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ABSTRACT

Past research has been concerned with the potential of em-
bedding deterministic pricing algorithms into pricebots: soft-
ware agents used by on-line sellers to automatically price
Internet goods. In this work, probabilistic pricing algo-
rithms based on no-regret learning are explored, in both
high-information and low-information settings. It is shown
via simulations that the long-run empirical frequencies of
prices in a market of no-regret pricebots can converge to
equilibria arbitrarily close to an asymmetric Nash equilib-
rium; however, instantaneous price distributions need not
converge.
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1. INTRODUCTION

Pricebots, agents that employ automated pricing algo-
rithms, are beginning to appear on the Internet. An early
example resides at buy.com. This agent monitors its primary
competitors’ prices and then automatically undercuts the
lowest. Driven by the ever-growing use of shopbots, which
enhance buyer price sensitivity, we anticipate a proliferation
of Internet pricebots, potentially generating complex price
dynamics. This paper is concerned with the dynamics of
interaction among pricebot algorithms. Ultimately, this line
of research aims to identify those pricebot algorithms that
are most likely to be profitable, from both an individual and
a collective standpoint.

Recently, a simple model of shopbots and pricebots [7] was
introduced, and a variety of (mostly deterministic) pricing
algorithms were simulated [8]. Motivated in part by a game-
theoretic analysis of this model which yields only mixed-
strategy Nash equilibria, this paper explores the use of prob-
abilistic pricing based on no-regret learning [4, 5], in various
informational settings. Among the deterministic algorithms
studied previously, one requires complete information about
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buyer demand and competitors’ prices, while a second de-
pends only on the individual pricebot’s previous history of
prices and profits. One of the early conclusions was that
knowledge is power—pricebots that have access to and make
use of more information earn greater profits. In the present
work it is demonstrated that probabilistic pricebots with
low-informational requirements can earn profits comparable
to probabilistic pricebots with high-informational require-
ments, and moreover, the profit earned correspond to the
game-theoretic equilibrium values.

This paper is organized as follows. In the next section,
we present our model of an economy consisting of shopbots
and pricebots. This model is analyzed from a game-theoretic
point of view in Section 3. In Section 4, we discuss both the
high-information and low-information variants of the price-
setting strategies of interest: no internal regret learning and
no external regret learning. Section 5 describes simulations
of collections of pricebots that implement these strategies,
in both informed and naive settings. We find that no-regret
pricebots can converge to an equilibrium that is arbitrarily
close to Nash equilibrium, although instantaneous price dis-
tributions need not converge. Finally, Section 6 is the con-
cluding section, in which we discuss the profitability of de-
terministic pricing algorithms in comparison with no-regret
learning in both high- and low-information settings.

2. MODEL

In this section, we present a summary of the model of
shopbots and pricebots; for details, see [7]. Consider an
economy in which there is a single homogeneous good that
is offered for sale by S sellers and of interest to B buyers,
with B > S. Each buyer b generates purchase orders at
random times, with rate ps, while each seller s reconsiders
(and potentially resets) its price ps at random times, with
rate ps. The value of the good to buyer b is vy, and the cost
of production for seller s is cs.

A buyer b’s utility for the good is a function of price. In
particular, up(p) = vy — p, if p < vy, and up(p) = 0, other-
wise. In other words, a buyer obtains positive utility if and
only if the seller’s price is less than the buyer’s valuation of
the good; otherwise, the buyer’s utility is zero. We assume
buyers consider the prices offered by sellers using one of the
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charged by that seller is less than the buyer’s valuation. This
type of buyer represents those who are either uninformed, or
interested in product characteristics other than price: e.g.,
quality, convenience. Fraction w4 of buyers employs the
any seller strategy, while fraction wp behaves as bargain
hunters, with wa + wp = 1.

A seller s’s expected profit per unit time 75 is a function
of the price vector p, as follows: 7s(p) = (ps — ¢s)Ds(p),
where D, (p) is the rate of demand for the good produced by
seller s. This rate of demand is determined by the overall
buyer rate of demand, the likelihood of the buyers select-
ing seller s as their potential seller, and the likelihood that
seller s’s price ps does not exceed the buyer’s valuation v. If
p =, Pb, and if h(P) denotes the probability that seller s
is selected, while g(ps) denotes the fraction of buyers whose
valuations satisfy v, > ps, then Ds(p) = pBhs(p)g(ps).
Without loss of generality, define the time scale s.t. pB = 1.
Now 75 (p) is interpreted as the expected profit for seller s
per unit sold systemwide. Moreover, seller s’s profit is such

that 75 (p) = (ps — ¢s)hs (P)g(ps)-

3. ANALYSIS

We now present a game-theoretic analysis of the prescribed
model viewed as a one-shot game!, assuming cs = ¢, for all
sellers s, and v, = v, for all buyers b.? Recall that B >> S;
in particular, the number of buyers is assumed to be very
large, while the number of sellers is a good deal smaller. In
accordance with this assumption, it is reasonable to study
the strategic decision-making of the sellers alone, since their
relatively small number suggests that the behavior of indi-
vidual sellers indeed influences market dynamics, whereas
the large number of buyers renders the effects of individ-
ual buyers’ actions negligible.® Assuming the distribution
of buyer behavior is exogenously determined and fixed, and
that sellers are profit maximizers, we derive the symmetric
mixed strategy Nash equilibrium of the sellers’ (and later,
pricebots’) game, and then we derive an asymmetric variant.

A Nash equilibrium is a vector of prices at which sellers
maximize individual profits and from which they have no in-
centive to deviate. [11]. There are no pure strategy (i.e., de-
terministic) Nash equilibrium in the prescribed model when-
ever 0 < wa < 1 and the price quantum is sufficiently
small [7]. There do exist mixed strategy Nash equilibria,
however, the symmetric variety of which we derive presently.

!The analysis presented in this section applies to the one-
shot version of our model, while the simulation results re-
ported in Section 5 focus on repeated (asynchronous) set-
tings. We consider the Nash equilibrium of the one-shot
game, rather than its iterated counterpart, for at least two
reasons: (i) the Nash equilibrium of the stage game played
repeatedly is in fact a Nash equilibrium of the repeated
game; (ii) the Folk Theorem of repeated game theory states
that virtually all payoffs in a repeated game correspond to a
Nash equilibrium, for sufficiently large values of the discount
parameter. We isolate the stage game Nash equilibrium as
an equilibrium of particular interest.

2 Assuming uniform valuations is tantamount to assuming
g(p) = O(v — p), the step function defined as follows:

_f1 ifp<u
O —p)= { 0 otherwise. (1)

3Nonetheless, in a related study we consider endogenous
buyer, as well as seller, decisions.

Let f(p) denote the probability density function accord-
ing to which all sellers set their equilibrium prices, and let
F(p) be the corresponding cumulative distribution function
(CDF). In this stochastic setting, the event that any seller is
the low-priced seller occurs with probability [1 — F(p)]®~*.
We now obtain an expression for expected seller demand:
h(p) = wa(1/S) + ws[l — F(p)]°~}, for p < v. Note that
h(p) is expressed as a function of scalar price p, given that
probability distribution F'(p) describes the other sellers’ ex-
pected prices. Profits w(p) = (p—c)h(p), for all prices p < v.

A Nash equilibrium in mixed strategies requires that (i)
sellers maximize individual profits, given other sellers’ pric-
ing profiles, so as there is no incentive to deviate, and (ii)
all prices assigned positive probability yield equal profits
otherwise it would not be optimal to randomize. To eval-
uate those profits, let p = v. Buyers are willing to pay as
much as v, but no more; thus, F(v) = 1. It follows that
h(v) = wa(1/S), and moreover that m(v) = wa(1/S)(v —¢)
(this implies, incidentally, that total profits are wa (v — c)).
Setting w(p) = m(v) and solving for F(p) yields:

N (COIC]

which implicitly defines p and F'(p) in terms of one another.
F(p) is only valid in the range [0,1]. As noted previously,
the upper boundary of F(p) occurs at p = v; the lower
boundary is computed by setting F(p) = 0 in Eq. 2:

« def . wa(v—c) (3)

p - wa +weS

Thus, Eq. 2 is valid in the range p* < p < v. A similar
derivation of the symmetric mixed strategy equilibrium ap-
pears in Varian [14]. Greenwald, et al. [8] present various
generalizations.

In addition to the symmetric Nash equilibrium, asymmet-
ric Nash equilibria exist, prescribed by the following struc-
ture.? For 2 < ¢ < S, S—o sellers deterministically set their
prices to the monopolistic price v, while the remaining o sell-
ers employ a mixed strategy described by the cumulative dis-
tribution function F, (p), derived as follows. In an asymmet-
ric setting, the event that one of the nondeterministic sellers
is lowest-priced occurs with probability [1 — F, (p)]°~"'. Now
expected demand for the o sellers pricing according to mixed
strategies is given by: h(p) = wa(1/S) + wg[l — F,(p)]” %
Following the argument given in the symmetric case, we set
m(p) = (p — ¢)h(p) equal to equilibrium profits m(v) and
solve for F,(p), which yields the following mixed strategy
distribution (see Fig. 1):

1

e () (2] o

4. LEARNING

When the widespread adoption of shopbots by buyers
forces sellers to become more competitive, sellers may well
respond by creating pricebots that automatically set prices
so as to maximize profitability. It seems unrealistic, how-
ever, to expect that pricebots will simply compute a Nash
equilibrium and fix prices accordingly. The real business

“The symmetric equilibrium is a special case of the asym-
metric one in which S =o.
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Figure 1: CDF's for mixed-strategy components of
asymmetric Nash equilibrium price distribution, for
values of 0 = 2,3,4,5; 0 = 5 is the symmetric solution.

world is fraught with uncertainties that undermine the valid-
ity of game-theoretic analyses: sellers lack perfect knowledge
of buyer demands, and they have an incomplete understand-
ing of their competitors’ strategies. In order to be deemed
profitable, pricebots will need to learn from and adapt to
changing market conditions.

In this paper, we study adaptive pricebot algorithms based
on variants of no-regret learning—specifically, no external [5]
and no internal regret [4]—emphasizing the differing levels
of information on which the algorithms depend. An agent
algorithm that requires as input the relevant profits at all
its possible price points (including the expected profits that
would have been obtained by prices that are not set) are
referred to as informed algorithms. Those algorithms which
operate in the absence of any information other than that
which pertains to the actual set price are referred to as
natve algorithms. We also consider responsive variants of
(both the informed and naive) no-regret learning algorithms,
which learn based on exponentially decayed histories, and
are therefore more apt to respond quickly to changes in the
environment.

4.1 Definitions

Before describing our simulation results, we define no ex-
ternal and no internal regret, and describe the no-regret al-
gorithms of interest. This description is presented in generic
game-theoretic terms, from the point of view of an individ-
ual player, as if that player were playing a repeated game
I'* against nature.® From this perspective, let 7! denote
the payoffs obtained by the player of interest at time ¢ via
strategy i. (Let j, as well as i, range over the set of pure
strategies M.) Mixed strategy weights at time ¢ are given by
the probability vector ¢' = (¢f)i1<i<m, where m = |M|. The
expected payoffs of mixed strategy ¢" are denoted E[r.].

Now let A be the subset of the history of repeated game I
that is known to the agent at time ¢. Let H® denote the set of
all such histories of length ¢, and let H = J° H'. A learning
algorithm A isamap A : H — @, where @ is the agent’s set
of mixed strategies. The agent’s mixed strategy at time ¢+1
is contingent on the elements of the history known through
time ¢: i.e., ¢""' = A(h'). The no-regret learning algorithms
of interest in this study depend only on historic information
regarding the payoffs obtained through time ¢, unlike for ex-

®Nature is taken to be a conglomeration of all opponents.

ample fictitious play, which explicitly depends on the strate-
gies of all players as well as all payoffs. For an informed
player, a history h' has the form (i, (x})),..., (i, (x})),
where (77 ) is the vector of informed payoffs at time 1 < 7 <
t for all strategies i. For a naive player, a history h¢ has the
form (j', 71';1>, (g W;¢>, which records only the payoffs
of the strategy j” that is played at time 1 < 7 < ¢t.

The regret p the player feels for playing strategy ¢ rather
than strategy j is simply the difference in payoffs obtained
by these strategies at time t: p(j,i) = m} — 7{. Suppose
a player’s learning algorithm prescribes that he play mixed
strategy ¢’ at time t. Then the regret the player feels toward
strategy 7 is the difference between the expected payoffs of
strategy ¢' and the payoffs of strategy j, namely: p(j,¢") =
7t — Elr}]. A learning algorithm A is said to exhibit e-no
external regret iff for all histories hf, for all strategies j,

T
Jim_ sup % ;p(j, q')<e (5)
where ¢! = A(R') for all 1 < ¢t < T. In words, the limit of the
sequence of average regrets between the player’s sequence of
mixed strategies and all possible fixed alternatives is less
than e. If the algorithm exhibits e-no external regret for all
€ > 0, then it is said to exhibit no external regret.

No internal regret can be understood in terms of con-
ditional regrets. Given an algorithm A that generates se-
quence of plays {i'}, the conditional regret R” (5, 1) the player
feels toward strategy j conditioned on strategy i is the sum
of the regrets at all times t that the player plays strategy i:

RiGyi) = > pli) (6)

{1<t<T|it =i}

A learning algorithm exhibits no internal regret iff in the
limit it yields no conditional regrets on average. Expressed
in terms of expectation, algorithm A satisfies no internal
regret iff for all histories h’, strategies 4, j, € > 0,

T

i sup S diplii) < ()
where ¢* = A(h?) for all 1 <t < T. Tt is well-known that
an algorithm satisfies the no internal regret property iff its
empirical distribution of play converges to correlated equi-
librium (see, for example, Foster and Vohra [4] and Hart
and Mas-Colell [10]). Moreover, no internal regret implies
no external regret, and these two properties are equivalent
in two strategy games.

4.2 No External Regret Learning

Freund and Schapire [5] propose an algorithm (NER) that
achieves no external regret via a multiplicative updating
scheme. Their algorithm is dependent on the cumulative
payoffs achieved by all strategies, including the surmised
payoffs of strategies which are not in fact played. Let p!
denote the cumulative payoffs obtained through time ¢ via
strategy i: i.e., P} = Zizl mi. Now the weight assigned to
strategy ¢ at time t + 1, for a > 0, is given by:

(4™
TS At ®

The naive variant of NER, namely NER. is obtained by (i)
imposing an artificial lower bound on the probability with



which strategies are played, in order to ensure that the
space of strategies is adequately explored, and (ii) utilizing
estimates of cumulative payoffs that depend only on pay-
offs obtained by strategies that are actually employed. For
€ € (0,1], let ¢! = (1 — €)¢! + ¢/m be the weight assigned by
NER. to strategy i, and let #! = 1ix!/§t.% Estimated cumu-
lative payoffs (notation P}) are given by P; = S0 _| #7. NER.
updates weights according to the update rule given in Eq. 8,
but P! is used in place of P!. NER. is due to Auer, et al. [1].
NER can be also made responsive via exponential smooth-
ing. Given « € (0,1], NER, is defined by substituting P} into
Eq. 8, where in informed settings and naive settings respec-
tlvely, Pt = (1—~) Bl 4+ 7! and PIT! = (1 —~)B! + 7L

4.3 No Internal Regret Learning

We now discuss no internal regret learning (NIR), due to
Foster and Vohra [4], and a simple implementation due to
Hart and Mas-Colell [10]. The regret felt by a player at
time t is formulated as the difference between the payoffs
obtained by utilizing the player’s strategy of choice, say i,
and the payoffs that could have been achieved had strategy
j been played instead: TZH] =gq; (7r — t). The cumulative
regret Rl—)j is the summation of regrets from i to j through
time ¢: Rz—»] = Zi:l ri;. Now internal regret is defined
as follows: IR}{,; = (Ri,;)*, where X* = max{X,0}. If
the regret for having played strategy j rather than strategy
i is significant, then the NIR procedure for updating weights
increases the probability of playing strategy i. According to
Hart and Mas-Colell, if strategy ¢ is played at time ¢,

t+1 Z qt+1 (9)

J#

1
¢;"'=-mri,; and
u

where p > (m — 1) maxjen IR ,; is a normalizing term.

Like NER, NIR depends on complete payoff information at
all times ¢, including information that pertains to strategies
that are not employed at time ¢. NIR., which is applicable in
naive settings, depends on an estimate of internal regret that
is based only on the payoffs obtained by the strategies that
are actually played, and the approximate weights associated
with those strategies. An estimated measure of expected re-
gret P, . is glven by 7 TZH] ql(wt—w )= (4 / )1t7r —1ixt,
where ¢; and ¢ q] are defined as in NER.. NIR updates welghts
using Eq. 9, with estimated cumulative internal regret 1k}_, ; i
based on R{_,;, in place of IR!, ;.

No internal regret learning can also be made responsive
(NIRy) in both informed and naive cases via an exponen-
tial smoothing of regret. Given v € (0,1], exponentially
smoothed cumulative regret, denoted f{f%]—, is computed in
terms of either rfﬁj or ffﬁj, depending on whether the set-

St
ting is informed or naive: i.e., R;5; = (1— )R Rivj +ri,;, or

~t+1 ~t
&% = (1—7)Ri_; + 7. NIRy then uses R}_,; = (Ri_,;)"

as its measure of internal regret.

5. SIMULATIONS

This section describes simulations of markets in which
anywhere from 2 to 5 adaptive pricebots employ various
mixtures of no regret pricing strategies. At each time step,
a pricebot, say s, is randomly selected and given the oppor-
tunity to set its price, which it does by generating a price

61! is the indicator function, which has value 1 if strategy i
is employed at time ¢, and 0 otherwise.

according its current price distribution. Profits are then
computed for all pricebots. The profits for pricebot s are
taken to be expected profits,” given current price vector p:

() = | & + On50) (ps —c) (10

wpB

7s(p) + 1
where s (p) is the number of competitors’ prices that are less
than ps and 7,(p) denotes the number that are exactly equal
to ps. Given its profits, pricebot s uses its respective learn-
ing algorithm to update its price distribution. At this point
in our simulations, we measure the Kolmogorov-Smirnov (K-
S) distance e between the symmetric Nash equilibrium CDF
and the empirical CDF, computed as the average of the ab-
solute differences between these CDF's over all m prices p;:

1 m
= m Z|FsymNash(pi) — Femp(ps)] (11)

i=1

Strictly speaking, Eq. 10 holds only if p; does not exceed
the buyers’ valuation v; otherwise the seller’s profit is zero.
For simulation purposes, this property was ensured by con-
straining the pricebots to set their prices among a discrete
set of cardinality m = 51, spaced equally in the interval
[¢, v], where ¢ = 0.5 and v = 1. The mixture of buyer types
was set at wa = wp = 0.5. Simulations were iterated for
100 million time steps for NIR pricebots and 10 million time
steps for NER pricebots.

5.1 NIR Pricebots

We now present simulation results for no internal regret
learning. Our main observation is that NIR pricebots, both
informed and naive, converge to Nash equilibrium. This is
not entirely surprising, as NIR is known to converge within
the set of correlated equilibria [4], of which Nash equilibria
form a (proper) subset. Furthermore, NIR has previously
been observed to converge to Nash, rather than correlated,
equilibria in games with small numbers of strategies [6]. In
the present model, where the number of strategies varies
between 51 and 501, we again find that NIR converges to
Nash equilibrium. The detailed nature of the convergence,
however, is quite different between NIR and NIRe.

First, we consider informed NIR pricebots. In simulations
of 2 to 5 NIR pricebots, the empirical price distributions
have been observed to evolve to a mixed strategy Nash
equilibrium—usually an asymmetric one. A typical example
involving 3 informed NIR, pricebots is shown in Fig. 2a. In
this experiment, the responsiveness parameter was set to a
relatively small value, ¥ = 1075; the results are qualitatively
similar for the ordinary non-responsive form of the learning
algorithm: i.e., v = 0. The long-run cumulative empiri-
cal probability distributions coincide almost perfectly with
the theoretical asymmetric Nash equilibrium for o = 2: one
pricebot always sets its price to 1, while the other 2 play the
mixed-strategy equilibrium computed in Eq. 4 with o = 2.

Figs. 2b and 2c reveal that the convergence path to the
asymmetric Nash equilibrium is not as regular as one might
suppose: the system experiences a punctuated equilibrium.

"We have also experimented with profits based on simulated
buyer purchases, which introduced noise into the profit func-
tion. While the amplitude of the noise decreases as the size
of the buyer population increases, such increases also in-
crease simulation times. Expected profits enabled us to ex-
plore the behavior in the limit of infinitely large buyer pop-
ulations without suffering inordinately long running times.
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Fig. 2b displays the K-S distance between the symmetric
Nash equilibrium CDF and the empirical CDF. By about
time 3 million, the empirical price distributions for the price-
bots begin to closely approximate the symmetric Nash equi-
librium (o = 3). This behavior continues until about time
30.92 million, with the K-S distance hovering close to 0.005
for each pricebot. Quite abruptly, however, at time 30.93
million, the K-S distance for one pricebot quickly rises to-
ward 0.378, while that of the other 2 rises to 0.146. These
are precisely the K-S distances between the symmetric Nash
distribution and the pure and mixed components of the
asymmetric Nash distribution with ¢ = 2. The conclusion
is clear: at time 30.93 million, there is a spontaneous and
abrupt transition from the symmetric (¢ = 3) to the asym-
metric (¢ = 2) Nash equilibrium.

Fig. 2c provides some additional insight into the learning
dynamics. At a given moment in time, each pricebot main-
tains an instantaneous model price distribution from which
it randomly draws its price. Fig. 2c displays the mean of
this model distribution as a function of time. The average
prices are seen to be highly volatile. (The actual prices set
by the pricebots vary even more wildly with time!) The sud-
den shift between Nash equilibria is again evident from this

viewpoint: at time roughly 30 million, one of the average
prices is pinned at 1, while the other prices start fluctuating
wildly around 0.736, consistent with ¢ = 2. In numerous ex-
periments (of 2 to 5 NIR pricebots), we consistently observed
equilibrium shifts, always toward lower values of o. Fig. 2c,
which portrays instantaneous average prices over time, sug-
gests that volatility decreases with o, which partly explains
why equilibria shift in this manner. Intuitively, the volatil-
ity of an equilibrium consisting of entirely mixed strategies
exceeds that of an alternative equilibrium consisting of some
pure and some mixed strategies.

The volatility of the average prices suggests that the sym-
metric mixed-strategy Nash equilibrium is in some sense un-
stable. At any one moment, the various pricebots are likely
to be generating prices according to distributions that di-
verge substantially from the Nash distribution. Moreover,
the instantaneous model distributions drift very quickly over
time, with little temporal correlation even on a time scale
as short as 10000 time steps. Even before the shift between
equilibria is made, it is evident that the pricebots have of-
ten experimented with the deterministic strategy (always set
price to 1). Remarkably, the pricebots’ learning algorithms
exert the right pressure on one another to ensure that, aver-
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aged over a long period of time, the distribution of prices ac-
tually set by each pricebot is a Nash distribution—typically
symmetric at first, becoming more and more asymmetric as
time progresses. The time-average profits also reflect this:
they are approximately 0.0838 for each pricebot, which is
quite close to the theoretical value of 0.0833 for both the
symmetric and asymmetric Nash equilibria.

We have also conducted numerous simulations of naive
NIR. pricebots, finding that the empirical distributions al-
ways converge to distributions that become arbitrarily close
to the symmetric Nash equilibrium, as the exploration pa-
rameter ¢ — 0. Fig. 3a shows the CDF for 5 NIR. price-
bots with € = 0.05, all of which overlay the symmetric Nash
CDF very closely. The K-S distances, depicted in Fig. 3b,
settle in the range of roughly 0.01 and 0.025. The instan-
taneous average prices computed from the pricebots’ model
distributions are plotted in Fig. 3c. The volatile behavior of
the informed NIR pricebots is somewhat diminished; average
prices for NIR. pricebots oscillate near the mean price of the
symmetric Nash equilibrium, namely 0.81. For e = 0.02, the
average NIR. pricebots’ profits were 0.0498, negligibly lower
than the theoretical value of 0.05. In contrast, for e = 0.1,
the CDFs for all pricebots are all extremely close to one

another, but there is a consistent bias away from the sym-
metric Nash price distribution—one that leads to somewhat
lower prices on average. Moreover, the instantaneous aver-
age prices (and therefore the underlying price distributions)
are considerably less volatile. Increasing the amount of ex-
ploration leads to greater consistency and stability, but also
leads to greater deviations from the Nash distribution.

5.2 NER Pricebots

In this section, we present simulation results for no exter-
nal regret pricing (NER, with @ = 0.5). There are a number
of learning algorithms that satisfy the no external regret
optimality criterion (the earliest are due to Hannan [9] and
Blackwell [2]). Since no internal regret and no external re-
gret are equivalent in two-strategy games, no external regret
algorithms converge (in empirical frequencies) to correlated
equilibrium in two-strategy games. Greenwald et al. [6] re-
port that many no external regret algorithms converge to
Nash equilibrium in games of two strategies.

As illustrated in Fig. 4, the learning dynamics are quite
different in the present case, where there are m = 51 differ-
ent strategies. In Fig. 4a, 2 informed NER pricebots (with
a = 0.5) never settle at a deterministic equilibrium. More-



over, the empirical CDF depicted in Fig. 4b deviates signif-
icantly from the Nash CDF; and the K-S distance shown in
Fig. 4c oscillates indefinitely with an exponentially increas-
ing period, and is apparently bounded away from zero. This
behavior indicates that, unlike NIR pricebots, the long-run
empirical behavior of 2 NER pricebots will never reach the
symmetric Nash CDF, even after infinite time.

Instead, the 2 NER pricebots engage in cyclical price wars,
with their prices highly correlated, behavior not unlike my-
opic (MY) best-response pricebots [7]. NER price war cycles
differ from MY price war cycles, however, in that the length
of NER cycles grows exponentially, whereas the length of MY
cycles is constant. This outcome results because NER (non-
responsive) pricebots learn from the ever-growing history
dating back to time 0, while myopic learning at time ¢ is
based only on time ¢ — 1. The play between 2 NER price-
bots in the present setting is reminiscent of fictitious play in
the Shapley game, a 2-player game of 3 strategies for which
there is no pure strategy Nash equilibrium [12].

In order to eliminate exponential cycles, we now turn to
the responsive algorithm NER.,, with responsiveness param-
eter v = 10™° that smooths the pricebots’ observed history.
This smoothing effectively limiting the previous history to a
finite time scale on the order of 1/v. Price war cycles are still
observed, but they quickly converge to a constant period of
roughly S/~ (see Fig. 5a). In order to compute an empirical
CDF, we again used exponential weighting to smooth the
empirical play, but rather than using a time scale of 100,000
(which would only remember a portion of the price-war cy-
cle) we lengthened the time scale to 2 million. The smoothed
empirical CDF that results (see Fig. 5b) is extremely close
to the Nash CDF, with a final K-S distance of only 0.0036.

Fig. 5c depicts the K-S distance between the smoothed
empirical distribution and the symmetric Nash equilibrium
over time. Both pricebots’ errors are plotted, but the val-
ues are so highly correlated that only one error function
is apparent. The errors diminish in an oscillatory fashion
over time, reaching 0.0036 after 10 million time steps. The
long-run empirical distribution of play of responsive NER,
pricebots is bounded away from Nash by a small function of
v, but approaches Nash as v — 0.

Finally, we report on results for naive NERe pricebots (not
shown). For non-responsive NER. pricebots, price-war cycles
with exponentially increasing period can still be discerned
despite being obscured somewhat by a uniform peppering of
exploratory prices. The empirical CDF is somewhat closer
to the Nash equilibrium than for non-responsive informed
NER pricebots, with the cumulative K-S distance dropping
to a minimum of 0.021 in the course of its oscillatory trajec-
tory. However, it appears that it is not destined to converge
to Nash. For NER pricebots that are both naive and respon-
sive, the price correlations are greatly diminished—prices
over time appear random to the naked eye. Nonetheless,
the empirical CDF (computed just as for the informed NER
pricebots) is again quite close to the Nash CDF. The final
K-S distances (after 10 million time steps) for the two price-
bots are 0.0136 and 0.0182.

Apparently, responsiveness makes an important difference
in NER pricing. For non-responsive NER, the price dynam-
ics never approach Nash behavior, but for responsive NER.,
the time-averaged play approaches Nash as v — 0. For
responsive NER., finite values of v, € lead to near-Nash time-
averaged play, which approaches Nash as v,e — 0.

6. CONCLUSION

This paper investigated probabilistic no-regret learning in
the context of dynamic on-line pricing. Specifically, simula-
tions were conducted in an economic model of shopbots and
pricebots. It was determined that both no internal regret
learning and (responsive) no external regret learning con-
verge to Nash equilibrium, in the sense that the long-term
empirical frequency of play coincides with Nash. Neither
algorithm generated probability distributions which them-
selves converged to the Nash equilibrium, however.

It remains to simulate heterogeneous mixtures of price-
bots, both deterministic and non-deterministic. Prelimi-
nary studies to this effect suggest that MY (a.k.a. Cournot
best-reply dynamics [3]), a reasonable performer in high-
information settings, outperforms informed no-regret learn-
ing algorithms (both NIR and NER). MY has no obvious naive
analogue, however, and thus far the naive versions of no-
regret learning have outperformed any naive implementation
of My. Thus it seems that no-regret learning would be more
feasible than classic best-reply dynamics in pricing domains
like the Internet, where only limited payoff information is
available.

The scope of the results presented in this paper is not lim-
ited to e-commerce models such as shopbots and pricebots.
Bots could also be used to make networking decisions, for
example, such as along which of a number of routes to send
a packet or at what rate to transmit. No-regret learning
is equally applicable in this scenario (as noted by the in-
ventors of the no external regret learning algorithm [5]). In
future work, it would be of interest to analyze and simulate
a game-theoretic model of networking via no-regret learning
in attempt to validate the popular assumption that Nash
equilibrium dictates a network’s operating point [13].
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