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Abstract

Although variants of value iteration have been proposedriding Nash
or correlated equilibria in general-sum Markov games, éhesriants
have not been shown to be effective in general. In this pagedemon-
strate by construction that existing variants of valueditien cannot find
stationary equilibrium policies in arbitrary general-sivarkov games.
Instead, we propose an alternative interpretation of theuwf value it-

eration based on a new (non-stationary) equilibrium coniteg we call
“cyclic equilibria.” We prove that value iteration iden&8 cyclic equi-
libriain a class of games in which it fails to find stationaguéibria. We

also demonstrate empirically that value iteration finddicyajuilibria in

nearly all examples drawn from a random distribution of Margames.

1 Introduction

Value iteration (Bellman, 1957) has proven its worth in aietgrof sequential-decision-
making settings, most significantly single-agent envirenta (Puterman, 1994), team
games, and two-player zero-sum games (Shapley, 1953). lue itaration for Markov
decision processes and team Markov games, the value okastidfined to be the maxi-
mum over all actions of the value of the combination of théestand action (o) value.

In zero-sum environments, the max operator becomes a miraner joint actions of the
two players. Learning algorithms based on this update haea khown to compute equi-
libria in both model-based scenarios (Brafman & Tennezh@®02) and Q-learning-like
model-free scenarios (Littman & Szepesvari, 1996).

The theoretical and empirical success of such algorithreddthresearchers to apply the
same approach in general-sum games, in spite of exceedirgly guarantees of conver-
gence (Hu & Wellman, 1998; Greenwald & Hall, 2003). Hereuealipdate rules based on
select Nash or correlated equilibria have been evaluatgirieally and have been shown
to perform reasonably in some settings. None has been figenthat computes equilib-

ria in general, however, leaving open the question of whretheh an update rule is even
possible.

Our main theoretical result is that an entire class of véleetion update rules, including
all those mentioned above, can be excluded from consider&dir computing stationary
equilibria in general-sum Markov games. Briefly, existirsgue-iteration algorithms com-
pute Q values as an intermediate result, then derive pslite@m these Q values. We



demonstrate a class of games in which Q values, even thosssponding to an equilib-
rium policy, contain insufficient information for reconstting an equilibrium policy.

Faced with the impossibility of developing algorithms ajahe lines of traditional value
iteration that find stationary equilibria, we suggest aeralative equilibrium concept—
cyclic equilibria. A cyclic equilibrium is a kind of non-gianary joint policy that satisfies
the standard conditions for equilibria (no incentive toidevunilaterally). However, unlike
conditional non-stationary policies such as tit-for-tadl dinite-state strategies based on the
“folk theorem” (Osborne & Rubinstein, 1994), cyclic eqbiiia cycle sequentially through
a set of stationary policies.

We present two positive results concerning cyclic equdibFirst, we consider the class of
two-player two-state two-action games used to show thatl@esecannot reconstruct all
stationary equilibrium. Section 4.1 shows that value tterafinds cyclic equilibria for all
games in this class. Second, Section 5 describes empiesalts on a more general set of
games. We find that on a significant fraction of these gaméise vi@ration updates fail to
converge. In contrast, value iteration finds cyclic equitifor nearly all the games.

The success of value iteration in finding cyclic equilibuggests this generalized solution
concept could be useful for constructing robust multiadgesrtning algorithms.

2 An Impossibility Result for Q Values

In this section, we consider a subclass of Markov games ialwtnansitions are determin-
istic and are controlled by one player at a time. We show thiatdlass includes games
that have no deterministic equilibrium policies. For tHsss of games, we present (proofs
available in an extended technical report) two theoreme fiFkt, a negative result, states
that the Q values used in existing value-iteration algarghare insufficient for deriving
equilibrium policies. The second, presented in Sectioni4.& positive result that states
that value iteration does converge to cyclic equilibriuntigies in this class of games.

