R. Vingralek.
WATCHMAN: A data warehouse intelligent cache
manager. In Proceedings of the International
Conference on Very Large Databases, 1996.

D. Srivastava, S. Dar, H. V. Jagadish, and A. Y.
Levy. Answering queries with aggregation using
views. In Proceedings of the International Con-
ference on Very Large Databases, pages 318-329,
Bombay, India, 1996.

S. Sarawagi and M. Stonebraker. Efficient or-
ganization of large multidimensional arrays. In

ICDE’9/, 1994.

Y. Tanaka. Adaptive segmentation schemes for
large relational database machines. In Proc. 3rd
International Conference on Database Machines,

Munich, FRG, 1983.

