
Aggregate�Query Processing in Data Warehousing

Environments�

Ashish Gupta Venky Harinarayan Dallan Quass

IBM Almaden Research Center Stanford University

Abstract

In this paper we introduce generalized pro�
jections �GP s�� an extension of duplicate�
eliminating projections� that capture aggre�
gations� groupbys� duplicate�eliminating pro�
jections �distinct�� and duplicate�preserving
projections in a common uni�ed framework�
Using GP s we extend well known and simple
algorithms for SQL queries that use distinct
projections to derive algorithms for queries us�
ing aggregations like sum�max�min� count�
and avg� We develop powerful query rewrite
rules for aggregate queries that unify and ex�
tend rewrite rules previously known in the lit�
erature� We then illustrate the power of our
approach by solving a very practical and im�
portant problem in data warehousing� how
to answer an aggregate query on base tables
using materialized aggregate views �summary
tables��

� Introduction

With the growing number of large data warehouses
for decision support applications� e�ciently executing
aggregate queries �queries involving aggregation� is be�
coming increasingly important� Aggregate queries are
frequent in decision support applications� where large
history tables often are joined with other tables and

�Work was supported by NSF grants IRI��������� and IRI�
��������	 by ARO grant DAAL������G���

	 and by Air
Force Grant F��������������� Authors� address� Department
of Computer Science	 Stanford University	 Stanford	 CA �����

����� Email� fagupta	venky	quassg�cs�stanford�edu

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage� the VLDB copyright notice
and the title of the publication and its date appear� and notice
is given that copying is by permission of the Very Large Data
Base Endowment� To copy otherwise� or to republish� requires
a fee and�or special permission from the Endowment�

Proceedings of the ��st VLDB Conference
Zurich� Swizerland� ����

aggregated� Because the tables are large� better opti�
mization of aggregate queries has the potential to re�
sult in huge performance gains� Unfortunately� aggre�
gation operators behave di�erently from standard rela�
tional operators like select� project� and join� Thus� ex�
isting rewrite rules for optimizing queries almost never
involve aggregation operators�

To reduce the cost of executing aggregate queries
in a data warehousing environment� frequently used
aggregates are often precomputed and materialized�
These materialized aggregate views are commonly re�
ferred to as summary tables� Summary tables can be
used to help answer aggregate queries other than the
view they represent� potentially resulting in huge per�
formance gains� However� no algorithms exist for re�
placing base relations in aggregate queries with sum�
mary tables so the full potential of using summary
tables to help answer aggregate queries has not been
realized� This paper makes three contributions to e��
ciently answering aggregate queries�

� We propose a framework for treating aggregation
operators as an extension of duplicate�eliminating
projection operators�

� Using this framework we present more powerful
query rewrite rules for aggregation operators than
rules known previously�

� Utilizing our rewrite rules� we extend existing
work on answering queries using materialized
views by giving an algorithm for answering aggre�
gate queries using materialized aggregate views�

��� Optimizing Aggregations

Viewing aggregation as an extension of duplicate�
eliminating �distinct� projection provides very useful
intuition for reasoning about aggregation operators in
query trees� Rewrite rules for duplicate�eliminating
projection often can be used as building blocks to de�
rive rules for the more complex case of aggregation� In
addition to the intuition obtained by viewing aggre�
gation as extended duplicate�eliminating projection�
modeling both with one operator makes sense from

an implementation point of view� Typically� in exist�
ing query optimizers both aggregations and duplicate�
eliminating projections are implemented in the same
module 	G
���

We present a set of query rewrite rules for moving
aggregation operators in a query tree� Other authors
have previously given rewrite rules for pulling aggre�
gations up a query tree 	Day
�� CS
�� and for pushing
aggregations down a query tree 	CS
�� YL
��� Our
work uni�es their results in a single intuitive frame�
work� and using this framework we derive more pow�
erful rewrite rules� We present new rules for pushing
aggregation operators past selection conditions �and
vice�versa� and show how selection conditions with in�
equality comparisons can cause aggregate functions to
be introduced into or removed from a query tree� We
also present rules for coalescing multiple aggregation
operators in a query tree into a single aggregation op�
erator� and conversely� rules for splitting a single ag�
gregation operator into two operators�

��� Materialized Views with Aggregates

The new rewrite rules we present have enabled us to
develop an algorithm for determining whether mate�
rialized aggregate views can be used to answer ag�
gregate queries� The algorithm uses the rewrite rules
to transform a query tree containing aggregation op�
erators into an equivalent tree with some or all of
the base relations replaced by materialized views�
Previous work on answering queries with material�
ized views has dealt only with simple Select�Project�
Join �SPJ� type queries and views without aggrega�
tion 	CKPS
�� LMSS
��� Our algorithm is a novel
and important result for e�ciently executing aggre�
gate queries using preexisting materialized aggregate
views�

Currently� to use a materialized view in a query� the
view must be speci�ed explicitly in the FROM clause�
However� requiring that materialized views be spec�
i�ed in the FROM clause puts the onus on the query
writer to be aware of all available views and to know
whether using the views is more e�cient than querying
the base relations� A better approach is to allow the
query optimizer to choose which materialized views
are used in answering a query� Using our algorithm
a query optimizer can transform an aggregate query
tree over base relations into a query that incorporates
materialized aggregate views and choose the most e��
cient tree� Our algorithm can easily be integrated into
a conventional query optimizer using the approach for
SPJ�type queries and views developed in 	CKPS
���

��� Outline of Paper

Section � motivates our work with an example showing
how an aggregate query tree can be transformed into
a more e�cient query tree that takes advantage of a
materialized aggregate view� The example illustrates
how our framework for reasoning about aggregation

and the rewrite rules we present can be brought to�
gether into an algorithm for solving an important and
practical problem�

The body of this paper is divided into three sections
describing our three contributions� Section � presents
our framework for reasoning about aggregation� The
query rewrite rules are given in Section �� The al�
gorithm for transforming an aggregate query into one
that uses materialized views is given in Section �� It
is possible to read later sections �rst� referring back to
previous sections as necessary�

Related work is discussed in Section �� We give our
conclusions in Section �� 	GHQ
�� is the full version
of this paper and is available online�

� Motivating Example

We give an example showing how a materialized ag�
gregate view can be used to help answer an aggregate
query� We do not explain the query rewrite rules or
the algorithm used for transforming the query tree in
this section� We revisit this example and explain the
transformations involved when we describe our algo�
rithm in Section ��

EXAMPLE ��� Consider a data warehouse with
historical sales data for a large chain of department
stores� The data warehouse has the following relations�

item�item�id� item�name� category�
manufacturer� our�cost�

store�store�id� street�addr� city� state�
sales�sales�id� item�id� store�id�

month� year� sale�amt�

The �rst attribute of each relation is a key for the re�
lation� The item relation contains information about
each item that is stocked� The our cost attribute con�
tains the wholesale cost of the item� The store rela�
tion contains the address of each store� The sales
relation contains one tuple for every sale that is made�
Due to periodic discount and clearance sales� the sale
amount of items sold is not functionally determined
by item id� It is instead stored in the sales relation�
The relations have the following characteristics�

� There are ���� items in the item relation� �� of
which are in the toy category�

� There are ���� stores in the store relation� ���
of which are in the state of California�

� There are �� years worth of sales in the sales
relation� from �

� through �

��

� On average each store sells each item ��� times a
year� resulting in two billion entries in the sales
relation�

Suppose one wants to know if toy sales made by
stores in the state of California have been going up or

down during the past �ve years� This type of query�
aggregating large amounts of data� is typical of deci�
sion support applications� The following SQL query
can be written to calculate total sales of all toys in
all California stores by year� The expression tree cor�
responding to this query appears in Figure �� In the
�gure� each arc of the query tree has been annotated
with the number of tuples �owing up the arc� We as�
sume uniform selectivity of the selection conditions�
The sizes of intermediate results is often a good pre�
dictor of query execution time� so we annotate the arcs
to compare the query trees before and after using the
materialized view� In the annotations� we abbreviate
billion as �B�� million as �M�� and thousand as �K��

SELECT year� sum�sale�amt�
FROM sales� store� item
WHERE sales�store�id � store�store�id
AND sales�item�id � item�item�id
AND sales�year �� ����
AND item�category � 	toy	
AND store�state � 	CA	

GROUPBY year

sales

year>=
 1991

2B

store

state=
 "CA"1K1B

item

1K

100

10

5

store_id

1M

10M

item_id

Select year, sum(sale_amt)
Groupby year

category =
 "toy"

Figure �� Query tree to compute total toy sales for
California stores by year

Now suppose a yearly sales view is materialized�
listing the total yearly sales by item and store for stores
in the state of California� The view de�nition appears
below� The tree corresponding to the view de�nition
appears in Figure ��

CREATE VIEW yearly�sales AS
SELECT sales�store�id� sales�item�id�

sales�year� SUM�sale�amt� AS total
FROM sales� store
WHERE sales�store�id � store�store�id
AND store�state � 	CA	

GROUPBY sales�store�id� sales�item�id�
sales�year

Notice that the materialized view involves the rela�
tions sales and store� while the query involves the
relations sales� store� and item� Starting with the
query tree of Figure �� by reordering the joins and
using our rewrite rules �see Section ���� to push the
aggregation down past the topmost join� the tree in

store_id

Select store_id,item_id,year,
 sum(sale_amt) as total
Groupby item_id, store_id, year

sales

store

state="CA"

Figure �� Query tree corresponding to yearly sales
view de�nition

Figure � is obtained� Using our algorithm for an�
swering aggregate queries using materialized aggregate
views �see Section ��� we can now transform this query
tree into one that uses the yearly sales materialized
view� shown in Figure �� Since the number of tuples
in yearly sales is several orders of magnitude less
than the number of tuples in sales� the query tree
using the materialized view is likely to be much more
e�cient than the query over the base relations� Using
our rewrite rules and algorithm� a cost�based optimizer
could generate both trees and select the best one� �

item_id

itemyear>=
 1991

1K

50

100M

store_id

sales

2B

store

state="CA"
1K

1B 100

10

5

5K

Select item_id,year,
 sum(sale_amt) as X
Groupby item_id,
 year category

 = "toy"

Select year, sum(X)
Groupby year

Figure �� Query tree after reordering joins and pushing
an aggregation down past the topmost join

Select year, sum(X)
Groupby year

item_id

Select item_id,year,
 sum(total) as X
Groupby item_id,
 year

item

1K

5K

10

5

50

year>=
 1991 1M

500K

yearly_sales

category
 = "toy"

Figure �� Query tree after integrating materialized
view

� GP Framework

This section de�nes GP s and then state some proper�
ties of GP s that are used in later sections�

��� GP De�nition

A central theme of this paper is that algorithms
for optimizing duplicate elimination can be extended
to handle aggregation�groupby operators� Duplicate�
eliminating projection� also referred to as distinct
projection� is the simplest form of aggregation because
it can be expressed as a simple groupby statement
that does not compute any aggregates� Thus� we intro�
duce a generalized projection operator �GP�� denoted
by the same operator � as we use for distinct projec�
tions� This extension of notation is appropriate� since
a GP with no aggregate components behaves exactly
like a distinct projection� i�e��

select distinctD from R � GP � �D �R�D�S��
� select D from R groupby D

In general� a GP takes as its argument a relation R
and produces a new relation according to the subscript
of the GP � The subscript has two parts�

�� A set of groupby components� We refer to them
as components and not attributes because they
may be functions of attributes and not just at�
tributes� For instance� the GP �D�R� is written
as the following SQL query�

select D from R groupby D�

�� A set of aggregate components� For example� we
can write the GP �D�max�S� �R� as the query�

select D�max�S� from R groupby D�

Here D is the only groupby component and
max�S� is the only aggregate component�

For GP s that use only SQL aggregate components like
max or sum� the equivalent SQL query is obtained by
copying the entire subscript of the GP as the select
clause of the SQL query and by copying the groupby
components as the arguments of the groupby clause
of the SQL query�

We use a di�erent symbol �dup to denote con�
ventional projections that preserve duplicates� Sec�
tion ����� discusses how to use GP s to represent these
projections as well� Thus� GP s capture distinct
projections� aggregate computations� and duplicate�
preserving projections�

Based on the aggregate components of aGP we clas�
sify GP s into two categories�

� duplicate insensitive� The generation or removal
of duplicate tuples in their input does not a�ect
the result of such GP s� E�g� distinct projections
and aggregations like max and min�

� duplicate sensitive� Duplicates must be preserved
in their input� E�g� aggregations sum and count�

��� Properties

The following properties of GP s should be noted�

� If a GP uses only SQL aggregate components like
max or sum� then the GP can be expressed using
one SQL aggregate query� In the general case GP s
may have non�SQL aggregate components requir�
ing multiple SQL queries to express them �refer
to Example �����

� The groupby components of a GP are the key
of the result� Thus� a GP outputs exactly one
tuple for each value of the groupby components
and produces no duplicates in its output�

� If the groupby components of a GP include a key
of the input of the GP� then we can always rewrite
the GP to have no aggregate components�

��� Scope Of Results

We develop rules for transforming aggregate queries
and for answering aggregate queries using aggregate
materialized views� We consider queries and views
whose query trees have the following nodes� selec�
tion nodes� cross�product nodes� and GP nodes� For
ease of exposition we represent join nodes as a cross�
product followed by a selection� The query trees we
consider in this paper represent SQL queries hav�
ing the select� from�where�groupby�having key�
words� We do not consider correlated subqueries� The
relations in the from clause can be base relations or
views� The views can themselves be single block SQL
queries with the same structure� The query tree may
thus have nested aggregates� We consider aggregates
where the aggregate over a set of tuples S can be
computed from aggregates over subsets of S� The
SQL aggregates max� min� sum� count are exam�
ples �we handle avg by expressing it in terms of sum
and count��

� GP Transformations

��� Overview

This section considers three important query transfor�
mations

� pushing GP s down query trees�

� pulling GP s up query trees�

� coalescing two GP s into one� or equivalently� split�
ting up a GP into two�

These transformations are not independent of each
other but are derived from the same underlying query
equivalences�

We outline below our approach at deriving the
transformation rules� We start by extending the rules
for distinct projections to duplicate�insensitive GP s�
Then we extend the rules for duplicate�insensitive GP s

to derive those for duplicate�sensitive GP s� Our ap�
proach enables us to derive more powerful rules than
those previously known�

Duplicate�insensitive aggregation has two compo�
nents� �a� fragmenting the input relation into groups
of tuples �b� for each group computing the required
aggregate function� A distinct projection involves step
�a� only� When transforming an aggregate query� the
GP s interact with other operators like selections� other
GP s� and cross�products� The transformation rules for
distinct projections address the interaction of step �a�
with these operators� We extend these transformation
rules to consider how step �b� interacts with these op�
erators�

Note� step �a� is done on a tuple�by�tuple basis and
thus is a tuple�based operation� On the other hand�
step �b� deals with sets of tuples at a time and thus is
a relation�based operation� Relational operators like
selections and distinct projections are tuple�based and
hence relation�based computations cannot be �folded
into� them� Therefore� to obtain transformation rules
for duplicate�insensitive GP s we extend the rules for
transforming queries with distinct projections to han�
dle this mismatch in computation types� In particu�
lar� for the push�down and pull�up transformations we
augment the corresponding distinct transformations
for the case where a selection predicate involves aggre�
gation attributes� In the coalescing transform� we add
rules for the case when an attribute created by an ag�
gregate computation is used in another GP � since we
want to move this computation into the other GP �

Now consider duplicate�sensitive GP s� Such GP s
behave di�erently from duplicate�insensitive GP s only
when duplicates are generated or destroyed� Of the
relational operators� only cross product nodes intro�
duce duplicates because a cross product node causes
tuples on either incoming branch to get repeated many
times� above the cross product� Thus� the transforma�
tions for duplicate�insensitive GP s are extended only
for the cross�product node case to get the correspond�
ing transformations for duplicate�sensitive GP s� The
interaction of a duplicate�sensitive GP with other re�
lational operators is similar to that of a duplicate�
insensitive GP �

In this paper we also show a close relationship be�
tween duplicate�insensitive GP s and selection predi�
cates which involve the arithmetic comparisons ���
� ���� We use such comparisons to generate or re�
move aggregations like max�min in certain cases�

��� Arithmetic Comparisons� The � And �
Functions

This section discusses the interaction of GP s with se�
lection conditions that use arithmetic comparisons by
discussing what happens if GP s are pushed below such
selections� The ideas developed herein also apply to
GP pull�up and coalescing�

Consider any attribute that occurs in a query tree�

If the attribute is needed as an output of the query
tree� we cannot delete any distinct value of this at�
tribute by pushing GP s down� Similarly� all distinct
values of an attribute are required if the attribute par�
ticipates in an equality predicate ��� ���� For instance�
consider a generalized projection �A being pushed
down a query tree below a selection predicate �B�C �
Since we require all distinct values of B�C to make the
comparison� and we need all the distinct values of A
in the answer� a new GP �A�B�C is introduced below
the selection predicate� However� if the attribute only
occurs in an arithmetic comparison ���������� we
can do better� The following example suggests how�

EXAMPLE ��� Consider a GP �A being pushed
down a query tree below a selection predicate �B�C �
The GP �A says that above the selection predicate�
only distinct values of attribute A are needed� Let
the the selection predicate take as input the relation
R�A�B�C��

Eventually we want all those A values that have
associated with them a B and C value that satis�es
�B�C � Now consider two tuples of R� t� � �a� ��� ���
and t� � �a� ��� ���� Since t��B � t��B and t��C �
t��C� whenever t� satis�es the selection predicate so
does t�� Now� both tuples contribute the same value
of A to the answer� and the answer does not retain
duplicates� Thus� t� can be discarded even before the
selection node� without a�ecting the �nal answer� We
can thus prune the relation R to remove irrelevant tu�
ples such as t�� �

In the above example the attributes B�C are merely
��lters� and their actual values are not important� We
create the new aggregate functions ���when we push
down GP s below selection nodes with such �lters� In
Example ���� on pushing �A below �B�C we get the
new GP �A���B����C�� The GP �A���B����C��R� says
that we can discard any tuple s in R� if there exists
another tuple t such that s�A � t�A� s�B � t�B� and
s�C � t�C�

Consider now the GP �A���B�� It says we can dis�
card any tuple s if there exists another tuple t such
that s�A � t�A and s�B � t�B� In particular� this
means that we only need to keep the max�B� value
for each value of A� In other words�

�G���B� � �G�max�B�

where G is a set of groupby attributes� A similar
equality relates � and min�

While the functions � and � seem the same asmax
andmin respectively� there are some important di�er�
ences� Since �A���B����C� merely prunes the relation
R�A�B�C�� we have the following important property
of ��� operators�

�G���B����C��R�G�B�C�� � R�G�B�C�

where G is a set of groupby attributes� The functions
max and min do not satisfy this property� To see

this� consider R�A�B�C� � f�a� ��� ���� �a� ������g�
�
A�max�B��min�C��R�A�B�C�� � f�a� ��� ��g which

is not a subset of R� Thus in general� �A���B����C� ��
�
A�max�B��min�C��

We can replace � ��� by max�min� in GP s that
have no other aggregate components� In the presence
of other aggregate components the rules for evaluating
� ��� are more involved� The ��� operators and their
algebra are explained in greater detail in 	HG
���

��� GP Push�down

Now we discuss pushing GP s down query trees and
examine the interaction ofGP s with the di�erent types
of nodes in the query tree�

����� Duplicate�Insensitive GPs

Selection Nodes� Duplicate�insensitive GP s behave
similarly to distinct projections if the selection predi�
cate does not contain an attribute used to compute an
aggregation� To see why� consider pushing a distinct
projection �A down below the selection node �C�D�
On push�down� we get the new projection �A�C�D and
we keep the original projection above the selection
node� since the attributes C�D do not appear in the
output� The new projection �A�C�D does a �partial�
duplicate elimination� for each C�D value we eliminate
all duplicate values of A� The original projection �A

then does the total duplicate elimination� The above
technique of doing partial and total duplicate elimina�
tion is applicable to aggregations like max�min too�
By a similar reasoning� on pushing �A�max�B� be�
low �C�D � we get the new GP �A�C�D�max�B�� The
new GP computes the partial maxima and the original
GP � the total maxima� Thus when the selection pred�
icate does not involve aggregation attributes� we have
the same rule as distinct projections for all duplicate�
insensitive projections�

PDRule � When a selection predicate does not in�
volve any attribute used in aggregation computation�
we can push a GP P below it� We add the attributes
occurring in the selection predicate as groupby at�
tributes� to get the new GP Q and keep the original
GP P above the selection� �

As a general rule� if the new GP � after push�down�
is no di�erent from the original GP then the original
GP can be discarded on push�down because the partial
aggregation is the same as the total aggregation� Thus�
as a special case of Rule � we obtain the following
query equivalence�

�G�H��f�G�� � �f�G���G�H � ���

where G and H are the groupby and aggregate com�
ponents respectively�

By using push�down rule � and by adding attributes
to the original GP to get the new GP � we may cause

an attribute to appear in multiple components of the
GP � We rewrite such GP s where possible by dropping
the redundant component�

EXAMPLE ��� Consider pushing the GP

�A�X�max�B� below the selection �B�C � By push�
down rule �� we get the new GP �A�B�C�X�max�B��
We write this GP as �A�B�C since computingmax�B�
is redundant� �

In the presence of certain arithmetic comparisons�
we can create and push aggregation computations
�Section ����� In particular� we saw that we can add
the � and � functions as follows�

PDRule � When a selection predicate is of the form
B � C or B � C� on pushing a GP P below the
selection� we get the new GP Q which is P with the
additional components ��B� and ��C�� �

Push�down rule � extends previous work on pushing
down aggregation computation and allows us to create
aggregation computation in queries that had none to
start with�

Example ��� also illustrates that in general it is
not possible to push aggregate computations when the
selection predicate involves an aggregation attribute�
We cannot compute partial maxima� since we need all
distinct values of B for the selection� However in cer�
tain cases� by using the � and � functions� we can in�
deed push aggregation computations even if the selec�
tion predicate involves an aggregation attribute� The
following example illustrates this�

EXAMPLE ���
Consider pushing the GP �A�X�max�B� below the
selection �B���� By push�down rule �� the new GP
created is �A�X���B�� Now since there is no other ag�
gregate computation in the GP � we can replace the �
by a max to get �A�X�max�B�� �

Example ��� leads to the following commutativity re�
lationship�

�G�X�max�B���B�C� � �X�C ��G�X�max�B��

Note G is a set of groupby attributes and C is an at�
tribute belonging to the set G� If the GP being pushed
has other aggregate components� then the above rela�
tionship does not hold� A similar result holds for �
and �� ��

Cross�Product Nodes� For duplicate�insensitive
GP s it does not matter if the aggregation computa�
tion is done above or below the cross product� since
the presence of duplicate attribute values does not af�
fect the result of such computations� The following
example illustrates this fact�

EXAMPLE ��� Let �A�B�X�max�C��Y�max�D� be
pushed through a cross product� Let attributes A�C
belong to the left branch and attributes B�D to the

right branch� On pushing�A�B�X�max�C��Y�max�D�

we get �A�X�max�C� in the left branch and
�B�Y�max�D� in the right branch and we drop the
original GP� �

We have the same rule as for distinct projections�

PDRule � On pushing a GP P through a cross�
product node� we drop P and get the new GPs Qleft

and Qright on the left and right branches respectively�
Qleft�Qright� contains the components of P whose at�
tributes are from the left �right� branch� �

Push�down rule � also extends previous work on push�
ing down aggregations�

GP nodes� If while being pushed down� a GP en�
counters another GP� we attempt to coalesce the two
GP s into one� The rules for coalescing are given in Sec�
tion ���� The interaction ofGP s with conventional pro�
jections that preserve duplicates during push down is
syntactic �renaming of attributes� just as with pushing
distinct projections below duplicate�preserving pro�
jections�

����� Duplicate�Sensitive GPs

The output of a generalized projection is always a set�
i�e�� there are no duplicates� It is still possible to use a
GP to write a conventional projection that outputs du�
plicates� We use �dup to denote a conventional projec�
tion that preserves duplicates in its output� Consider
now the GP �A�X�count��� and the conventional pro�

jection �dup

A � We do not lose any information by drop�
ping duplicates and incorporating a count column to
indicate multiplicity because the two forms are equiva�
lent� We introduce the �expand� operator e to express
this equivalence�

eX ��A�X�count���� � �
dup
A

Consider a relation R�A�B�X�� for each tuple �a� b� x�
in R� the expand operator eX outputs x copies of the
tuple �a� b�� Thus we do not need to change the out�
put semantics ofGP s to accommodate duplicates� GP s
only produce sets as outputs �no duplicates�� Dupli�
cate semantics are simulated using count and the ex�
pand operator e�

Properties of the Expand Operator e� The ex�
pand operator helps us understand aggregations that
are sensitive to duplicates in their input� Usually e is
pulled up a query tree� so we mention some relevant
properties of the expand operator�

It can be seen that the expand operator commutes
�can be pulled up� with selection and cross product
nodes� Also the expand operator can be discarded
when it encounters above it a duplicate�insensitive GP �
The interactions of interest arise when an expand op�
erator encounters a duplicate�sensitive GP � For the

aggregate sum�

�A�Y�sum�B��eX� � �A�Y�sum�B�X�

since X just indicates how many times each B value
is repeated� The aggregate count can be thought of
as being sum��� which gives us

�A�Y�count����eX� � �A�Y�sum�X�

We use these results in explaining the push down al�
gorithm for aggregates like sum and count� The ex�
pand operator also lets us create count aggregations
anywhere in a query tree and can be used to reduce
the size of intermediate relations when there are many
duplicate tuples 	GHQ
��� Prior work on rewriting
aggregate queries has not considered introducing ag�
gregates in queries�

We now consider pushing a duplicate�sensitive GP
down a query tree and examine its interactions with
the di�erent nodes present in the tree�

Selection Nodes� As mentioned in Section ���
duplicate�sensitive GP s follow the same basic al�
gorithm as duplicate�insensitive GP s for selections�
Push�down rule � thus applies to all GP s� However�
as illustrated below� arithmetic comparisons cannot be
used to create the � and � functions with duplicate�
sensitive GP s� So we cannot use push�down rule ��

EXAMPLE ��� Consider pushing GP �A�count���
below a selection node �C�D� In this case for a given
value of A we are not just interested in seeing if there
exists some C�D that will cause the value of A to be
selected� Instead we are interested in the number of
times such a value will be selected� Adding ��C� and
��D� to the projection pushed below �C�D allows
us to determine only if there exists some C�D such
that C � D� In some sense we end up getting only a
TRUE�FALSE answer for each A value where we want
a number� So on pushing �A�count��� below �C�D

we get �A�C�D�count��� as the new GP � �

Cross�Product Nodes� When a duplicate�sensitive
aggregation computation is pushed down one branch
we have to account for the multiplicative e�ect of the
other branch� Thus we cannot eliminate duplicates in
the other branch if the GP is duplicate�sensitive�

EXAMPLE ��	 Let �A�A��X�sum�B� be pushed
down through a cross product where attributes A�B
go down the left branch and A� down the right� Since
sum requires duplicates be preserved in its input we
cannot eliminate duplicates in the right branch� and so
must push the conventional duplicate�preserving pro�

jection �dup
A� rather than the GP �A� � But we can

replace �dup
A� by eX ��A��X�count����� We thus have

the following expression after push down�

�A�A��X�sum�L���A�L�sum�B�	eX ��A��X�count�����

Unlike with duplicate�insensitive GP s� we require the
original GP to do the computation above the cross
product� Now� pulling up the expand operator and
merging into the GP above the cross product� we get

�A�A��X�sum�L�X���A�L�sum�B�	�A��X�count����

Since A�A� are keys of the left and right branches �be�
ing groupby attributes�� A�A� is a key of the rela�
tion above the cross product� Hence we can replace
sum�L
X� by L
X above the cross product� �

The detailed algorithm for GP push down is in 	HG
���

��� Pulling Up GPs

We are often interested in pulling GP s up query trees
for a number of reasons� One important reason is to
express queries with aggregations in a normal form
�Section ����� The pull�up rules are derivable from the
push�down rules we saw earlier�

SelectionNodes� From query equivalence � we have
the following rule�

PURule � A GP can always be pulled up above a se�
lection if all the attributes in the selection predicate
occur as groupby attributes in the GP � �

From push�down rule � we have the following pull�up
rule�

PURule � If all the attributes in the selection predi�
cate are groupby� �� or � aggregate attributes of the
GP and if the ���� attributes occur to the left �right�
of a � or � comparison in the selection predicate� we
can pull up the GP � �

Cross�Product Nodes� From push�down rule � we
have the corresponding pull�up rule�

PURule � If we have two GPs that are duplicate�
insensitive on either branch of a GP � we can pull them
up as one GP� by combining all their attributes� �

We can derive the pull�up rule for duplicate�
sensitive GP s from the push�down rule for duplicate�
sensitive GP s� We state the rule without derivation�

PURule � To pull up a GP above a cross product
when the other branch of the cross product has no du�
plicates� we add all the attributes coming up the other
branch as groupby attributes of the GP � �

The above rule is very general and applies to all GP s
but is less powerful than pull�up rule � for duplicate�
insensitive GP s�

When the other branch in the cross product has du�
plicate tuples we cannot pull up GP s as we did above�
This statement applies even to the simple distinct
projection�

EXAMPLE ��
 Consider a cross product node with
the distinct projection �A�B on the left branch and
R�C�D� on the right branch� where R is some relation
that may have duplicates� Then�

�A�B�S�A�B� F ��	R�C�D� ���
�A�B�C�D�S�A�B� F �	R�C�D���

�

We can use the GP pull�up rule � if R is made
duplicate�free� There are many ways of making
R duplicate�free� One method is to add key at�
tributes �or unique tuple ids� to R� This method
of adding keys or tuple ids to relations with dupli�
cates is similar to the ADDKEYS rule in the Starburst
Query Rewrite facility 	PHH
�� and the rule given
in 	Day
��� Another option to making R duplicate�
free is to use the expand operator e� We can re�
place R�C�D� with eX��C�D�X�count����R�C�D����

We can now pull eX up above the cross product as
mentioned in section ������ After we pull up e we
have �C�D�X�count����R�C�D�� on the right branch�

which has no duplicates� With these modi�cations�
we can apply pull�up rule �� Note� when we have
duplicate�sensitive GP s on each branch of the cross
product� we pull them up one at a time� using pull�up
rule ��

��� Coalescing GPs

This section gives rules for combining two GP s into
one GP �coalescing� and thus the reverse� splitting a
GP into two GP s �splitting�� Coalescing and split�
ting are valuable tools in rewriting query trees with
aggregations� Coalescing has not been considered by
researchers before�

When we attempt to coalesce two GP s� we try to
move all the computation from the lower GP into the
upper GP and then to drop the lower GP � We as�
sume that all the attributes occurring in the upper
GP are output by the lower GP � because otherwise
the original query is incorrect� In Section ��� we saw
that the di�erence between distinct projections and
other duplicate�insensitive GP s was in the inability to
move relation�based computations into tuple�based op�
erators� In coalescing� this inability translates to addi�
tional rules when the upper GP contains an attribute
created by aggregate computation in in the lower GP�
First the simple distinct projection rule�

CRule � If the upper GP is duplicate�insensitive and
all the attributes required by the upper GP occur as
groupby attributes of the lower GP � we can discard
the lower GP � �

What happens if an attribute A required by the up�
per GP is created by an aggregate computation at the
lower GP� There are two cases to consider here� at�
tribute A is a groupby attribute of the upper GP or
attribute A is an aggregate attribute of the upper GP �

Consider the �rst case� As we saw in Section ����
groupby computations in a GP are tuple based� so we

cannot move the aggregation computation of the lower
GP into a groupby component of the upper GP �

CRule � If a groupby attribute in the upper GP is
created by an aggregate computation in the lower GP
we cannot coalesce the two GPs� �

Consider now the second case� an aggregate at�
tribute in the upper GP is created by an aggregation
computation in the lower GP � We can coalesce GP s
when the lower GP does a partial aggregation compu�
tation and the upper GP � the total aggregation� So for
the aggregates like sum�max�min where partial ag�
gregation and the total aggregation involve the same
aggregate function� we have the following rule�

CRule � If an aggregation attribute in the upper GP
is created by an aggregation computation in the lower
GP and if both aggregations are the same and are
max�min�sum then we can do the aggregation com�
putation in the upper GP � �

When we do a partial computation of count� the
total computation of count requires the use of a sum
aggregation� We can use the same principle as coalesc�
ing rule � above� to remove the partial computation�

If we can move all the aggregation computation into
the upper GP � using coalescing rule �� we can drop the
lower GP � Otherwise we cannot coalesce the two GP s
and must let them remain as they were originally� It
is incorrect to move some aggregation computation up
and not others�

� Answering Queries Using Material�
ized Views

We now present an algorithm for transforming an ag�
gregate query tree over base relations into one that
uses a materialized aggregate view�

Given an aggregate query tree Q and the tree cor�
responding to a materialized aggregate view de�nition
V � if the algorithm determines that Q can be answered
using V it returns a modi�ed query tree Q� such that
Q��V � � Q� The aggregate query tree Q may be a
subtree of a larger query tree� so in general the al�
gorithm can be applied to several subtrees of a large
query tree� resulting in the incorporation of several
materialized views�

The GP framework and transformation rules have
proven very useful in the development of our algo�
rithm� Rewrite rules for moving GP s up a query tree
allow us to transform the query and view de�nition
into a normal form �described later� making reasoning
about aggregation easier� Rewrite rules for pushing
GP s down a query tree make it possible to obtain a
tree rooted at a GP operator having the same base re�
lations as the materialized view under consideration�
Rewrite rules for pushing selection conditions through
GP s and for splitting one GP into two GP s are used
by the algorithm to transform the aggregate query tree
into one that uses a materialized aggregate view�

Section ��� describes the class of queries and views
handled by the algorithm� The algorithm is outlined
in Section ���� Section ��� illustrates how the query
tree of our motivating example �see Section �� is trans�
formed by the algorithm� Due to space limitations we
are unable to present the full details of the algorithm�
The details can be found in 	GHQ
���

��� Preconditions on View V and Query Q

Our algorithm requires that the view and query be
put into a normal form that has all aggregations and
selections above all joins� The normal formmakes rea�
soning about aggregation much easier than if the query
had nested aggregations� The normal form consists of
a a selection over a generalized projection over a selec�
tion over a set of joins� i�e��

�h��lX

In the normal form �l and �h are conjunctive selection
conditions� � is the GP � and the X symbol represents
a set of join operations�

A large class of aggregate queries can be reduced to
this normal form using the GP push�down and pull�
up rules �see Section ��� In particular� select�from�
where�groupby�having queries can be reduced to
this normal form if the attributes in the groupby
and having clauses appear in the select clause�
no aggregate function de�nition uses the distinct
keyword �e�g�� SUM�DISTINCT sale amt��� and the
where clauses are conjunctive� In addition� queries
that include in the from clause one or more nested
aggregate views can be rewritten in this form if the
aggregates can be pulled above the joins and coalesced
into a single GP �

We require that view V and query Q use the same
set of relations R�� � � � � Rm joined using the same join
conditions� We refer to the GP and selection condi�
tions in view V as GP �V �� �h�V �� �l�V �� Similarly for
query Q�

Due to the undecidability of the implication prob�
lem for the class of aggregations we consider 	RSSS
��
there are cases where a query can be answered using a
view that are not detected by the algorithm� However�
the algorithm handles a very large class of queries and
views that includes many common cases�

��� Algorithm

The input to the algorithm is a query tree Q and a
tree for view V � Both trees must have been reduced
to the prescribed normal form of Section ��� using our
transformation rules� Note� since Q can be a subtree
of a larger query tree� the algorithm is applicable to
a larger class of queries that cannot be completely re�
duced to this normal form� If Q is a subtree of a larger
query tree� before applying the algorithm it is useful to
push as many selection conditions as applicable from

the larger query tree into Q� because further restrict�
ing Q makes it more likely that Q is computable using
V �

The output of the algorithm is either FAIL if the
algorithm cannot determine that Q can be answered
using V � or a modi�ed query tree Q� over V instead of
the base relations such that Q��V � � Q�

Intuitively� Q� is derived by transforming Q such
that the bottom portion of the tree is equivalent to the
query tree for V � and the upper portion becomes the
query tree Q�� The steps of the algorithm are outlined
below�

In Step � we push selection conditions from �h down
through the GP to �l for both the query and the view�
	GHQ
�� gives a table� derived from the rules in Sec�
tion �� that enumerates the cases when selection con�
ditions can be pushed down past GPs� Selection con�
ditions are pushed down in preparation for Step ��

In Step � we test whether the selection conditions in
the resulting �l�V � are more restrictive than the selec�
tion conditions in the resulting �l�Q�� If so� then tu�
ples that could appear in the groups formed by GP �Q�
would be �ltered out by �l�V �� and the algorithm de�
termines it is not possible to derive Q��

In Step ��a� we transform query tree Q to include
a GP operator similar to GP �V �� If the groupby com�
ponents of GP �Q� are a proper subset of the groupby
components of GP �V � and �h�V � is empty� then the
groups created by V partition the groups needed in
Q� We can therefore combine the groups created by V
into the groups needed by Q using a GP operator� We
split GP �Q� into two GP s� GPbot�Q� and GPtop�Q��
GPtop�Q� does the same computation as the original
GP �Q�� GPbot�Q� has the same groupby components
as GP �V �� An enumeration of the GP�splitting rules
is given in 	GHQ
���

If the groupby components of GP �Q� and GP �V �
are the same� then GP �Q� is not split and GPbot�Q�
and GPtop�Q� in the remainder of the algorithm both
refer to GP �Q��

If there are additional groupby components in
GP �Q� then Q is grouping at a di�erent �or �ner� gran�
ularity than V � and the algorithm determines it is not
possible to derive Q��

In Step ��b� we test whether each aggregate com�
ponent of GPbot�Q� is computable from the aggregate
components of GP �V �� If not� then the algorithm de�
termines it is not possible to derive Q��

In Step � we identify conditions in �l�Q� that are
not implied by �l�V � and try to pull them up past
GPbot�Q�� If a selection condition in �l�Q� is not im�
plied by the selection conditions in �l�V � and it cannot
be pulled up past GPbot�Q�� then tuples that could ap�
pear in the groups formed by GP �V � would be �ltered

�Actually	 it is possible for the bottom portion of the query
tree to return a superset of the tuples returned by V 	 so long as
additional selection conditions in the upper portion of the query
tree �lter out the additional tuples�

out by the conditions of �l�Q�� and the algorithm de�
termines it is not possible to derive Q��

In Step � we test whether the selection conditions
in �h�V � are more restrictive than the selection con�
ditions in �h�Q�� If so� then tuples that could appear
in the result of Q would be �ltered out by the condi�
tions of �h�V �� and the algorithm determines it is not
possible to derive Q��

After Step � the view tree V is equivalent to the
subtree of the transformed query tree Q rooted at
GPbot�Q��

� The algorithm returns as Q� the trans�
formed query tree Q with the subtree rooted at
GPbot�Q� replaced by the materialized view�

We have omitted several enhancements that extend
the algorithm to cover additional cases when Q� can be
derived� The enhancements can be found in 	GHQ
���

��� Example

We illustrate how the algorithm can be applied to the
query and view from Example ����

EXAMPLE ��� Consider again Example ���� A
query is posed to compute total sales of all toys
in all California stores for each year beginning with
�

�� The initial query tree for the query appears
in Figure � using our GP notation� Materialized view
yearly sales computes total yearly sales by item and
store for stores in California �Figure ��� We want to
determine if view yearly sales can be used to answer
the query�

year, sum(sale_amt)

item_id

sales

store_id

Q

item

store

state="CA"

year>=
 1991"

category=
 "toy"

Figure �� Initial query

Note that the query is over the relations sales�
store� and item� while the yearly sales view is only
over relations sales and store� We reorder the joins
in the query so that sales is joined �rst with store�
then with item� To facilitate join reordering� all GP s
are �rst pulled up above all joins in the query using
the rules for GP pull�up� In our example the single GP
is already above all joins� Next we use the GP push�
down rules from Section ��� to push the GP down past
the topmost join to the subtree that contains only the
sales and store relations� We refer to the subtree
rooted at this new GP as Q�

Before applying our algorithm we put the query
trees in the normal form described in Section ���� V
is normalized by pulling up the selection condition on

�It is possible for the subtree rooted at GPbot�Q� to return
additional tuples as mentioned in an earlier footnote�

store_id

item_id,store_id,year,
total=sum(sale_amt)

sales store

state="CA"

GP(V)

(V)
l

Figure �� Normalized view yearly sales

item_id

item

item_id,year,
X=sum(sale_amt)

year>= 1991,
 state="CA"

store_id
sales store

year,
 sum(X)

Q

GP(Q)

(Q)
l

category
 = "toy"

Figure �� Query tree after normalizing subtree Q

state above the join �Figure ��� Q is normalized by
pulling up the selection conditions on year and state
above the join� Figure � shows the entire query tree
after subtree Q has been normalized� Note that for our
example �l�Q� is year �� ���� AND state � �CA��
�l�V � is state � �CA�� and �h�Q� and �h�V � are both
empty�

We now apply the algorithm� Step � can be skipped
since �h�Q� and �h�V � are both empty�

All selection conditions in �l�V � are also in �l�Q�
so the test in step � succeeds�

item_id,year,
X=sum(Y)

year>= 1991,state="CA"

store_id
sales store

(Q)

store_id, item_id,year,
Y=sum(sale_amt)

GP (Q)bot

GP (Q)top

l

Figure
� Subqtree Q after splitting GP �Q�

Step ��a� identi�es that the groupby components of
GP �Q� �item id and year� are a proper subset of the
groupby components of GP �V � �item id� year� and
store id�� GP �Q� is split into GPtop�Q� and GPbot�Q�
as shown in Figure
�

The aggregate function Y � sum�sale amt�
of GPbot�Q� can be obtained from total �
sum�sale amt� of GP �V � so the test in step ��b� suc�

ceeds�

state="CA"

store_id
sales store

(Q)

store_id, item_id,year,
Y=sum(sale_amt)

