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Abstract—We present a multimodal volume visualization technique

that allows for simultaneous interactive exploration of multiple geophys-

ical surveys to aid in the detection and analysis of subsurface anomalies

at archaeological dig sites. An initial survey of archaeological students

revealed that our proposed technique is preferred for visualizing Ground

Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) over

existing techniques used in software packages such as Radan and Geoplot.

I. INTRODUCTION

Archaeologists use multiple geophysical surveys to noninvasively

measure different geophysical properties and identify buried features

at archaeological sites. Current software tools used to analyze and

visualize these surveys are targeted primarily towards a single sur-

vey type. In addition, these tools do not fully exploit the three-

dimensional nature of some of these datasets, and instead prefer to

treat them as two-dimensional slices. Previous work has show that the

integration of multiple surveys into a single visualization is a more

effective technique for the exploration of a particular site than any

one survey alone [5], [1], [3]. Additional work has also been done to

visualize these datasets in a three-dimensional space [6], [2], [4]. We

approach both issues within the framework of multimodal volume

visualization, which allows us to highlight even subtle features of

the subsurface.

II. METHODS

Our project is focused on the integrated visualization of two

particular types of geophysical surveys, GPR and ERI. Both are

collected as two-dimensional slices arranged on a grid. The slices

combine to form three-dimensional scalar volumes. Our general

approach was to use volumetric ray casting on modern graphics

hardware to render both the GPR and ERI volumes simultaneously.

The color at any given point in the space was assigned using the

values of each volume as indices into a multidimensional transfer

function.

In order to evaluate the effectiveness of our multimodal visual-

ization, we enlisted an undergraduate archaeology class. We pre-

sented them with data from the Catholme Ceremonial Complex, an

archaeological dig site in the United Kingdom. The students had

previously been investigating this site through the use of two software

applications, Radan and Geoplot. The central features of this site

include a ring ditch, postholes, and plow furrows [6]. We gave each

student several minutes to explore the site using our application. They

were able to control several aspects of the visualization including

the density, lighting, transfer function lookup, and scaling between

the two datasets. This allowed them to both highlight and diminish

different features within the volumes. After they were finished we

gave each student a short survey asking them to compare different

aspects of our tool with their current tools by rating statements on a

Likert scale.

III. RESULTS

When asked if the proposed software was more effective for

identifying archaeological features than their current software, 62%

Fig. 1. Combined GPR and ERI volume visualization. The diagonal blue
line is a medieval plow furrow.

felt that it was for GPR data and 50% felt that it was for ERI

data. When asked if the proposed software was more effective at

visualizing features, 87% felt that it was for GPR data and 62%

felt that it was for ERI data. All students felt that visualizing both

datasets simultaneously was more effective than visualizing either

dataset alone.

IV. CONCLUSION

The results from the survey are promising, but there are a number

of factors that may have influenced them. The students themselves

were not experts in the field and potentially lack experience in

analyzing these types of data. In addition, they were already familiar

with the test data using their current software. Finally the proposed

software had a user interface that was difficult to learn, which may

have hindered their ability to use the application. Overall there was

a great deal of enthusiasm among the students for continuing work

in this area.
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Visualization of Hyperspectral Images Through Interactive Sections

Ryan P. Cabeen, Department of Computer Science, Brown University

Introduction: The presented work consists of a novel

method for visualizing hyperspectral images and an eval-

uation with expert users in the context of minerology.

Advances in remote sensing and progress in scientific

missions to collect data of the Earth, Moon and Mars

are creating a need for useful visualization methods.

In particular, hyperspectral images are challenging

to visualize due to their high dimensionality, and the

presented method addresses this by reducing the spatial

data dimension to a path in the image and rendering a

visualization of the spectra along this path.

Method: Each hyperspectral image consists of a set of

images of the same scene taken at different wavelengths,

which commonly described as an image stack or cube.

Since the number of spectral measurements will typically

vastly outnumber the number of colors that can be sensed

by the human visual system, these images cannot be

visualized directly. A variety of tools exist for spectral di-

mensionality reduction, often by algebraic manipulation

of certain bands or decomposition of the entire spectrum

into several representitive groups. Spatial dimensionality

reduction techniques exist, but are limited to point

sampling and statistics on simple regions of interest.

The presented work is a spatial dimensionality reduc-

tion technique that interactively visualizes the full spec-

trum along a path, which can be imagined as a piecewise-

linear section through the image in the spatial domain.

The user chooses a series of points in spatial coordinates

to define the path, and the spectra at regular intervals of

this path are sampled. This collection of spectra is then

rendered as an image, where one dimension is the spec-

tral band, one dimension is the arclength along the path,

and the color is a mapping hyperspectral image intensi-

ties in a given band at a given arclength. The path and

color map can be edited interactively, and a traditional

point sampled spectrum is provided additionally. The

views of the spatial domain and section visualization are

linked to allow the user to track features across displays.

Implementation: The work is available as a cross-

platform and open-source software package written in

C++. Many image file formats are supported through

use of the Geospatial Data Abstraction Library (GDAL).

Qt 4 and Qt Widgets for Technical applications (Qwt)

are used for the user interface. The sampling of spectra

along the path is performed by parameterizing the curve

by arclength and bilinearly resampling at a rate of one

sample per pixel.

Results: The computational demands of curve editing,

visualization and sampling were found to be practical for

real-time applications, and the test data sets were found

to be compatible with the GDAL library.

The tool was used in an informal evaluation by mem-

bers of the Brown Department of Geology in the context

of minerological applications. They found the tool to be

generally useful and expect it to be used in the course

of research. In the context of minerology, the general

shape variation of thermal infrared spectra was found

to be readily visualized with the tool. However, the

benefits for near-infrared spectra were found to be fewer,

due to the localization of the absorbtion bands. Several

potential additions were suggested, including rendering

the spectra relative to a given spectrum, supporting

multiple paths, and overlaying an image that has been

segmented by spectral dimension reduction methods.

Discussion: Due to the nature of hyperspectral images,

there is no natural way of visualizing an entire dataset.

Consequently, a variety of methods must be employed.

The presented work aims to address the reduction of

spatial domain, allowing visualization of the full spec-

trum at more than a single point. In addition to a variety

of methods, there are many types of data and scenes

that influence the efficacy of a tool. Hence, a variety of

tools and an understanding of their relative strengths and

weaknesses is necessary to address each scenario.
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Abstract 

We conducted a study comparing the relative effects that 

covariational (COV) and mechanistic (MECH) explanations, 

and their corresponding diagrams (Euler and causal), have on 

peoples’ confidence ratings for hypothetical diagnoses. We 

empirically demonstrated that providing an explanation leads to 

more confidence than not providing one. In addition, the 

inclusion of Euler circles produced similar findings, where 

diagnoses with these diagrams obtained better ratings than 

those without them, though these ratings were not significantly 

higher than those for diagnoses using causal diagrams. 

 

1 Introduction 

COV explanations rely on statistical information that 

appeals to the co-occurrences of variables (e.g., Amy wrecked 
her car because she often gets into motor accidents), while 

MECH explanations provide a causal link that explains how one 

event entails another (e.g., Amy wrecked her car because she 

was drunk).   Here we compared these two types of explanations, 

along with their diagrammatic counterparts (Euler circles and 

causal diagrams) against each other and against a lack of 

explanation/diagram in order to assess the levels-of-confidence 

each evokes in a medical diagnosis task. We predicted that the 

provision of an explanation would result in increased 

confidence. 

 
2 Related Work 

The slow adoption of decision-support systems by doctors 

may be due to a lack of trust or confidence in proposed 

diagnoses. We hypothesize that this is due to issues with 

uncertainty visualization in tasks involving risk representation. 

The roles of various explanation types in expert systems have 

been addressed [1] but we are not aware of any work that 

compares explanation and diagram types in eliciting confidence.  

 

3 Experiment 

Design & Materials. Our design entails a 3-way, mixed 
model ANOVA. Both explanation (none, COV, MECH) and 

diagram (none, Euler diagram, causal diagram) were within 

subject, while the group variable likelihood (high, low) was 

between-subject. Variables were crossed to form 18 conditions. 

Each subject provided a confidence rating from 1 (not 

confident at all) to 5 (very confident) for each of 9 novel, 

hypothetical, counter-balanced diagnoses. For example, consider 

a high-likelihood COV explanation with no accompanying 

diagram: “A patient has red, square-like bumps on their 
body. They may or may not have Quandres’ Condition. 
Diagnosis: It is likely that the patient has Quandres’ 
Condition because people that have red, square-like 
bumps on their bodies usually have Quandres’ Condition.” 
 Participants & Methods. A total of 113 U.S. subjects 18 
years of age or older completed the study. Recruitment took 

place online at Mechanical Turk [2] where subjects were 

compensated $0.10 for their participation, which on average 

required less than three minutes. Subjects were randomly 

assigned to the high- or low-likelihood group. We removed 16 
people from analyses because they provided identical ratings 

across all items. Thus, 52 subjects constituted the low-likelihood 

group—45 for the high-likelihood group. 

Results. A main effect of group was found, with the high-

likelihood group showing more confidence than the low, p=.047. 

Overall, providing no explanation resulted in less confidence 

than providing COV or MECH ones, p<.0001. Providing no 

diagram led to lower ratings than providing Euler diagrams 

(p=.001), but not causal ones. Examining the cases in which the 

explanation type and diagram type match reveals that ratings for 

the no explanation/diagram condition (M=2.84; SD=0.13) were 

significantly smaller than those for the COV/Euler condition 
(M=3.30; SD=0.10; p<.0001) and the MECH/causal condition 

(M=3.28; SD=0.12; p=0.001). The difference between the latter 

two conditions was not significant, p=.093. 

 

!

Figure 1. Ratings for all 18 conditions. 

 

4 Discussion 

Though a group effect was not part of our prediction, we 
report it nonetheless as it implies that confidence may be related 

to posterior probabilities in diagnosis. Notably, it seems that 

providing a causal diagram for an unlikely diagnosis actually 

hampers confidence. In general however, providing an 

explanation (or even just an Euler diagram) greatly increases 

confidence. The implications of these findings are important not 

only for medicine, but for other areas of risk analysis as well, 

such as public policy and scientific reasoning. 
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Mechanistic, covariational explanations and diagrams in medical diagnosis 

Gideon Goldin – Diem Tran – Steven Sloman. Brown University – Fall 2010 

Abstract – We hypothesize that 2 different kinds of explanations and diagrams will result in higher confidence in making medical diagnoses. 

We conduct a user study to justify the hypotheses. Results from the study show significant difference in confidence when users are presented 

with explanations and diagrams versus none of them. 

 

1. BACKGROUND 

In medical diagnosis, uncertainty occurs due to the natural 

complexity of diseases and symptoms. Several expert systems 

have been developed to help doctors in making rational diagnosis 

by representing medical data in different formats, and several 

researches have proved that different representation yields 

different judgements [2]. We focus on 2 types of explanations 

when describing uncertainty: covariational and mechanistic. The 

corresponding diagrams for those 2 types are Euler and causal 

diagrams. 

Covariational explanation involves the coexistence of a 

symptom and a disease, with some probability. For example: If 

90% of time a person eats cheese and gets a stomachache, he is 

likely to be lactose intolerant. 

Mechanistic explanation describes the mechanism behind the 

formation of a symptom caused by a disease. For example: 

Patients with Alzheimer's disease have dementia because of 

development of abnormal features harmful to the brain.  

a. Contribution 

Effects of certain types of explanations on medical diagnosis are 

still in question, as physicians are hesitant to adopt expert systems 

[4]. We investigate 2 discussed explanations by conducting a user 

study. Results from the study provides basis to deeper research in 

the field, which promises to help doctor in making medical 

decisions.  

b. Hypotheses 

Hypothesis 1: Users give higher confidence ratings for diagnoses 

with explanations and diagrams versus the control ones. 

Hypothesis 2: Mechanistic explanations with causal diagrams 

yield higher confidence than for covariational explanations with 

Euler circles, as they are psychologically natural [1]. 

 

2. STUDY DESIGN 

!The study is a 2x3x3 Mixed Model Design: High / Low 

probability (Between subjects) x Explanation Type x Diagram 

Type (Within Subjects) (Figure 2). We use made-up scenarios with 

ordinary subjects 

on Mechanical 

Turk. High and low 

probability 

scenarios are 

divided equally 

among subjects.  

For each condition, 

a subject uses 5-

points Likert scale 

to rate his 

confidence on the 

explanation.  
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3. RESULTS 

N = 97 after we filtered responses take less than 1 minute or have 

all same answers. Figure 1 shows the mean responses. Figure 3 

shows corresponding significant values. α = 0.05. 

 

Diagram Types None vs. 

Euler 

None vs. 

Causal 

Euler vs. 

Causal 

Low Prob. 0.123 0.017 0.003 

High Prob. 0.001 0.03 0.132 

 

Explanation 

Types 

Control vs. 

Cov 

Control vs. 

Mech 

Cov vs. 

Mech 

Low Prob. 0.05 0.012 0.365 

High Prob, 0 0.001 0.275 
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High probability scenarios result in more confidence than low 

ones, with p = 0.047.  Moreover, comparing control conditions 

(cn) versus covariational explanations– Euler diagrams (ve) yields 

significant difference (p = 0.005 for low and p = 0.001 for high 

probability).  Similarly, comparing control conditions  - Euler 

circles (ce) versus covariational explanations– causal (vc) 

diagrams yield significant difference (p = 0.041 for low and p = 

0.036 for high probability). The latter conditions are higher in both 

cases. 

 

4. DISCUSSION 

From obtained results, we accept hypothesis 1 and reject 

hypothesis 2. In other words, users are more confident in 

diagnoses with explanations and diagrams than the ones with none 

of them. Rejection of hypothesis 2 might be due to a fact that 

people are more comfortable with covariational explanations [3].  

There are factors that this study did not consider: demographic 

analysis, difference between probabilities and natural frequencies, 

real medical situations and doctors as study subjects. We believe 

by taking into account those factors, the study should produce 

different outcomes.   
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ABSTRACT

We present a system for an automated analysis of individ-
ual peak quality in selected ion chromatograms (SIC) that
allows real-time processing of data. We apply curve fitting
techniques to individual peaks in the SIC and use root mean
square deviation (RMSD) as a goodness of fit metric, which
we call PeakScore. This automated quantitation of peak
quality allows researchers to analyze the data that is being
collected which is a significant speedup over the previous
process of SIC peak analysis, manual inspection using ex-
pert user intuition. We allow processing in batch mode using
a command line utility or individually using an integrated
GUI.

1. BACKGROUND

In recent years, proteomics has emerged as a technique for
better understanding the metabolic pathways of the cell,
to which proteins are essential. A large part of proteomics
research is based around the technique of mass spectrometry
(MS), a tool for measuring the molecular mass of molecules
in a sample. One of the interpretations of the MS data is the
selected ion chromatogram (SIC). The SIC is a plot of time
vs. intensity for a given m/z (mass over ion charge) value.
In the chromatograms, the data quality varies greatly due
to uncontrollable external factors. Currently, users rely on
expert intuition to determine whether a peak is “good” or
“bad” and whether or not the peak is comparable with other
experiments. Because of the massive quantities of MS data
being produced in recent years, this manual inspection of
SIC peaks is no longer feasible. An automated quantitation
method is needed to efficiently and accurately model peak
quality. Our system provides both a metric that closely
models expert user intuition of peak quality and can handle
the massive datasets in real-time.

2. METHODS

Our system uses several open-source APIs in the data con-
version pipeline. The initial format is the Thermo RAW

CS237: Interdisciplinary Scientific Visualization 2010

RAW File Data Conversion MySQL

Peak Analysis MySQL

GUI

Figure 1: A diagram of the PeakScore Pipeline.

file, a propietarty binary format. We use the ProteoWizard
[1] tool to convert from RAW to mzML. To convert from
mzML to text, we use the OpenMS [2] API. Finally, we load
the text data into a MySQL database with a Java program
using JDBC. For the PeakScore metric, we applied curve-
fitting techniques and measured the goodness of fit of the
resulting curve. We tried fitting several different curves to
the raw data points, and found that a gaussian best mod-
eled the ideal peaks. We used the SciPy package in Python
for all the curve-fitting and goodness-of-fit analysis. Finally,
in the interactive GUI, the user can specify a m/z value of
interest, which will then be loaded from the database and
analyzed with the PeakScore metric. Similarly, a command
line tool allows batch processing of multiple SICs, indepen-
dent of the GUI. The output of this batch processing tool is
automatically stored in a MySQL database for use later in
the protein analysis pipeline.

3. CONCLUSIONS

Our system received very positive reviews from our collabo-
rators. Of particular importance was that our system could
pipeline data from RAW file to visual analysis in real time
(i.e. less time than it took to run the experiment). Users
indicated that the PeakScore metric closely modeled their
expert intuition of the underlying peak quality. Thus, our
system has improved the efficiency of the data analysis while
maintaining correctness with respect to manual peak inspec-
tion. This automation of the analysis process will allow re-
searchers to analyze their data on scale with the data being
generated.

4. REFERENCES
[1] D. Kessner. Proteowizard: Open source software for

rapid proteomics tools development. Bioinformatics,
24(21):2534–2536, 2008.

[2] O. Kohlbacher and K. Reinert. OpenMS and TOPP:
Open source software for lc-ms data analysis. Proteome

Bioinformatics, 604(2):chap. 14, 2009.
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Abstract

We devloped a system to assist in interactively quan-
titating peak quality for selected ion chromatograms
(SICs). This allows for faster, or even automated
SIC quality quantitation, which in turn allows bi-
ologists to more easily approach large datasets in
contrast to slow manual classification relying on ex-
pert labor. Our system works end-to-end, from the
raw data of the mass-spectrometer to a visualization
(or plain output) of a peak quality metric.

1 Background

This work aims to ease and automate this processes
of assesing SIC quality by augmenting the SIC dis-
play with an automatic quality metric and by pro-
viding a more intuitive interface to do so. As pro-
teomics has become increasingly important in biol-
ogy scientists have worked to automate the process
of measuring protein expression. The most effective
contemporary method is through mass spectrome-
try, where proteins are enzymatically broken down
into their component peptides, tagged with ions, and
sampled. The result of this technique is effectively
a three-dimensional dataset: time (retention-time),
intensity, and mass-charge ratio (m/z). A SIC is a
plot of intensity over time for a given (small; merely
to account for measurement error) range of mass-
charge ratio, and it represents the expression of a
given peptide over time. A set of SICs can then
be used to probabalistically reconstruct the proteins
they came from in the biological sample. SICs are
not entirely accurate themselves, however, and cur-
rent processes rely on human intuition to provide
quality assesments for peptide presence. This work
replaces the element of intuition with an automatic

∗Brown University, debrabant@cs.brown.edu
†Brown University, sbirch@cs.brown.edu
‡Brown University, as@brown.edu

process.

2 Implementation

Our system is implemented in the following phases:

1. Conversion — We use the open-source Prote-
oWizard to convert vendor-specific raw mass-
spectrometric data to the mzML standard.

2. Data extraction — We use the open-source
OpenMS library to interpret the mzML and
feed the data to a relational database.

3. Peak extraction — We extract the appropri-
ate chromatogram from the database and find
the nearest peak to the user-supplied retention-
time1 using a continuous wavelet transform, a
peak identification algorithm.

4. Peak quantitation — We use the Levenberg-
Marquardt algorithm to fit a three-parameter
(µ, σ, and a scaling factor) Gaussian curve to
the extracted peak range, and combine multi-
ple factors to give a quality metric.

5. Visualization — The user is presented with
an interface to annotate SIC peaks given the
SIC, peak retention-time, the fit curve, and the
quality-of-fit metric.

3 Conclusion

Our system allows for the automation of a key pro-
cess in the mass-spectrometry pipeline, which al-
lows scientists to more rapidly and objectively tackle
larger datasets which weren’t assailable before. Our
collaborator was very enthusiastic about our results
because it allowed him to process unprecedented
amounts of data while integrating into his existing
pipeline.

1This is supplied separately by the mass-spectrometer.
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Interactive 2D Maps for Functional Brain Connectivity Queries
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Figure 1: Interactive map of the efferent projections from the primary
motor area (MOp) in the rat brain.

ABSTRACT

We present and evaluate a method for visualizing directed neuron
projections in the brain using interactive maps of landmark brain
parts. Our method improves on existing brain query tools by com-
positing projections onto a reference map of brain structures; sci-
entists familiar with brain anatomy may leverage this spatial orga-
nization to execute and verify queries more quickly. A quantitative
evaluation suggests that our interactive maps may be faster at some
types of brain projections queries than non-visual query tools with-
out sacrificing accuracy, and that maps may be more enjoyable and
easy to use than non-visual tools.

1 BACKGROUND

Researchers in neural circuitry are concerned with understanding
connections between spatially distributed and functionally differ-
entiated parts of the brain [1]. Insights from these connections may
suggest clinical applications and research directions for neurolog-
ical disorders. The scale and complexity of available connectivity
data make it difficult to gain insight from individual, textual queries
– the standard interface to circuitry databases in current tools like
the Brain Architecture Management System (BAMS) [2]. Recently,
Bruckner et al. [3] presented a visual query system for the fruit
fly brain, but the tool focuses on queries for volume sections in
the brain rather than representations of relationships between these
parts. Our map method, on the other hand, visually overlays func-
tional structure on top of brain parts that serve as map landmarks.

2 METHODS

We used Java and the Prefuse toolkit to manage and draw
projection graphs. Test data included projections from the
Swanson-1998 rat brain nomenclature available in XML on-
line (http://brancusi.usc.edu/bkms/), which we rewrote into the
GraphML format for use with graph exploration toolkits. The brain
slice map background is available online (http://brainmaps.org). In
our tool, users can interactively navigate parts of interest and tog-
gle incoming and outgoing neural projections as directed edges be-
tween landmark nodes on the map.

2.1 User Study

We evaluated four computer science graduate students on accuracy
and completion time for projection query tasks using both our map
tool and BAMS. Each subject received approximately 10 minutes of

∗email: steveg@cs.brown.edu
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Figure 2: Results of query completion time (left) and accuracy (right)
on prepared sets of query tasks for interactive maps and BAMS. Error
bars show ± 1 standard deviation.

training with both tools. Subjects were asked to solve two tasks as
quickly as possible on each tool, each with a different set of queries
to avoid ordering bias via a Latin squares design. Tasks included:

T1: Projection existence. We asked users to answer 8 questions
with the form “Does part X project to part Y?” and “Does X
receive a projection from part Z?”

T2: Projection density estimation. We asked users to order sets
of brain parts by the number of efferent projections of each.
Subjects were shown 3 sets of varying difficulty, containing
3 brain parts each. For accuracy, subjects earned a point for
each pair in the set that was correctly ordered (3 possible).

Finally, we collected anecdotal feedback and had subjects rate each
tool’s usability and enjoyability on a Likert scale of 1 to 5.

3 RESULTS AND CONCLUSIONS

Results from our user study are shown in Figure 2. Users were sig-
nificantly faster with the map tool than with BAMS on the density
estimation task without significantly sacrificing accuracy. This may
be due to users preferring a counting strategy with BAMS’s result
lists, which is more difficult on the map, where faster estimation
techniques may have been used. On the projection existence task,
users were on average faster using BAMS, though not significantly.
Some users noted that browser proficiency allowed them to navi-
gate HTML results faster than in the map tool. Many strategies by
users in BAMS could be enabled by further feature development in
the map interface.

We were encouraged that surveyed users found our map, on av-
erage, easier and more fun to use than BAMS. We believe a hybrid
approach with textual and visual result-sets may help users perform
faster and more accurately on each query task.
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