2.1 Preliminary Definitions
Given a finite setX, defineA(X) to be the set of all probability distributions ov&r.

Definition 1 A MarkovgameI = [S, N, A, T, R,~] is a set of state$, a set of players
N = {1,...,n}, a set of actions for each player in each stdt#; ;}scs.cn (Where we
represent the set of all state-action pairs As= |J, g ({s} x [[,cn 4i,s), @ transition
functionT : A — A(S), areward function? : A — R"™, and a discount factoy.

Given a Markov gamé, let A, = [,y Ai s. A stationary policy is a set of distributions
{m(s) : s € S}, where foralls € S, 7(s) € A(A,). Given a stationary policy, define
yol. s - R*and@Q™" : A — R" to be the unique pair of functions satisfying the
following system of equations: for alle N, forall (s,a) € A,

VI (s) = ) m(s)(a)Q " (s, a), (1)
a€A;
Q7 (s.a) = Ri(s,a) +v Y T(s,a)(s) V" (s"). )
s’'es

A deterministic Markov game is a Markov ganiéwhere the transition function is deter-
ministic: 7' : A — S. A turn-taking game is a Markov gamé" where in every state, only
one player has a choice of action. Formally, forsa#t S, there exists a playére N such
that for all other playerg € N\, |A4; .| = 1.



2.2 A Negative Result for Stationary Equilibria

A NoSDE (pronounced “nasty”) game is a deterministic turn-takingrkbv gamd™ with
two players, two states, no more than two actions for eitheygr in either state, and no
deterministic stationary equilibrium policy. That the seNoSDE games is non-empty is
demonstrated by the game depicted in Figure 1. This gameddstarministic stationary
equilibrium policy: If Player 1 sends, Player 2 prefers tagebut, if Player 2 sends,
Player 1 prefers to keep; and, if Player 1 keeps, Player Z2mdéb keep; but, if Player 2
keeps, Player 1 prefers to send. No deterministic policyni®guilibrium because one
player will always have an incentive to change policies.

R1(2, noop, send) = 0
Ve

)

Rq (1, keep, noop) =1 2 R1(2,noop, keep) = 3

R1(1, send, noop) =0

R2(2, noop, send) = 0

R2 (1, keep, noop) = 0 2 R5 (2, noop, keep) =1

P4
R2(1, send, noop) = 3

Figure 1: An example of a NoSDE game. Her®, = {1,2}, 411 = Ao =
{keep, send}, A1 2 = Az1 = {noop}, T(1, keep,noop) = 1, T(1, send, noop) = 2,
T(2,noop, keep) = 2, T(2,n00p, send) = 1, andy = 3/4. In the unique stationary
equilibrium, Player 1 sends with probabil2y3 and Player 2 sends with probability12.

Lemma 1 Every NoSDE game hasumiquestationary equilibrium policy.

It is well known that, in general Markov games, random pebcare sometimes needed to
achieve an equilibrium. This fact can be demonstrated sirfhpla game with one state
where the utilities correspond to a bimatrix game with nadetnistic equilibria (penny
matching, say). Random actions in these games are somédiinked with strategies that
use “faking” or “bluffing” to avoid being exploited. That N&& games exist is surprising,
in that randomness is needed even though actions are alakgs with complete infor-
mation about the other player’s choice and the state of theeg&lowever, the next result
is even more startling. Current value-iteration algorigheittempt to find the Q values of a
game with the goal of using these values to find a stationauiliequm of the game. The
main theorem of this paper states that it is not possible ivela policy from the Q values
for NoSDE games, and therefore in general Markov games.

Theorem 1 For any NoSDE gam& = [S, N, A, T, R] with a unique equilibrium policy
m, there exists another NOSDE gaife= [S, N, A, T, R’] with its own unique equilibrium
policy 7’ such thatQ™" = Q™" butr # «/ and V™ £ V="

This result establishes that computing or learning Q vaiséssufficient to compute a
stationary equilibrium of a ganfeln this paper we suggest an alternative, where we still

1The policy is both a correlated equilibrium and a Nash elgiilim.

2Although maintaining Q valuesnd state values and deriving policies from both sets of fumstio
might circumvent this problem, we are not aware of existiatug-iteration algorithms or learning
algorithms that do so. This observation presents a posaideue of research not followed in this

paper.



do value iteration in the same way, but we extracyalic equilibriumfrom the sequence
of values instead of a stationary one.

3 A New Goal: Cyclic Equilibria

A cyclic policy is a finite sequence of stationary policies= {71, ..., 7 }. Associated
with 7 is a sequence of value functiofg ™I/} and Q-value function§Q™ 7} such that

VIT(s) = 3 mi(s)(@) Q7 (s,a) and ®)

a€A;

Q7" (s,a) = Ri(s,a) +v Y _ T(s,a)(s') AR €)) ()
s'eS

where forallj € {1,...,k},inck(k) = 1 andinci(j) =5 + 11if j < k.

Definition 2 Given a Markov gamE, a cyclic correlated equilibrium is a cyclic policyr,

where forallj € {1,...,k},foralli € N,forall s € S, forall a;,a; € A, s:
> mi(s)anas) QTN (s,a,a) 2y wy(s)(ai,as) Q7 (s, al,a). ()
a_;€A_; s (as,a—;)EAS

Here,a_; denotes a joint action for all players exceéptA similar definition can be con-
structed for Nash equilibria by insisting that all policiegs) are product distributions. In
Definition 2, we imagine that action choices are moderated Isferee with a clock that
indicates the current stageof the cycle. At each stage, a typical correlated equilioriu
is executed, meaning that the referee chooses a joint acfi@m 7, (s), tells each agent
its part of that joint action, and no agent can improve itagdly eschewing the referee’s
advice. If no agent can improve its value by more thaat any stage, we say is an
e-correlated cyclic equilibrium.

A stationary correlated equilibrium is a cyclic correlated equilibrium with = 1. In the
next section, we show how value iteration can be used toeleyislic correlated equilibria.

4 Value lteration in General-Sum Markov Games

For a gamd’, defineQr = (R")* to be the set of all state-action (Q) value functions,
Vr = (R"™)° to be the set of all value functions, ahl- to be the set of all stationary
policies. Traditionally, value iteration can be broken aianto estimating a Q value based
upon a value function, selecting a polieygiven the Q values, and deriving a value function
based uponr and the Q-value functions. Whereas the first and the lastategairly
straightforward, the step in the middle is quite tricky. Arpar, Q) € IIr x Qr agree(see
Equation 5) if, foralls € S,i € N, a;,a} € A; ;:

S as)aiai) Qils,aiay) > > w(s)(aiai) Q(s,af,as).  (6)

a_;€A_; s (aj,a—;)EA,

Essentially,Q and agree ifr is a best response for each player given pay@ffsAn
equilibrium-selection rule is a functionf : Qr — IIr such that for allQ € Qr,
(f(Q),Q) agree. In essence, these rules update values assuming itibriegu pol-
icy for a one-stage game witf)(s,a) providing the terminal rewards. Examples of
equilibrium-selection rules are best-Nash, utilitarf2B; dictatorial-CE, plutocratic-CE,
and egalitarian-CE (Greenwald & Hall, 2003). (Utilitari@, which we return to later,
selects the correlated equilibrium in which total of the @ffyy is maximized.) Foe-VI



and Friend-VI (Littman, 2001) do not fit into our formalismytkit can be proven that in
NoSDE games they converge to deterministic policies treahaither stationary nor cyclic
equilibria. Definedr : Vr x Vr — R to be a distance metric over value functions, such
that

d "= 7 (s) — V! (s)]. 7

r(V.V) = max |Vi(s) = V/(s)] (7)

Using our notation, the value-iteration algorithm for gextesum Markov games can be
described as follows.

Algorithm 1: Valuelteration (gamel’, V° € Vr, f € Fr, IntegerT)
Fort:=1toT:

1.VseS,aeA Q' (s,a):=R(s,a) + 7> ,cg T(s,a)(s) VITI(s).
2.7t = F(@).
3. ¥s € 8,V (s) = e, 7(5)(@) Q'(5,0)

Return{Q*,...,QT}, {=t, ..., 7T}, {Vi, ..., VvT}.

If a stationary equilibrium is sought, the final policy isuaied.

Algorithm 2: GetStrategy(gamel’, V' € Vr, f € Fr, IntegerT)
1. Run(Q'...QT xt...xT V1. .. VT) = Valuelteratiogl’, V', f,T).

2. Returns”.

For cyclic equilibria, we have a variety of options for howmggast stationary policies we
want to consider for forming a cycle. Our approach searabres fecent value function that
matches the final value function (an exact match would impiy@cycle). Ties are broken
in favor of the shortest cycle length. Observe that the oodléhe policies is reversed to
form a cyclic equilibrium.

Algorithm 3: GetCycle(gamel', V° € V., f € Fr, IntegerT, IntegermaxzCycle)
1. If maxCycle > T, maxCycle :=T.

2. RUn(Ql ce QT7 71'1 ... 7TT’ Vl . VT) — Va|ue”:eratiomrl7 ‘/07 .f7 T)
3. Definek := argmin,e 1 mazcyee} d(VT,VT=t),
4. Foreach € {1,...,k} setr; := g7 +1-k,

4.1 Convergence Conditions

Fact1 If d(VT,VT~1) = ¢ in GetStrategy, thenGetStrategy returns an 7= -correlated
equilibrium.

Fact 2 If GetCyclereturns a cyclic policy of length andd(V?, VT=F) = ¢, thenGetCy-
clereturns an%—correlated cyclic equilibrium.

Since, giveri’® andr, the space of value functions is boundedgntuallythere will be two
value functions in{V*, ..., VT} that are close according ti. Therefore, the two prac-
tical (and open) questions are (1) how many iterations daage to find ane-correlated
cyclic equilibrium? and (2) How large is the cyclic equililom that is found?

In addition to approximate convergence described abovejarplayer turn-taking games,
one can provexact convergencdn fact, all the members df - described above can be



construed as generalizations of utilitarian-CE in turkirtg games, and utilitarian-CE is
proven to converge.

Theorem 2 Given the utilitarian-CE equilibrium-selection rulg for every NoSDE game
T, for everyV® € Vr, there exists some finifé such thatGetCycle(T', VO, T', T) returns a
cyclic correlated equilibrium.

Theoretically, we can imagine passing infinity as a parantetealue iteration. Doing so
shows the limitation of value-iteration in Markov games.

Theorem 3 Given the utilitarian-CE equilibrium-selection rulg for any NoSDE gamE
with unique equilibriumr, for everyV? € Vr, the value-function sequen¢&™®, V2, ...}
returned fromValuelteration(T", V°, f, co) does not converge t6™.

Since all of the other rules specified above (except friem@\d foe-VI) can be imple-
mented with the utilitarian-CE equilibrium-selectioneuhone of these rules will be guar-
anteed to converge, even in such a simple class as turrgtgkimes!

Theorem 4 Given the gamé& in Figure 1 and its stationary equilibriur, givenV,%(s) =
Oforalli € N, s € S, then for any update rul¢ € Fr, the value-function sequence
{Vt, V2 ...} returned fromValuelteration(T', VO, f, oo) does not converge tg™.

5 Empirical Results

To complement the formal results of the previous sectioresyamn two batteries of tests
on value iteration in randomly generated games. We ass#ssednvergence behavior of
value iteration to stationary and cyclic equilibria.

5.1 Experimental Details

Our game generator took as input the set of playérshe set of states, and for each
playeri and states, the actions4; ;. To construct a game, for each state-joint action pair
(s,a) € A, for each agent € N, the generator setB;(s,a) to be an integer between
0 and 99, chosen uniformly at random. Then, it selddts, a) to be deterministic, with
the resulting state chosen uniformly at random. We used aistent discount factor of

~ = 0.75 to decrease experimental variance.

The primary dependent variable in our results was the frecueith which value itera-
tion converged to a stationary Nash equilibrium or a cyclasN equilibrium (of length
less than 100). To determine convergence, we first ran vedugtion for 1000 steps. If

dp (V1000 999y < 0.0001, then we considered value iteration to have converged to a
stationary policy. If for somé& < 100

max  dp(V1001—t y1001=(t+k)y < 00001, (8)
te{l,....k}

then we considered value iteration to have converged tola.yc

To determine if a game has a deterministic equilibrium, fearg deterministic policyr,
we ran policy evaluation (for 1000 iterations) to estingfe” and@Q™ ", and then checked
if = was anc-correlated equilibrium foe=0.0001.

3In contrast to theSetCycle algorithm, we are here concerned with finding a cyclic ebiilim
so we check an entire cycle for convergence.
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Figure 2: (Left) For each combination of states and actid@60 deterministic turn-taking
games were generated. The graph plots the number of gamee wdlee iteration did
not converge to a stationary equilibrium. (Right) Frequeotconvergence on 100 ran-
domly generated games with simultaneous actid@gclic uCE is the number of times
utilitarian-CE converged to a cyclic equilibriut@TComb is the number of games where
any one of Friend-VI, Foe-VI, utilitarian-NE-VI, and 5 varits of correlated equilibrium-
VI: dictatorial-CE-VI (First Player), dictatorial-CE-\{ISecond Player), utilitarian-CE-VI,
plutocratic-CE-VI, and egalitarian-VI converged to a istaary equilibrium. OTBest is
the maximum number of games where the best fixed choice ofghiiteium-selection
rule converged uCE is the number of games in which utilitarian-CE-VI converded
stationary equilibrium.

5.2 Turn-taking Games

In the first battery of tests, we considered sets of turnaakjames withr states and,
actions: formally, there were states{1, ..., z}. In odd-numbered states, Player 1 had
actions and Player 2 had one action: in even-numbered sRitg®r 1 had one action and
Player 2 had actions. We varied from 2 to 5 andy from 2 to 10. For each setting of
andy, we generated and tested one thousand games.

Figure 2 (left) shows the number of generated games for wiédhe iteration didnot
converge to a stationary equilibrium. We found that neadlf (48%, as many as 5% of
the total set) of these non-converged games had no statjaleerministic equilibria (they
were NoSDE games). The remainder of the stationary, detésticiequilibria were simply
not discovered by value iteration. We also found that vakemtion converged to cycles of
length 100 or less in 99.99% of the games.

5.3 Simultaneous Games

In a second set of experiments, we generated two-playerddaykmes where both agents
have at least two actions in every state. We varied the nuofbeates between 2 and 9,
and had either 2 or 3 actions for every agent in every state.

Figure 2 (right) summarizes results for 3-action gamescfizas games were qualitatively
similar, but converged more often). Note that the fractibramdom games on which the
algorithms converged to stationary equilibria decreaseb@number of states increases.
This result holds because the larger the game, the largehtece that value iteration will
fall into a cycle on some subset of the states. Once againew¢hsit the cyclic equilib-
ria are found much more reliably than stationary equilitmyavalue-iteration algorithms.
For example, utilitarian-CE converges to a cyclic coredlaéquilibrium about 99% of the
time, whereas with 10 states and 3 actions, on 26% of the gaores of the techniques



converge.

6 Conclusion

In this paper, we showed that value iteration, the algorithcore of many multiagent
planning reinforcement-learning algorithms, is not welhbved in Markov games. Among
other impossibility results, we demonstrated that the @Qe/dunction retains too little
information for constructing optimal policies, even intate, 2-action, deterministic turn-
taking Markov games. In fact, there are an infinite numbemghsyames with different
Nash equilibrium value functions that have identical Queafunctions. This result holds
for proposed variants of value iteration from the literatsuch as updating via a correlated
equilibrium or a Nash equilibrium, since, in turn-taking Mav games, both rules reduce
to updating via the action with the maximum value for the coltihg player.

Our results paint a bleak picture for the use of value-itenabased algorithms for com-
puting stationary equilibria. However, in a class of gamesaalled NoSDE games, a
natural extension of value iteration converges to a limitleywhich is in fact a cyclic
(nonstationary) Nash equilibrium policy. Such cyclic difia can also be found reliably
for randomly generated games and there is evidence thatajhyggar in some naturally
occurring problems (Tesauro & Kephart, 1999). One takeyawassage of our work is
that nonstationary policies may hold the key to improving tbbustness of computational
approaches to planning and learning in general-sum games.
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