GP (Q)bot

item_id,year,
X=sum(Y)

GP (Q)top

year>= 1991

l

Figure
� Pulling up year � �

� after splitting GP �Q�

Step � identi�es that the condition year �� ���� in
�l�Q� is not implied by �l�V �� Since year is a groupby
component of GPbot�Q� the condition can be pulled up
above GPbot�Q�� yielding the query tree in Figure
�

Both �h�Q� and �h�V � are empty so the test in step
� succeeds�

item_id

item

year, sum(X)

Q

year>= 1991

yearly_sales

GP (Q)top

category
= "toy"

item_id,year,
X=sum(total)

Figure ��� After replacing subtree Q with Q�

At this point the subtree rooted at GPbot�Q� is iden�
tical to V � so the algorithm derives Q� by replacing the
subtree rooted at GPbot�Q� with view yearly sales�
Figure �� shows the original query tree with subtree
Q replaced by Q��

item_id

year, sum(total)

item

year>= 1991

yearly_sales

category =
 "toy"

Figure ��� Optimizing after replacing Q with Q�

The resulting query tree can be further transformed�
For instance� the GP on the yearly sales material�
ized view can be pulled up and coalesced with the GP
at the top of the query tree to yield the tree shown in
Figure ��� �

� Related Work

Answering queries using materialized views has been
studied in 	LY
�� YL
�� LMSS
�� CKPS
��� However�
existing work has not considered queries that use ag�
gregation� Aggregates are an important extension to

the previously considered queries because aggregations
are at the heart of decision support and warehousing�

The query transformations we give unify and prop�
erly subsume the push�down transformations given
in 	CS
�� YL
�� and the pull�up transformations given
in 	Day
�� CS
��� In particular� we give new transfor�
mations for the following cases�

� We use certain arithmetic comparisons to create
aggregations in query trees that have none to start
with and delete aggregations in those that do�

� By treating duplicate�insensitive GP s di�er�
ently from duplicate�sensitive GP s� we can infer
more powerful transformation rules for duplicate�
insensitive GP s� For example� we can pull up two
duplicate�insensitive GP s simultaneously past a
cross product�

� We can introduce the count aggregation any�
where in a query tree using the expand operator�

� We can push aggregation down both branches of
a cross product�

� We can coalesce and split aggregations�

	CS
�� CS
�� discuss how to integrate aggregation
push�down and pull�up into a system�R style query
optimizer�

� Conclusions

In this paper we present a new framework for reasoning
with groupby and aggregation in SQL queries� We
generalize distinct projections to yield the notion of
�generalized projections� that capture groupby and
aggregation computations� GP s also capture arith�
metic comparison operators that are not expressible
as SQL aggregate computations� The GP framework
allows us to obtain many new and promising results�
In this paper� we discuss two sets of results that we
have obtained using the GP framework�

For aggregate queries we derive transformation
rules that unify and generalize previously proposed
transformation rules� The new rules we derive include
rules for coalescing multiple aggregate computations
into single computations� introducing and eliminating
aggregate computations using arithmetic inequality se�
lection conditions� and pushing aggregate computa�
tions down both branches of a cross product �or join��

We give an algorithm for a hitherto unsolved prob�
lem� namely� how to use materialized aggregate views
to help answer aggregate queries� This algorithm is
very useful for decision support applications in data
warehousing environments� The algorithm is devel�
oped using the new transformation rules that we ob�
tain using the GP framework�

In 	GHQ
�� we discuss how the transformations
given in section � can be used by query optimizers
to reduce the cost of query evaluation� We pick the

Starburst query optimizer 	PHH
�� and mention how
and where our transformations can be used� We also
brie�y discuss how the expand operator can be used
in query optimization when there are relations with
many duplicates�

Acknowledgements

We thank Prof� Je� Ullman and Prof� Jennifer Widom
for the many discussions on the ideas presented above�
We also thank Anand Rajaraman� Surajit Chaudhuri�
and Waqar Hasan for feedback�

References

�CS��� S� Chaudhuri and K� Shim� Including Group�By
in Query Optimization� In VLDB� �����

�CS��� S� Chaudhuri and K� Shim� Optimizing Complex
Queries	 A Unifying Approach� Technical Memo
HPL�DTD����
��

�CKPS��� S� Chaudhuri et al�� Query Optimization in the
presence of Materialized Views� In ICDE� �����

�Day�
� U� Dayal� Of Nests and Trees	 A Uni�ed
Approach to Processing Queries That Contain
Nested Subqueries� Aggregates� and Quanti�ers�
In VLDB� ���
� pages ��
�
��

�G��� G� Graefe� Query Evaluation Techniques for
Large Databases� In ACM Computing Surveys�
Vol�
�� No�
� June �����

�H��� R� Hackathorn� Data WAREHOUSING Ener�
gizes Your Enterprise� In DATAMATION� Feb
�� �����

�HG��� V� Harinarayan and A� Gupta� Generalized Pro�
jections	 A Powerful Query�Optimization Tech�
nique� Stanford Technical Report No� STAN�
CS�TN�������

�GHQ��� A� Gupta� V� Harinarayan
and D� Quass� Aggregate�Query Processing in
Data Warehousing Environments� http	��www�
db�stanford�edu�pub�harinarayan������GP
�ps

�LMSS��� A� Y� Levy et al�� Answering queries using
views� In PODS� �����

�PHH�
� H� Pirahesh� J� M� Hellerstein� and W� Hasan�
Extensible�Rule Based Query Rewrite Opti�
mization in Starburst� In SIGMOD� ���
�

�LY��� P� A� Larson and H�Z� Yang� Computing queries
from derived relations� In VLDB� �����

�RSSS��� K� A� Ross� D� Srivastava� P� J� Stuckey� and
S� Sudarshan� Foundations of Aggregation Con�
straints� In Principles and Practice of Constraint
Programming� Orcas Island� WA� �����

�YL�
� H� Z� Yang and P� A� Larson� Query transfor�
mation for PSJ�queries� In VLDB� ���
�

�YL��� W� P� Yan and P� A� Larson� Performing Group�
By Before Join� In ICDE� �����

