
Snakes and Sandwiches� Optimal Clustering Strategies for

a Data Warehouse

H� V� Jagadish�

U of Illinois� Urbana�Champaign
jag�cs�uiuc�edu

Laks V� S� Lakshmanany

IIT � Bombay
laks�math�iitb�ernet�in

Divesh Srivastava
AT�T Labs�Research
divesh�research�att�com

Abstract

Physical layout of data is a crucial determinant of perfor�
mance in a data warehouse� The optimal clustering of data
on disk� for minimizing expected I�O� depends on the query
workload� In practice� we often have a reasonable sense of
the likelihood of di�erent classes of queries� e�g�� ��� of
the queries concern calls made from some speci�c telephone
number in some month� In this paper� we address the prob�
lem of �nding an optimal clustering of records of a fact table
on disk� given an expected workload in the form of a prob�
ability distribution over query classes�

Attributes in a data warehouse fact table typically
have hierarchies de�ned on them 	by means of auxiliary
dimension tables
� The product of the dimensional hierarchy
levels forms a lattice and leads to a natural notion of
query classes� Optimal clustering in this context is a
combinatorially explosive problem with a huge search space
	doubly exponential in number of hierarchy levels
� We
identify an important subclass of clustering strategies called
lattice paths� and present a dynamic programming algorithm
for �nding the optimal lattice path clustering� in time linear
in the lattice size� We additionally propose a technique
called snaking� which when applied to a lattice path� always
reduces its cost� For a representative class of star schemas�
we show that for every workload� there is a snaked lattice
path which is globally optimal� Further� we prove that
the clustering obtained by applying snaking to the optimal
lattice path is never much worse than the globally optimal
snaked lattice path clustering� We complement our
analyses and validate the practical utility of our techniques
with experiments using TPC�D benchmark data�

� This work was largely performed when the author was at
AT�T Labs�Research� Florham Park� NJ ������ USA�

yCurrently on leave fromConcordiaUniversity� Canada� This
work was largely performed when the author was visiting AT�T
Labs�Research� Florham Park� NJ ������ USA�

� Introduction

There is tremendous current interest in data warehous�
ing and OLAP applications� OLAP applications typ�
ically view data as having multiple logical dimensions
�e�g�� product� location�� with natural hierarchies de�
�ned on each dimension� and analyze the behavior of
various measure attributes �e�g�� sales� volume� in terms
of the dimensions� Such an organization is called a star
schema� OLAP queries typically involve selections and
groupbys on certain dimensions of the star schema� of�
ten aggregating measure attributes� over a very large
number of tuples in the fact table�

Viewing a fact table together with its various dimen�
sion tables as a multi�dimensional grid� we call a vector
of �dimension� value� pairs a grid query� When all the
values are from the leaf levels of the associated dimen�
sion hierarchies� the grid query corresponds to an indi�
vidual cell in the multi�dimensional grid� When one or
more values are from higher up in their dimension hier�
archies� the query corresponds to subgrids �rectangles
in two dimensions � see Figure ��� The result returned
by a grid query could be all the selected tuples� an ag�
gregate �e�g�� sum�� or some other function� this detail
does not concern us� In our experience� almost all data
analysis queries issued against a data warehouse are grid
queries� Even a typical OLAP session involving opera�
tions such as cube� rollup� and drilldown� repeatedly
invokes various grid queries�

Database performance� particularly for data intensive
OLAP queries� is largely determined by the cost of I	O
required to process each query� This I	O� in turn�
depends on how records are physically laid out on
disk� We know that there can be no linear clustering
of records that will permit all queries over a multi�
dimensional space to be answered e
ciently� However�
given a query workload� it is possible to de�ne an
optimal clustering of records on disk that minimizes the
expected I	O cost� For realistic data warehouses� the
number of possible grid queries �which is the product
of the sizes of the hierarchies in each dimension� is
likely to be extremely large� even compared to the

number of queries issued over a long time period� This
makes the obtaining of stable workloads in terms of the
distribution of individual queries extremely hard� if not
impossible� Fortunately� there is a viable alternative�
that of specifying workloads in terms of query classes�
instead of in terms of individual queries�

We de�ne the notion of a �grid� query class based on
the levels associated with the dimension values de�ning
the grid query� Since the number of query classes �which
is the product of the number of levels in each dimension
hierarchy� is likely to be several orders of magnitude
smaller than the number of possible individual queries�
statistics compiled over the query stream can be used
to obtain a fairly good and stable characterization of
the distribution of queries across query classes� For
instance� a data warehouse administrator may know
that ��
 of the queries ask about sales of jeans by
type of jeans across some state� an additional ��
 of
the queries may ask about overall sales of jeans by
individual city� and so forth �see Figure ��� One can
now address the problem of obtaining an optimal disk
clustering of records for this notion of a workload� More
precisely� we address the following problem�

Given an anticipated workload in terms of the
frequencies of queries belonging to di�erent
query classes� how can one exploit this informa�
tion to obtain �e
ciently� a good clustering that
minimizes the expected disk I	O cost�

Our contributions in this paper are as follows�

� We de�ne an important class of clustering strate�
gies called �monotone� lattice paths� for which the
optimal strategy can be computed e
ciently using
a dynamic programming algorithm �Sections � and
��� Our algorithm is linear in the size of the lat�
tice of query classes� and quadratic in the number
of dimensions�

� We introduce an improvement called snaking� which
is very cheap to compute for a given lattice path�
and which when applied to a lattice path always
reduces the expected I	O cost� over all workloads
�Section ���

We analytically establish that for the case of two
dimensions with complete binary tree hierarchies�
the desired global optimal strategy is always some
snaked lattice path� Our proof technique suggests
this is likely to be the case in general� We also prove
that the clustering obtained by applying snaking to
the optimal lattice path has an expected cost within
a factor of � of the optimal snaked lattice path�

� We complement our analyses and validate the
practical utility of our techniques with results

albany

new york

ottawa

toronto

NY

ONT

any

lo
ca

tio
n

m
en

’s

w
om

en
’s

m
en

’s

w
om

en
’s

le
vi

’s

gi
ta

no

an
y

jeans

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(Q1)

(Q2)

dim A

dim B

Figure �� Example Dimension Hierarchies on Two�
Dimensional Sales Data with Row Major Clustering

obtained from experiments using TPC�D benchmark
data �Section ���

For lack of space� we only sketch the proofs of
some results and suppress the others� all of which are
discussed in detail in �����

� Motivating Example

A point that cannot be emphasized enough is that
the choice of clustering strategy can make orders of
magnitude di�erence in I	O cost� and hence in query
performance� The problem we are seeking to address is
one in which the bene�t obtained can be signi�cant�

Example � �A Typical �Toy� Data Warehouse�
Consider the schema of Figure �� with relations�

location�state� city� lid�

jeans�type� gender� jid�

sales�lid� jid� sale�

Typical OLAP queries are given below� where type

has the domain flevi�s� gitanog� gender has the domain
fmen�s� women�sg� etc�

Q�� select sum�sales�

from sales� location� jeans

where sales�lid � location�lid and

sales�jid � jeans�jid and

location�state � NY and

jeans�type � levi�s

Q�� select location�city� jeans�type�

sum�sales�

from sales� location� jeans

where sales�lid � location�lid and

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

6 7 10 11

5 8 9 12

4 3 14 13

1 2 15 16

(a) (b)

Figure �� Some More Possible Clustering Strategies�
�a� Quadrant Based �Z Curve�� �b� Hilbert Curve�

sales�jid � jeans�jid and

location�state � ONT
group by location�city� jeans�type

The �rst query simply fetches all tuples correspond�
ing to the sale of levi�s jeans in state NY and performs
an aggregate operation on them� Query �Q��� on the
other hand� performs a selection and a groupby and es�
sentially accesses all tuples corresponding to the sale of
jeans in state ONT� Figure � shows the fact tuples ac�
cessed by �Q�� and �Q�� pictorially� �jeans � levi�s�
location� NY� and �jeans � any� location� ONT�
are the grid queries corresponding to �Q�� and �Q��� re�
spectively�

Figure � shows a simple row major strategy� denoted
P� in the sequel� for clustering the sales data cells�
Figure � shows two additional clustering strategies for
the same data� strategy �a�� denoted P�� �rst locally
orders the cells inside each �� � �� subgrid in a row
major fashion� and then orders the four ����� subgrids
themselves row major� strategy �b� corresponds to the
well�known Hilbert curve ��� ���� denoted H�

d �
For each expected query� one can compute the cost

of evaluating the query given a clustering strategy� We
use the number of seeks �non�sequential disk accesses�
required as a simple analytical measure of query cost� In
doing so� we follow the footsteps of existing literature�
The expected cost� by this measure� is the same for all

queries in a query class� As such� we compute costs per
query class� and name query classes based on the level
in the hierarchy that is selected in each dimension� �The
nomenclature for the query classes will be explained
in Section �� immediately after this example�� For
example� in Figure �� the grid query �jeans � men�s
levi�s jeans� location � toronto�� corresponding to one
cell� is in class ��� ��� whereas the query �jeans � any�
location � any�� corresponding to the whole grid� is
in class ��� ���
Table � shows the average �over all queries in the

query class� cost of the various query classes under each
clustering strategy� In each table entry� the average
cost is written in the form htotal cost over all queries

Query Strategy

Class P� P� H�

d
fP�

fP�

	���
 �
��
 �
��
 �
��
 �
��
 �
��

	���
 ��� ��� ���
�� ���
	���
 ��� ��� ��� ��� ���
	���
 �
�� �
�� ���� ���� ����
	���
 ��� ��� ���� ��� ���
	���
 �
�� �
�� ��� ���� ����
	���
 ��� ��� ��� ���
��
	���
 ��� ��� ��� ��� ���
	���
 ��� ��� ��� ��� ���

Table �� Average Query Class Cost

Strategy

Workload P� P� H�

d
fP�

fP�

� ���� ���� ����
 ���� �����
� ���
 ���
 ����� ����� ��

� � ��� ��� � ���

Table �� Expected Workload Cost

in classi�hnumber of queries in the query classi� The
last two columns show the costs for the snaked versions
fP� and fP�� of the lattice paths P� and P�� and will be
discussed in Section ��

Table � shows the expected cost of each strategy for
each of the following three workloads�

�� All query classes are equally likely�

�� None of the query classes ��� ��� ��� ��� ��� �� is likely�
and the remaining query classes are equally likely�

�� Only the query classes ��� ��� ��� ��� ��� ��� ����� are
likely� and with equal probability�

One can see that even for this very small example�
one strategy can easily have close to twice the cost of
another� If we increase the grid size� this di�erence
becomes more dramatic� Table � shows how the relative
costs of the three strategies under the three workloads
above vary as we increase the fanout� In each case� we
show the savings� in expected cost� of the best strategy
�among P�� P��H�

d� w�r�t� the worst� We observe wide
variation in the expected cost of the three strategies for
di�erent workloads and fanout� Even with a modest

Workload fanout � � fanout � � fanout � ��

� ���
�� ���
�
�� ��� ���
�
�� ��� ����

Table �� Relative Costs for Varying Fanouts

(0,0)

(2,2)

(0,1)(1,0)

(2,0) (0,2)

(1,1)

(1,2)(2,1)

Figure �� Lattice Associated with the Star Schema of
Figure �� f�A� i� � f�B� i� � �� � � i � ��

fanout of �� in each of the two levels in either hierarchy
over a two�dimensional attribute space� we see well over
a factor of ��� di�erence in cost for workload ��

� Basic Notions

Let S be a star schema with k dimensions� denoted
�� � � � � k� For easier comprehension� we will use the
letters A�B� � � � to denote the dimensions� in place of
numbers �� �� � � �� when the number of dimensions is
�xed and small� Assume that the hierarchy associated
with each dimension is a balanced tree� i�e�� the length
of a path from the root to any leaf is the same� We will
discuss in Section ��� how to relax this assumption� We
count the levels of the hierarchy from the leaves �level
�� up� Assume that dimension d has a hierarchy with
�d levels� � � d � k� We let f�d� i�� for dimension d and
level � � i � �d� denote the average fanout� at level i�
of the hierarchy associated with dimension d�

De�nition � �Query Class� A query class is a k�
vector of level numbers of the form �i�� ���� ik� such that
� � i� � ��� ���� �� ik � �k�

For example� in Figure �� as explained in Section ��
the grid query �men�s levi�s jeans� toronto� �which is
one cell� is in class ��� ��� whereas the query �any� any�
�which is the whole grid� is in class ��� ���
Consider the set L � f�i�� ���� ik� j � � i� �

��� ���� � � ik � �kg of all query classes� and de�ne
a partial order � on L as �i�� ���� ik� � �j�� ���� jk�
i� i� � j�� ���� ik � jk� It is straightforward to see
that �L��� is a complete lattice� with the least element
� � ��� ���� �� and the greatest element � � ���� ���� �k��
We call �L��� the query class lattice associated with
star schema S� With this� we can formalize the notion
of a workload that we have discussed informally so far�

De�nition � �Workload� Given a query class lattice
L� a workload is a probability distribution over the set
of all query classes in L�

For �u � �i�� ���� ik� and �v � �j�� ���� jk� in L� we say
�v is a d�successor of �u if j� � i�� ���� jd�� � id��� jd �

id��� jd�� � id��� ���� jk � ik� In this case we de�ne the
weight of the edge ��u��v� as wt��u��v� � f�d� id � ��� For
example� wt���� ��� ��� ��� would be the fanout f�A� ��
of dimension A at level �� We say �v is a successor of �u�
provided �d � � � d � k such that �v is a d�successor of
�u� As usual� �u � �v abbreviates u � v � u �� v� Figure �
shows the query class lattice associated with the star
schema of Figure �� In that �gure� ��� �� �resp�� ��� ���
is the least �resp�� greatest� element� and ��� �� �resp��
��� ��� is the A�successor �resp�� B�successor� of ��� ���

De�nition � �Monotone Lattice Path� A mono�
tone lattice path is a sequence of points ��u�� ���� �ut� such
that� �i� �u� � �� �ii� �ut � �� and �iii� �ui�� is a succes�
sor of �ui� � � i � t� ��

Each monotone lattice path corresponds to a clus�
tering strategy� as illustrated in Section �� Each edge
��u��v� in a lattice path� where �u � �i�� ���� id� ���� ik� and
�v � �i�� ���� id � �� ���� ik�� speci�es one loop over sibling
entries at level id of dimension d� Loops are speci�ed
from inner�most to outer�most� and when executed re�
sult in a linear ordering of all the cells in the corre�
sponding k�dimensional grid� In the sequel� a lattice
path shall mean a monotone lattice path�

Example � �Lattice Paths�
Strategy P� in Example � corresponds to the lat�
tice path h� � ��� ��� ��� ��� ��� ��� ��� ��� ����� � �i�
whereas strategy P� corresponds to
h� � ��� ��� ��� ��� ��� ��� ������ ����� � �i�

Clearly� there is no bene�t to distributing records
belonging to a single cell �that is� matching on all
k dimensional attributes�� Therefore� the clustering
problem is one of selecting a linearization order over
the cells in a multi�dimensional space� For analytical
purposes� the number of continuous fragments of this
linearization curve required to cover all cells selected by
a query Q is known to serve as a pretty good surrogate
for the expected I	O cost of query Q� This is standard
in previous literature on clustering�

An arbitrary clustering strategy S �not necessarily a
lattice path� is represented as a path passing through all
the cells in the k�dimensional data grid associated with
the fact table F � We classify each edge on this path
as diagonal or non�diagonal� an edge is non�diagonal
if the two cells connected by this edge di�er in only
one dimension� Otherwise an edge is diagonal� A
clustering strategy is called diagonal if it includes at
least one diagonal edge� Otherwise it is non�diagonal�
Clearly� the row�wise strategy� corresponding to the
lattice path P� �Example �� in Figure �� is diagonal�
The Hilbert ordering is an example of a non�diagonal
clustering strategy�

We can go further and de�ne the type of an edge
more precisely as the set of dimensions in which the

cells at its end�points di�er� Each non�diagonal edge
is aligned along exactly one of the dimensions� so there
are exactly k non�diagonal edge types� However� there
are a combinatorial number of diagonal edge types�

De�nition � �Characteristic Vector� Let S be a k�
dimensional star schema and T � ��� ���� �t be any �xed
enumeration of the set of all possible edge types over
the k�dimensional grid associated with S� Let S be any
clustering strategy� Then the characteristic vector �cv�
of S is de�ned as CV�S� � �e�� ���� et�� where ei is the
number of edges of type �i that are on S�

For two dimensions with complete n�level binary hi�
erarchies on either dimension� we denote the cv as
�a�� ���� an� b�� ���� bn� d��� d��� ���� d�n� ���� dnn�� which we

sometimes abbreviate to ��a��b� �d�� For example� Strategy
P� of Figure � has the cv� CV �P�� � ��� �� �� �� �� �� �����
meaning it has � �resp�� �� edges of type A� �resp�� A���
� �resp�� �� diagonal edges of type D�� �resp�� D����
and � edges of all other types� The Hilbert strategy
�Figure ��b�� has the cv CV�H�

d � � ��� �� �� �� �� �� �����
Note the � diagonal edges and the almost even dis�
tribution of edges between corresponding levels of the
two dimensions� We often truncate cvs with � di�
agonal entries by dropping all diagonal entries� as in
CV�H�

d � � ��� �� �� ���

� Optimal Lattice Path

Let R � h�u�� ���� �usi be any path in a lattice� L�
such that �ui�� is a successor of �ui� � � i � s � �
�it need not connect � and ��� De�ne the length
of R as the product of the weights of edges on R�
i�e�� len�R� �

Q
��i�s��wt��ui� �ui���� We de�ne the

length of an empty path from a point to itself as
�� Let P be a monotone lattice path and �u be
a point in L that is not on P � Then the dis�
tance between �u and P is de�ned as distP ��u� �
minflen�R� j R is a monotone path segment between
�u and some point on Pg� Intuitively� distP ��u� corre�
sponds to the average cost of the clustering strategy
P on a typical query in the class �u� E�g�� in Fig�
ure �� distP� ��� �� � �� while distP���� �� � � � � � ��
Let � be any workload such that ���v� � p�v � for each
query class �v� We then de�ne the �expected� cost
of the monotone path P as the sum of its distances
from all points in the lattice� weighted by the prob�
ability of each point in the given workload� That is�
cost��P � �

P
�u�L�p�u�distP ��u��� This is the expected

cost of the clustering strategy P over the given workload
�� We wish to minimize this cost�
We next develop a dynamic programming algorithm

for �nding the cheapest path� We begin with the
following key lemma� For a point �u � L� we de�ne
the sublattice rooted at �u as L�u � f�v j �v � L � �u � �vg�

E�g�� in Figure �� L����� is the diamond consisting of the
points f��� ��� ��� ��� ������ �����g�

Lemma � �Principle of Optimality� 	 If a path
P � ��v�� �v�� ���� �vt � �� is an optimal path w�r�t�
workload � in L�v� � then the segment R � ��v�� ���� �vt�
is necessarily optimal w�r�t� � in L�v� �
The proof follows from the additive nature of the cost

metric and Bellman�s principle of optimality� We omit
it here� For a given workload �� we use P opt

� to denote
the optimal lattice path w�r�t� �� Figure � shows an
algorithm� for the two�dimensional case� for �nding the
optimal lattice path as well as its expected cost over a
given workload� The following theorem establishes the
correctness and complexity of this algorithm�

Theorem � �Optimal Lattice Path� 	 Algorithm
Find�Optimal�Lattice�Path �nds the optimal lattice path
over a given workload as well as its expected cost
correctly� It takes time linear in the size of the query
class lattice�

Proof� The correctness of the algorithm follows from
the following observations� and Lemma ��

�� For a query class �i� j�� if the optimal path from �i� j�
to �m�n� passes through �i� j���� then its expected
cost for the set of query classes �i�� j�� i � i� � m
is pi�j � f�A� i � �� � pi���j � 	 	 	� f�A�m� � 	 	 	 �
f�A� i � �� � pm�j � which is equal to rawB�i� j�� A
similar remark holds w�r�t� rawA�i� j��

�� The cost of the optimal path from �i� j� to �m�n�
is the minimum between cost��i� �� j� � rawA�i� j�
and cost��i� j � �� � rawB�i� j��

�� Finally� the problem is completely characterized by
the following recurrences�

cost�	m�n
 � pm�n� 	�

rawA	i� n
 � pi�n� � � i � m� 	�

rawB	m� j
 � pm�j � � � j � n� 	�

rawA	i� j
 � pi�j � f	B�j � �
� rawA	i� j � �
�

� � i �m� � � j � n� �� 	�

rawB	i� j
 � pi�j � f	A� i� �
 � rawB	i� �� j
�

� � i �m� �� � � j � n� 	�

cost�	m� j
 � pm�j � cost�	m� j � �
�

� � j � n� �� 	

cost�	i� n
 � pi�n � cost�	i� �� n
�

� � i �m� �� 	�

cost�	i� j
 � minfcost�	i� �� j
 � rawA	i� j
�

cost�	i� j � �
 � rawB	i� j
g�

i � m� j � n� 	�

Computing each rawA�� �as also rawB��� entry requires
� addition and �at most� � multiplication� Thus�

Algorithm Find�Optimal�Lattice�Path	f �m� n� �
�
��� � workload�
��f	A� i

 fanout of dimension A at level i� etc��
��m 	n

 number of levels in dimension A 	B
�
��output� cost�	���
 � optimal cost�
��opt path	���
 � optimal path�
f

cost�	m�n

 pm�n�
opt path	m�n

 h	m�n
i�
for 	i
 m� i � �� i��
 rawA	i� n

 pi�n�
for 	j
 n� j � �� j ��
 rawB	m� j

 pm�j �
for 	j
 n� j � �� j ��
 f

for 	i
 m� i � �� i��

rawB	i� �� j

 pi���j � f	A� i
� rawB	i� j
�

g
for 	i
 m� i � �� i��
 f

for 	j
 n� j � �� j ��

rawA	i� j � �

 pi�j�� � f	B� j
� rawA	i� j
�

g
for 	i
 m� i � �� i��
 f

cost�	i� �� n

 pi���n � cost�	i� n
�
opt path	i� �� n

 	i� �� n
 � opt path	i� n

g
for 	j
 n� j � �� j ��
 f

cost�	m�j � �

 pm�j�� � cost�	m� j
�
opt path	m�j � �

 	m�j � �
 � opt path	m�j

g
for 	i
 m� �� i � �� i��
 f

for 	j
 n � �� j � �� j � �
 f
if 	cost�	i� �� j
 � rawA	i� j
 �

cost�	i� j � �
 � rawB	i� j

 f
opt path	i� j

 	i� j
 � opt path	i� �� j
�
cost�	i� j

 cost�	i� �� j
 � rawA	i� j

g
else f

opt path	i� j

 	i� j
 � opt path	i� j � �
�
cost�	i� j

 cost�	i� j � �
 � rawB	i� j
�

g
g

g
g

Figure �� Finding the Optimal Lattice Path

computing all rawA�� and rawB�� entries requires a
total of ��m� ���n� �� additions and ��m � ���n� ��
multiplications� Computing each cost��� entry requires
at most � additions and at most � comparison� Thus�
computing all cost��� entries requires a total of ��m �
���n � �� additions� The overall complexity is thus
��m����n��� additions� ��m����n��� multiplications�
and �m� ���n� �� comparisons� which is clearly linear
in the query lattice size�

A naive examination of the search space has com�
plexity ��m�n�� for a two�dimensional star schema with
complete binary hierarchies of m and n levels on the
two dimensions� This is doubly exponential in the total
number of hierarchy levels� In contrast� our dynamic
programming algorithm �nds the optimal lattice path
in time O��m � ���n � ����

Extension of the algorithm for �nding the optimal
path in k � � dimensions is conceptually simple� and

has been implemented by us� The interested reader is
referred to ���� for further details�

�
� Unbalanced Hierarchies

In all our discussion so far� we have assumed that
the hierarchy on each dimension is balanced� in that
the length of the path from every leaf to the root
is the same� This is indeed often the case in data
warehousing� so such a requirement may not prove to
be too restrictive�

However� we do not need to make this assumption�
Instead� we can simply add dummy intermediate nodes
�with one parent and one child each� at any levels
of the hierarchy as necessary� to create an extended
hierarchy that is balanced� This extended hierarchy
now has a clearly de�ned concept of levels� Some
fanouts will be �� but that creates no problems since
our algorithm presented above works with the level�wise
average fanout�

� Improvement by Snaking

Recall �from Section �� that each lattice path leads
to clustering strategy as follows� Each edge ��u��v� in
a lattice path� where �u � �i�� ���� id� ���� ik� and �v �
�i�� ���� id��� ���� ik�� speci�es one loop over sibling entries
at level id of dimension d� Loops are speci�ed from
inner�most to outer�most� and when executed result in
a linear ordering of all the cells in the corresponding k�
dimensional grid� We can obtain a snaked clustering
from the same lattice path� by simply reversing the
direction of the loop index each time we traverse any
loop� We call the resulting clustering a snaked lattice
path� This is formalized below�

De�nition � �Snaking� Let P � h� � �u�� ���� �ut �
�i be a lattice path� Then the snaked lattice path

corresponding to P � denoted eP � is obtained by reversing
the clustering order of alternate �ui queries in the data
grid� for each i � �� ���� t� ��

Note that the snaking is applied to the clustering
order and not really to the lattice path itself� We
abuse terminology for convenience� Snaking can be
applied to any lattice path and will never increase its
expected cost� no matter what the workload� and on
most workloads� will reduce its expected cost� The
intuition is that a snaked lattice path has no diagonal
edges� Figure � illustrates the idea of snaking�

From this point onward in this paper� we restrict our
presentation to a two�dimensional star schema where
each dimension has an n level hierarchy �i�e�� the top�
most level is n and the bottom�most level is �� with a
fanout of � at each level� The resulting data grid is a
square with �n rows and �n columns�

The astute reader will see how to extend our argu�
ments to the more general case� We have the proofs

4 3 5 6

1 2 8 7

13 14 12 11

16 15 9 10

(a) (b)

1 2 4 3

8 7 5 6

16 15 13 14

 9 10 12 11

Figure �� Lattice Paths P� and P� from Example � with
Snaking Applied� �a� fP� and �b� fP��

for the general case for several of the results established
below� The proofs involve considerable notation� and
are not presented here�

�
� Optimality of Snaked Lattice Paths

We wish to compare snaked lattice paths against
arbitrary clustering strategies� For this purpose� we
shall use the notion of characteristic vector� de�ned in
Section �� Recall the notation for cvs as well as the
notion of edge types from Section �� We begin with a
lemma establishing some properties of such vectors�

Lemma � �Constraints on Characteristic Vec�
tors� 	 All clustering strategies �on a two�dimensional
grid with n�level complete binary hierarchies on either
dimension� must satisfy the following constraints�

a� � ��n��

a� � a� � ��n�� � ��n��

	 	 	 � 	 	 	

�n
i��ai � �n

i���
�n�i

b� � ��n��

b� � b� � ��n�� � ��n��

	 	 	 � 	 	 	

�n
i��bi � �n

i���
�n�i

a� � b� � d�� � ��n�� � ��n��

a� � b� � b� � d�� � d�� � ��n�� � ��n���

��n��

	 	 	 � 	 	 	

a� ��n
i��bi ��n

i��d�i � �n��
i�� �

�n�i

	 	 	 � 	 	 	

�n
i��ai � b� ��n

i��di� � �n��
i�� �

�n�i

�n
i��ai � b� � b� � �

�n���
�i�j�������dij � �n��

i�� �
�n�i

	 	 	 � 	 	 	

�n
i��ai � �n

i��bi � ��n�n�
�i�j�������dij � ��n

i���
�n�i

Proof Sketch
 The last constraint �the only equality�
comes from the fact that the number of cells is ��n so

any path passing through all points must have exactly
��n � � edges� For each of the remaining inequalities�
the underlying rationale is one of the following� �i� the
total number of edges of the type indicated that exist
is bounded by the RHS� or �ii� if the LHS exceeds the
indicated bound� the strategy must contain a cycle� and
hence cannot be a clustering strategy� For instance�
a� � ��n��� because this is the total number of edges
of type A�� As another example� consider �n

i��ai �
�n
i���

�n�i� Clearly� the RHS � �n��n � ��� This is
explained by the fact that there are �n columns each
of which contains �n cells� Thus the total number of
edges of type Ai where � � i � n� cannot be more than

�n��n���� Similarly� ��
i��ai��q

i��bi��
���q�
�i�j�������dij �

���q
i���

�n�i applies because there are ��n���q queries in
the query class ��� q�� The only edges that can occur
inside each ��� q� grid query are of type Ai for some
i� � � i � �� or type Bj � for some j� � � j � q�
or of type Dij � for some i� j� � � i � �� � � j � q�
and the number of such edges per ��� q� query is at
most �� � �q � � � ���q � �� thus implying the total
number of such edges in the whole grid is no more than
��n���q����q � �� � ��n��� 	 	 	� ��n���q�

De�nition
 �Consistent Characteristic Vector�
A characteristic vector is consistent if it satis�es the
constraints in Lemma ��

Let �u � ��a��b� �d�� �v � ��a���b
�
� �d
�
� be any two consistent

cvs� We de�ne the partial order� �u
 �v� provided�
�i� for some i� � � i � n� we have aj � a�j� �j�
� � j � i� and if i � n� then ai�� � a�i��� and �ii� for
some q� � � q � n� we have bj � b�j� �j� � � j � q� and
if q � n� then bq�� � b�q��� As an example� for n � ��
��� �� �� ��
 ��� ��� �� ��
 ��� ��� �� ���� We say that �v
is
�minimal provided for every �u such that �u
 �v� we
have �u � �v� For example� ��� �� �� �� and ��� �� �� �� are
two examples of
�minimal vectors� At this time� we
do not know whether every consistent vector is indeed
the cv of some clustering strategy� However� none of
our proofs depends on this detail� For a special class
of consistent vectors� however� we have the following
result�

Lemma � �Characteristic Vector for Snaked Lat�

tice Path� 	 Let �v � ��a��b���� be a consistent� non�
diagonal� and
�minimal vector� such that all entries
ai� bj are powers of �� Then �v must be the cv of some
snaked lattice path�

We extend the de�nition of cost� to cover arbitrary�

consistent vectors �v � ��a��b� �d��

cost���v� �
P�n�n�

�i�j������� pij � �����n�i�j��

���n � ��i
q��aq � �j

���b� ��
�i�j�
�q���������dij���

�Recall that when all diagonal entries are �� we drop them all�
�Regardless of whether �v is the cv of some strategy or not�

Lemma � �Sub�Optimality of Diagonal Strate�
gies� 	 Let Sd be any diagonal strategy� Then there
exists a consistent non�diagonal vector �v such that for
every workload �� cost���v� � cost��Sd��
Proof Sketch
 This is a rather intuitive result� The
key idea in our proof is that we can show that any
consistent vector �vin � ��a��b� �d� can be transformed into

another �vout � ��a���b
�
� �d
�
� with the following properties�

�i� ai � a�i� � � i � n� �ii� bi � b�i� � � i � n� �iii� d�ij �
�� � � i� j � n� and �iv� a�i � b�j � ai � bj � dij� �i� j�
Now� applying this transformation to �vin � CV�Sd��
each edge e of type Dij in Sd is covered by a unique
edge� say f � which is of type Ai or of type Bj � in �vout�
Clearly� f favors every query class that e favors� From
the extended de�nition of cost� for consistent vectors� it
then follows that cost���vout� � cost���vin� � cost��Sd��

We exhibit such a transformation by an elegant
inductive application of the following pivotal claim�
stated only for the base case here� for brevity�

Claim �� �x�� y� � x� � y� � d�� � �v� �def �a� �
x�� ���� an� b� � y�� ���� bn� �� d��� ���� dnn� is consistent�

It should be obvious that for any workload ��
cost���v�� � cost���vin�� Intuitively� we split the d��
diagonal edges in �vin �i�e�� Sd� into a� edges of type A�

and b� edges of type B�� while preserving consistency�

Theorem � �Global Optimality� 	 For every work�
load� there exists a snaked lattice path which achieves
the global optimal expected cost� More precisely� �
workload �� � a snaked lattice path eP � � strategy S��
cost�� eP � � cost��S���

Proof Sketch	 Let � be a given workload� Choose eP
to be any snaked lattice path with the least expected
cost cost�� eP � among all such paths� Let S� be any

other strategy� We need to show cost�� eP � � cost��S���
By Lemma �� we know there is a consistent vector
�v with zero diagonal edges such that cost���v� �
cost��CV �S

��� � cost��S
��� Thus� it su
ces to show

that cost�� eP � � cost���v�� This we do by identifying

a set of snaked lattice paths eSi� and showing that
cost���v� cannot be simultaneously �strictly� less than

the expected cost cost�� eSi� of all snaked lattice paths eSi
in the set� We call this sandwich construction� because
the cost of our subject strategy S� is �sandwiched�
between the costs of snaked lattice paths�
Let �v � �a�� ���� an� b�� ���� bn�� W�l�o�g� we can assume

that �v is
�minimal � for it it is not� we can always
pick a
�minimal vector w such that �w
 �v� If all ai�s
and all bj�s are powers of �� we are done on account of
Lemma �� Otherwise� let i �resp�� j� be the smallest
integer such that ai �resp�� bj� is not a power of ��
Now� consider the vectors �v� � �a�� ���� ai��� ��n�i�j�
ai��� ���� an� b�� ���� bj��� ��n�i�j��� bj��� ���� bn� and �v� �

�a�� ���� ai��� �
�n�i�j��� ai��� ���� an� b�� ���� bj��� �

�n�i�j�
bj��� ���� bn�� We can show� �i� both �v� and �v� are
consistent� and �ii� on every workload �� cost���v� �
cost���v�� or cost���v� � cost���v��� and �iii� �v� and �v�
are
�minimal� Call �v�� �v� the sandwiching vectors
of �v� Now� apply this technique iteratively to both
�v� and �v�� yielding the sandwiching vectors �v��� �v��
for �v�� and similarly the sandwiching vectors �v��� �v��
for �v�� Then for any given workload �� �cost���v� �
cost���v���
 �cost���v� � cost���v��� and �cost���vi� �
cost���vi���
 �cost���vi� � cost���vi���� i � �� �� which
together implies �cost���v� � cost���v����
 �cost���v� �
cost���v����
 �cost���v� � cost���v����
 �cost���v� �
cost���v����� Repeated application of this technique to
the resulting set of sandwiching vectors will eventually
yield a set of vectors� say �u�� ���� �un� such that each
�ui is the characteristic vector of some snaked lattice
path� say eSi� It follows from the construction that
cost���v� � cost���ui� � cost�� eSi�� for some i� � � i � n�
The theorem follows�

The following example illustrates the constructions
used in Lemma � and Theorem ��

Example � Consider a two�dimensional star schema
with a three�level binary hierarchy on each dimension�
Consider a diagonal strategy Sd whose characteristic
vector is �vin � ���� �� �� ��� ���� ���� �� �������� �� ���
where the diagonal entries are listed in the order
d��� ���� d��� ���� d��� We can �nd a consistent vector
with zero diagonal entries� from �vin� using Lemma �
as follows� As the reader can verify� one valid
way to split d�� � � is x� � �� y� � �� which
gives ���� �� �� ��� ���� �� �� �� ������ �� ����� a consistent
vector� Again� a valid way to split d�� � � is x� � � and
y� � �� yielding ���� � �� ��� ���� ���� �� �������� �� ���
Finally� d�� � � also can be split into x� � �� y� � ��
giving �vout � ���� � �� ����� �� �������� �� �������� �
���� � �� ��� �� ��� dropping the all�zero diagonal entries�
This is also consistent and has expected cost no more
than �vin� Now� �vout is not
�minimal� There are several

�minimal vectors �v such that �v � �vout� one of which
is �u � ��!� �� �� ��� ����� Now� applying the sandwich
construction technique used in the proof of Theorem ��
we have that �u is sandwiched by �u� � ���� �� �� �������
and �u� � ���� �� �� ��� ����� But then �u� is sandwiched
by �u�� � ���� �� �� ��� ���� and �u�� � ���� �� �� �������
while �u� is sandwiched by �u�� � ���� �� �� �������
and �u�� � ���� �� �� ��� ����� The vectors �uij� � �
i� j � � correspond to snaked lattice paths� The
reader is invited to verify that on any workload ��
cost���u� cannot be simultaneously less than all the costs
cost���uij�� for � � i� j � �� By piecing the preceding
lemmas and theorems together� we can see that for some
i� j� cost���uij� � cost��Sd�� The vector �uij actually

corresponds to a snaked lattice path� eS�

�
� The Bene�t Due to Snaking

In this subsection� we attempt to quantify the bene�t
derived from snaking� For this purpose� consider any
lattice path P and any query class �i� j� that is not
on P � Recall that distP �i� j� �de�ned in Section ��
corresponds to the average cost for a typical �i� j�
query under strategy P � We extend this notation to
dist eP �i� j�� to indicate the average cost of a typical

�i� j� query under strategy eP � De�ne the bene�t to
query class �i� j� from snaking as the ratio benP �i� j� �
distP �i� j��dist eP �i� j�� The bene�t to a query class

represents the amount by which its cost is improved
by trading diagonal edges for snake edges� In two
dimensions� snake edges correspond to type Ai or type
Bj edges� For example� consider the lattice path
P� � h��� ��� ��� ��� ��� ��� ������ �����i and the query
class ��� ��� distP���� �� � �� whereas distfP���� �� �

����� thus yielding a bene�t of �������� � ����

Theorem � �Limit on Bene�t of Snaking� 	 For
any workload � and any lattice path clustering strategy
P � let eP be the result of applying snaking to P � Then
cost��P ��cost�� eP � � ��

Proof
 Let P be an arbitrary lattice path and
�i� j� any query class� Let �q� �� be the point on
P such that distP �i� j� is actually the length of the
path segment connecting �i� j� and �q� �� in the lattice�
as de�ned in Section �� In this case� we must
have either q � i or � � j� so assume � � j
w�l�o�g� Let CV� eP � � �a�� ���� an� b�� ���� bn�� Then
distP �i� j� � �i�q� and dist eP �i� j� � ���n� ����s�ias�

���t�jbt�����n�i�j� dist eP �i� j� is minimized when the

number of snake edges� i�e�� ����s�ias � ���t�jbt��
is maximized� This happens when the successor of
�r� � � �� on P is �r � �� � � ��� for all q � r �
i� In this case� dist eP �i� j� � ���n � ���n�� �

��n��� 	 	 	� ��n�q�j � ��n�q�j��� ��n�q�j��� 	 	 	�
��n�i�j�����n�i�j � �i�q � ���n�q�j��� ��n�q�j���
	 	 	 � ��n�i�j������n�i�j � �i�q � ��n�i�j����i�q �
�����n�i�j � �i�q��������i�q���� Thus� the bene�t to
class �i� j� w�r�t� the path P is benP �i� j� � �i�q���i�q�
�������i�q � ��� � ���� � ������� � ���i�q��� This
bene�t is clearly maximized when i � q is maximum�
which is the case when i � n and q � �� regardless
of j� So� the maximum bene�t to �n� j� for any j is
����� �������� ���n�� � ������ � ���n��� � ��

Clearly� for a workload 	� cost��P ��cost�� eP � is
maximized when 	�n� j� � �� and 	�x� y� � �� ��x� y� ��

�n� j�� In this case� cost��P ��cost�� eP � � benP �n� j� �
������ � ���n��� � ��
We have the following corollary asserting that the

snaked optimal lattice path is not much worse than the
optimal snaked lattice path�

Corollary � Let � be a workload� P opt
� be an opti�

mal lattice path for �� and gP opt
� be its snaked ver�

sion� Suppose S is a lattice path distinct from P opt
�

and eS is the optimal snaked lattice path� Then

cost��
gP opt
� ��cost��eS� � ��

In words� the snaked optimal lattice path never
performs more than twice worse than the optimal
snaked lattice path� for a two�dimensional grid with
complete n�level binary hierarchies� We conjecture
that a tighter bound exists� In the proof above� we
considered the maximum improvement snaking could
provide to any lattice path� and the proof shows that the
maximum improvement happens for very poor paths�
If one starts with paths that are close to the optimal
lattice path clustering� we expect that the improvement
factor will be much less than ��

�
� A Performance Guarantee

Theorem � �see Corollary �� says that the performance
of the snaked optimal lattice path can never be more
than twice worse than that of the optimal snaked lattice
path� Together with the global optimality result of
Theorem �� this yields that the snaked optimal lattice
path is at most twice worse than the global optimum
clustering strategy� This is signi�cant� since we can
�nd� in time linear in the query lattice size� a strategy
whose expected cost is within a factor of at most � of
the optimal cost�

� Experimental Evaluation

To validate the practical usefulness of our analyses and
techniques we conducted a number of experiments using
the TPC�D benchmark� In this section� we describe our
experiments and report our �ndings�

� Experimental Set�Up

We used the LineItem table from the TPC�D benchmark
as our fact table� This is by a good measure the
largest table in the benchmark suite� Together with
this� we used the Parts table� with parts themselves
being grouped by Manufacturer for the parts dimension�
and the Supplier table for the supplier dimension� While
there are several time �elds in the LineItem table
�namely� ShipDate� CommitDate� ReceiptDate�� we
picked the ShipDate attribute for the time dimensional
hierarchy ShipDate�Month�Year�

In all� we thus had � dimensions parts� supplier�
and time and a corresponding three dimensional data
set with very di�erent fanouts along the three dimen�
sions �e�g�� �� months� ! years� � manufacturers sup�
plying an average of �� parts� and �� suppliers�� Each
cell in this data set was populated with zero or more
records� The typical size of a record was ��� Bytes� We
used a page size of �K Bytes�

Once we chose a linearization �i�e�� clustering� order�
we packed the data along that linear order� splitting
cells �but not records� across page boundaries� For
any query� we could then count the number of pages
retrieved as well as the number of seeks required�

In reporting these costs� for number of pages trans�
ferred� we normalized by the minimumnumber of pages
that would need to be transferred� assuming that the
data was perfectly clustered for each query� This is sim�
ply the total number of bytes required by the records
selected divided by the page size� rounded up to the
nearest integer� For seeks� the minimum number is just
� per query� if there is perfect clustering� so no normal�
ization is required�

We studied the TPC�D benchmark queries� and
derived the access patterns to the LineItem table based
on these queries� For instance� query � needs LineItem

records selected by year and �supplier� region� with
no selection on the parts attribute� Query applies
a selection by �supplier� nation� year� and part�type�
Enumerating thus� we found that ! of the �! di�erent
query types de�ned� used LineItem as the basic fact
table� and could potentially be represented as a grid
query� �The remaining queries either did not use the
LineItem table at all� or did so only after joining it with
a large Order table��
We then mapped these ! query types to appropriate

grid query classes� making slight modi�cations to the
queries as needed to �t our choices of dimension
hierarchies� We then devised various workloads by
altering the proportions of the di�erent classes of
queries in our expected query mix� In all we present
results below for the following workloads�

� Generation of Workloads

For each dimension� we separately considered three
probability distributions� as follows� We divided the
total probability of �� either �a� evenly �e�g�� ����� �����
���� for dimensions with � levels� and ���� ��� for ��
level dimensions�� or �b� ramping up� ����� ���� ����
for the three levels� and ����� ���� for the two levels�
or �c� ramping down ����� ���� ���� for the three levels
and ����� ���� for the two levels� By considering all
possible combinations of such individual distributions�
we generated a total of �! ���� �� �� workloads� and
ran our experiments on all workloads�

� Observed Experimental Results

We measured the cost of the following strategies�
�i� optimal lattice path� �ii� snaked optimal lattice path�
and �iii� the six possible row major strategies� In
reporting the results� for each workload� we only show
the cost of the best and worst row major orderings
for that workload� Of course� these orderings vary
depending on the workload� We ran �! di�erent

Avg� Normalized Blocks Read
Workload 	Avg� Number of Seeks Per Query

P opt
�

gP opt
� best row worst row

major major

� ���� ���� ���� ����
	����
 	����
 	�����
 	����

� ���� ���� ���� ����
	����
 	����
 	
�
�
 	���
�

� ���� ���� ���� ����
	����
 	����
 	����
 	�����

�� ���� ��
� ��
� ����
	����
 	����
 	����
 	�����

�� ���� ���� ����
���
	���

 	����
 	����
 	���
�

Table �� Performance for Di�erent Workloads

Fanout P opt
�

gP opt
� best row worst row

major major

� ���� ���� ���� ����
�� ���� ���� ���� ����
�� ���� ���� ���� ����

Table �� Normalized Blocks Read for Workload !

workloads� and present a selection of the results
observed in Table �� including workload �� which was
the worst case for our algorithm� In all cases� the
number of seeks per query was least for the snaked
optimal lattice path� in some cases winning by an order
of magnitude� In two cases out of �!� the win was
marginal� and the number of blocks read was slightly
greater than for the best rowmajor ordering� This is not
too surprising since the number of blocks read is only
loosely correlated with the number of seeks� which is the
metric we optimize for� We also have randomness in the
way grid cells are mapped across block boundaries�

Tables � and � shows the variation in the actual
normalized number of blocks read� and the normalized
number relative to the snaked optimal lattice path�
as the fanout �on the parts dimension� increases�
We used the workload �indicated as number ! in
Table �� corresponding to setting low probabilities in

Fanout P opt
�

gP opt
� best row worst row

major major

� ���� ���� ���� ��

�� ���� ���� ���� ����
�� ���� ���� ���� ����

Table �� Normalized Blocks Read Relative to gP opt
� for

Workload !

lower levels of the time and parts hierarchies and
higher probability at the higher levels� while keeping the
opposite in the supplier dimension� We observe that
as the fanout increases� the advantage of the snaked
optimal lattice path increases�

� Related Work

The data intensive nature of OLAP queries and their
online response requirements has triggered substantial
work on optimizing such queries� Previous approaches
to this problem have been based on using materialized
views ��� ��� ��� ��� indices � � ���� and caching �� �
��� While all these approaches are important to
improve the overall query response time of OLAP
queries� they do not take into account the order
in which cells are laid out on disk� Among these
approaches� probably the work closest to ours is that
of Deshpande et al� ���� They partition the multi�
dimensional space of an OLAP dataset into regions
called chunks� taking the dimension hierarchies into
account when choosing chunk boundaries� These
chunks are then used as a ��ne granularity� unit of
caching in an OLAP system� Chunks are similar to
�though coarser�grained than� our notion of grid cells�
and their idea of chunking along hierarchy boundaries
in each dimension is based on similar intuitions� Unlike
our approach where we determine the optimal ordering
of laying out of grid cells on the disk� ��� always
chooses a row�major ordering to obtain a linearization
of chunks� Our algorithms and results can be applied in
a straightforward fashion to improve the performance of
the chunked �le organization described in ����

A closely related problem is that of organizing multi�
dimensional arrays to make their access on secondary
and tertiary memory devices fast and e
cient� given
a workload of access patterns� Sarawagi and Stone�
braker ���� consider access patterns speci�ed by the size
�in each dimension� of n�dimensional rectangles� hierar�
chies on the dimensions were not considered in the ac�
cess patterns� They consider the decomposition of the
multi�dimensional array into chunks� and propose some
heuristics to determine a uniform shape for the chunks
that reduces the average number of blocks fetched for a
speci�ed access pattern� The chunks are always stored
in axis order� and ���� additionally determines a good
ordering of the array axes to reduce average seek time�
given the access pattern�
It is well�known ���� ��� ��� that there is no good or�

dering of data points in a multi�dimensional space that
will permit arbitrary range queries to be answered ef�
�ciently� ���� established� given a uniform distribution
of key values� that a k attribute selection on a database
with N records has a �le access cost of O�N �k����k��
More recent results have shown similar results indepen�
dent of any data distribution assumptions�

Nonetheless� it is certainly the case that some
orderings are �substantially� worse than others� Several
linearizations have been proposed� including the �Z�
curve� �or bit interleaving� ��!�� the Gray�code curve ���
��� the Hilbert curve ��� ���� and variants �cf� ������
There have been several analyses of the expected
performance of many of these linearization curves�
including �!� ���� In ��� ��� it was shown that the Hilbert
curve was the best linear ordering for a wide variety of
applications�

Our results show that there are many circumstances
where snaked lattice path clusterings achieve a much
better performance than many of the strategies above�
including the Hilbert curve�

� Conclusions and Future Work

Physical layout of data is crucial to data warehouse
performance� We considered the problem of �nding
optimal ways to cluster records of a fact table in a data
warehouse� so as to minimize the expected I	O over a
given workload� expressed as a probability distribution
over query classes� The search space of this problem
is doubly exponential in the total number of hierarchy
levels� By exploiting the lattice structure formed by the
product of dimensional hierarchy levels� we identi�ed an
important subclass of clustering strategies called lattice
paths� Lattice path clusterings can be arbitrarily better
than the well�known Hilbert curve clustering on some
workloads� while it can be more expensive than Hilbert
on others� We proposed the notion of snaking� which
when applied to a lattice path� always reduces its cost�
In the full paper� we show that on a representative class
of two�dimensional star schemas with n�level complete
binary hierarchies on either dimension� the expected
cost of the Hilbert strategy is sandwiched between two
�xed snaked lattice paths� on every workload� We also
showed that on the same class of schemas� for every
workload� there is a snaked lattice path which is globally
optimal� While the performance of a snaked optimal
lattice path can be worse than that of the optimal
snaked lattice path� it cannot be more than twice worse�

We complemented our analyses and validated the
practical utility of our techniques with experiments
using TPC�D benchmark data�

Acknowledgements

We thank Tom Mitchell for asking thought�provoking
questions on how to adapt the design of databases in
response to learned workload characteristics� We are
grateful to Flip Korn and Nick Koudas for comments
on an earlier draft of this paper� Lakshmanan�s work
was supported in part by a grant from NSERC Canada�

References

��� E� Baralis� S� Paraboschi� and E� Teniente� Ma�
terialized view selection in a multidimensional
database� In Proceedings of the International Con�
ference on Very Large Databases� � !�

��� P� M� Deshpande� K� Ramaswamy� A� Shukla� and
J� F� Naughton� Caching multidimensional queries
using chunks� In Proceedings of the ACM SIGMOD
Conference on Management of Data� Seattle� WA�
� ��

��� C� Faloutsos� Multiattribute hashing using gray
codes� In Proceedings of the ACM SIGMOD
Conference on Management of Data� Washington�
DC� � ���

��� C� Faloutsos� Gray codes for partial match and
range queries� IEEE Transactions on Software
Engineering� � �!�

��� C� Faloutsos and Y� Rong� Spatial access methods
using fractals� Algorithms and performance eval�
uation� Technical Report Tech� Report UMIACS�
TR�� ���� University of Maryland� � ��

��� C� Faloutsos and S� Roseman� Fractals for sec�
ondary key retrieval� In Proceedings of the ACM
Symposium on Principles of Database Systems�
pages ��!"���� � � �

�!� C� Faloutsos� H� V� Jagadish� and Y� Manolopou�
los� Analysis of the n�dimensional quadtree de�
composition for arbitrary hyper�rectangles� IEEE
Transactions on Knowledge and Data Engg�
 �����!�"���� May	June � !�

��� A� Gupta� V� Harinarayan� and D� Quass�
Aggregate�query processing in data warehousing
environments� In Proceedings of the International
Conference on Very Large Databases� � ��

� � H� Gupta� V� Harinarayan� A� Rajaraman� and
J� D� Ullman� Index selection for OLAP� In
Proceedings of the IEEE International Conference
on Data Engineering� pages ���"�� � � !�

���� V� Harinarayan� A� Rajaraman� and J� D� Ullman�
Implementing data cubes e
ciently� In Proceedings
of the ACM SIGMOD Conference on Management
of Data� pages ���"���� � ��

���� J� M� Hellerstein� E� Koutsoupias� and C� H� Pa�
padimitriou� On the analysis of indexing schemes�
In Proceedings of the ACM Symposium on Princi�
ples of Database Systems� pages �� "���� � !�

���� H� V� Jagadish� Linear clustering of objects with
multiple attributes� In Proceedings of the ACM
SIGMOD Conference on Management of Data�
pages ���"���� � ��

���� H� V� Jagadish� Analysis of the hilbert curve for
representing two�dimensional space� Information
Processing Letters� �������!"��� April � !�

���� H� V� Jagadish� L� V� S� Lakshmanan� and D� Sri�
vastava� Snakes and sandwiches� Optimal clus�
tering strategies for a data warehouse� Technical
report� AT�T Labs Research and Concordia Uni�
versity� � � �in preparation��

���� X� Liu� On the ordering of multi�attribute data
in information retrieval systems� Ph� D� Thesis�
University of British Columbia� Canada� � ��

���� P� O�Neil and D� Quass� Improved query per�
formance with variant indexes� In Proceedings of
the ACM SIGMOD Conference on Management of
Data� pages ��"� � � !�

��!� J� A� Orenstein and T� H� Merett� A class of data
structures for associative searching� In Proceedings
of the ACM Symposium on Principles of Database
Systems� pages ���"� �� � ���

���� V� Samoladas and D� P� Miranker� A lower bound
theorem for indexing schemes and its application
to multidimensional range queries� In Proceedings
of the ACM Symposium on Principles of Database
Systems� pages ��"��� � ��

�� � P� Scheuermann� J� Shim� and R� Vingralek�
WATCHMAN� A data warehouse intelligent cache
manager� In Proceedings of the International
Conference on Very Large Databases� � ��

���� D� Srivastava� S� Dar� H� V� Jagadish� and A� Y�
Levy� Answering queries with aggregation using
views� In Proceedings of the International Con�
ference on Very Large Databases� pages ���"�� �
Bombay� India� � ��

���� S� Sarawagi and M� Stonebraker� E
cient or�
ganization of large multidimensional arrays� In
ICDE��	� � ��

���� Y� Tanaka� Adaptive segmentation schemes for
large relational database machines� In Proc�
rd
International Conference on Database Machines�
Munich� FRG� � ���

