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Abstract. Shopbots are agents that search the Internet for informa-
tion pertaining to the price and quality of goods or services. With the
advent of shopbots, a dramatic reduction in search costs is imminent,
which promises (or threatens) to radically alter market behavior. This
research includes the proposal and theoretical analysis of a simple eco-
nomic model which is intended to capture some of the essence of shop-
bots, and attempts to shed light on their potential impact on markets.
Moreover, experimental simulations of an economy of software agents are
described, which are designed to model the dynamic interaction of elec-
tronic buyers, sellers, and shopbots. This study forms part of a larger
research program that aims to provide new insights on the impact of
agent and information technology on the nascent information economy.

1 Introduction

Shopbots, agents that automatically search the Internet for goods and services
on behalf of consumers, herald a future in which autonomous agents become an
essential component of nearly every facet of electronic commerce [3, 8, 12, 5]. In
response to a consumer's expressed interest in a speci�ed item, a typical shopbot
can query several dozen web sites, and then collate and sort the available infor-
mation for the user | all within seconds. For example, www.shopper.com claims
to compare 1,000,000 prices on 100,000 computer-oriented products! In addition,
www.acses.com compares the prices and expected delivery times of books of-
fered for sale on-line, while www.jango.com and webmarket.junglee.com o�er
everything from apparel to gourmet groceries. Shopbots can out-perform and
out-inform even the most patient, determined consumers, for whom it would
take hours to obtain far less coverage of available goods and services.

Shopbots deliver on one of the great promises of electronic commerce and
the Internet: a radical reduction in the cost of obtaining and distributing infor-
mation. It is generally recognized that freer 
ow of information will profoundly
a�ect market e�ciency, as economic friction will be reduced signi�cantly [1, 6, 9,
4]. Transportation costs, menu costs | the costs to �rms of evaluating, updating,
and advertising prices | and search costs | the costs to consumers of seeking
out optimal price and quality | will all decrease, as a consequence of the digital
nature of information as well as the presence of autonomous agents that �nd,



process, collate, and disseminate that information at little cost. What are the
implications of the widespread use of shopbots? Speci�cally, do shopbots have
the potential to increase social welfare? If so, how can shopbots adequately price
their services so as to provide consumers with incentives to subscribe, while
retaining pro�tability? More generally, what is the expected impact of agent
technology on the nascent information economy?

Previous work in economics on the impact of search costs on equilibrium
prices was oriented towards explaining the phenomenon of price dispersion in
social economies; see, for example, [11,13, 2]. In such work, an attempt is made
to approximate human behavior with mathematical functions or algorithms, and
under the relevant assumptions, collective behavior and equilibria are studied.
In contrast with previous intentions, our mission is to investigate the possible
dynamics of the future information economy in which software agents, rather
than human constituents, will play the key role. Consequently, we take mathe-
matical functions and algorithms a good deal more seriously, by regarding them
as precise speci�cations of the behavior of economic players. In this paper, we
focus on the likely e�ect that one particular speci�cation of a class of agents,
namely shopbots, will have on electronic markets. From this study, we hope to
gain insights into the design of adaptive algorithms for economically-motivated,
computational agents which successfully maximize utility.

This paper is organized as follows. The next section presents our model of a
simple market in which shopbots provide price information, which is analyzed
from a game-theoretic point of view in Section 3. In Section 4, we consider the
dynamics of interaction among software agents designed to model electronic con-
sumers and producers; moreover, we investigate the e�ect of non-linear search
costs (Section 4.1) and irrational consumers (Section 4.2) via experimental sim-
ulations. Finally, Section 5 presents our conclusions and ideas for future work.

2 Model

We consider an economy in which there is a single commodity that is o�ered
for sale by S sellers and of interest to B buyers. Periodically, at a rate �b, a
buyer b attempts to purchase a unit of the commodity. Each attempted purchase
proceeds as follows. First, buyer b conducts a search of �xed sample size i, which
entails requesting 0 � i � S price quotes.1 A search mechanism (which could
be manual or shopbot-assisted) instantly provides price quotes for i randomly
chosen sellers. Buyer b then selects a seller s whose quoted price ps is lowest
among the i (ties are broken randomly), and purchases the commodity from
seller s if and only if ps � vb, where vb is buyer b's valuation of the commodity.

In addition to the purchase price, buyers may incur search costs. The cost ci
of using search strategy i, however, does not enter into the purchasing decision
of the buyers, because buyers must commit to conducting a search before the
results of that search become available. In other words, search payments are

1 We permit a search strategy of 0 to allow buyers to opt out of the market entirely,
which may be desirable if search costs are prohibitive.



sunk costs. Instead, search costs a�ect the choice (0 � i � S) of search strategy
utilized by buyers. A buyer b is assumed to periodically re-evaluate its strategy at
a rate �b � �b, where typically, �b � �b. Upon re-evaluation, the rational buyer
estimates a price p̂i that it expects to pay for the commodity if it uses strategy
i, and selects the strategy j that minimizes p̂j + cj , provided that p̂j + cj � vb.
If this condition is not satis�ed, then j = 0: i.e., the rational buyer does not
search and does not participate in the market at that time.

The buyer population at a given moment is characterized by a strategy vector
w, in which the component wi represents the fraction of buyers employing strat-
egy i and

PS

i=0wi = 1. A seller s's expected pro�t per unit time �s is a function
of the strategy vector w, the price vector p describing all sellers' prices, and the
cost of production rs for seller s. In particular, �s(p;w) = Ds(p;w)(ps � rs).
where Ds(p;w) is the rate of demand for the good produced by seller s, given
the current price and search strategy vectors. The demand Ds(p;w) is the prod-
uct of (i) the overall buyer rate of demand � =

P
b �b, (ii) the likelihood that

seller s is selected as a potential seller, denoted hs(p;w), and (iii) the frac-
tion of buyers whose valuations satisfy vb � ps, denoted g(ps). Speci�cally,
Ds(p;w) = �Bhs(p;w)g(ps). Without loss of generality, we de�ne the time
scale such that �B = 1. Then we can interpret �s as seller s's expected pro�t
per unit sold systemwide.

The likelihood of a given buyer selecting seller s as their potential seller,
namely hs(p;w), depends on the search strategies of the buyers. In particular,
this term is the sum over all buyer types of the fraction of the buyer population
of type i times the probability hs;i(p) that seller s is selected by a buyer of type

i, namely hs(p;w) =
PS

i=0 wihs;i(p). The quantities hs;i(p) are investigated in
detail in the following section. Finally, the value g(ps) =

R1
ps


(x)dx, where 
(x)
is the probability density function describing the likelihood that a given buyer
has valuation x. For example, if all buyers have the same valuation v, i.e., vb = v,
then 
(x) is the Dirac delta function �(v � x), and the integral yields a step
function g(ps) = �(v � ps), equal to 1 when ps � v and 0 otherwise. Assuming
all buyers have equal valuations v,2 and all sellers share the same cost r, the
pro�t function can now be expressed as follows: �s(p;w) = hs(p;w)(ps � r), if
ps � v, but otherwise, �s(p;w) = 0.

3 Analysis

In this section, we present a game-theoretic analysis of the prescribed model,
assuming sellers are rational (i.e., utility maximizers). Initially, we focus entirely
on the strategic decision-making of rational sellers, by assuming the distribution
of the buyer population is �xed and exogenously determined. Later, we extend
our analysis to rational buyers, thereby permitting w to vary.

A Nash equilibrium is a vector of prices at which sellers maximize their
individual pro�ts and from which they have no incentive to deviate [10]. There

2 In this case, w can be interpreted as representing a mixed search strategy of a single
buyer who creates all of the demand in the system.



are no pure strategy Nash equilibria for this model [7]. There does, however, exist
a symmetric Nash equilibrium in mixed strategies, which we derive presently. Let
f(p) denote the probability density function according to which sellers set their
equilibrium prices, and let F (p) be the corresponding cumulative distribution
function. In the range for which it is de�ned, F (p) has no mass points, since
otherwise a seller could decrease its price by an arbitrarily small amount and
experience a discontinuous increase in pro�ts. Moreover, there are no gaps in
the distribution, since otherwise prices would not be optimal | a seller charging
a price at the low end of the gap could increase its price to �ll the gap while
retaining its market share, thereby increasing its pro�ts.

The cumulative distribution function F (p) is computed in terms of the prob-
ability hs(p;w) that buyers select seller s as their potential seller. This quantity
is the sum of hs;i(p) over 0 � i � S. The �rst component hs;0(p) = 0. Consider
the next component hs;1(p). Buyers of type 1 select sellers at random; thus, the
probability that seller s is selected by such buyers is simply hs;1(p) = 1=S. Now
consider buyers of type 2. In order for seller s to be selected by a buyer of type 2,
s must be included within the pair of sellers being sampled | which occurs with
probability (S � 1)=

�
S
2

�
= 2=S | and s must be lower in price than the other

seller in the pair. Since, by the assumption of symmetry, the other seller's price is
drawn from the same distribution, this occurs with probability 1�F (p). There-
fore hs;2(p) = (2=S) [1� F (p)]. In general, seller s is selected by a buyer of type

i with probability
�
S�1
i�1

�
=
�
S

i

�
= i=S, and seller s is the lowest-priced among the

i sellers selected with probability [1�F (p)]i�1, since these are i�1 independent

events. Thus, hs;i(p) = (i=S)[1�F (p)]i�1, and3 hs(p) =
1

S

PS

i=1 iwi[1�F (p)]i�1.
The precise value of F (p) is determined by noting that a Nash equilibrium in

mixed strategies requires that all pure strategies that are assigned positive prob-
ability yield equal payo�s, since otherwise it would not be optimal to randomize.
In particular, the expected pro�ts earned by seller s, namely �s(p) = hs(p)(p�r),
are constant for all prices p. The value of this constant can be computed from
its value at the boundary p = v; note that F (v) = 1 because no rational seller
charges more than any buyer is willing to pay. This leads to the following rela-
tion: hs(p)(p� r) = hs(v)(v � r) = 1

S
w1(v � r). Now solving for p in terms of F

yields:

p(F ) = r +
w1(v � r)PS

i=1 iwi[1� F ]i�1
(1)

Eq. 1 has several important implications. First of all, in a population in which
there are no buyers of type 1 (i.e., w1 = 0) the sellers charge the production
cost c and earn zero pro�ts; this is the traditional Bertrand equilibrium. On the
other hand, if the population consists of just two buyer types, 1 and some i 6= 1,
then it is possible to invert p(F ) to obtain:

F (p) = 1�

��
w1

iwi

��
v � p

p� r

�� 1

i�1

(2)

3 In the �nal equation, hs(p) is expressed as a function of seller s's scalar price p, since
we average over all other components of the price vector.



The case in which i = S was studied previously by Varian [13]; in this model,
buyers either choose a single seller at random (type 1) or search all sellers and
choose the lowest-priced among all sellers (type S).

Since F (p) is a cumulative probability distribution, it is only valid in the
domain for which its valuation is between 0 and 1. As noted previously, the
upper boundary is p = v; the lower boundary p� can be computed by setting
F (p�) = 0 in Eq. 1, which yields:

p� = r +
w1(v � r)PS

i=1 iwi

(3)

In general, Eq. 1 cannot be inverted to obtain an analytic expression for F (p).
It is possible, however, to plot F (p) without resorting to numerical root �nding
techniques. We use Eq. 1 to evaluate p at equally spaced intervals in F 2 [0; 1];
this produces unequally spaced values of p ranging from p� to v.

We now consider the probability density function f(p). Di�erentiating both
sides of the equation hs(p)(p�r) = 1

S
w1(v�r), we obtain an expression for f(p)

in terms of F (p) and p that is conducive to numerical evaluation:

f(p) =
w1(v � r)

(p � r)2
PS

i=2 i(i � 1)wi[1� F (p)]i�2
(4)

The values of f(p) at the boundaries p� and v are as follows:

f(p�) =

hPS

i=1 iwi

i2
w1(v � r)

hPS

i=2 i(i � 1)wi

i and f(v) =
w1

2w2(v � r)
(5)

Fig. 1(a) and 1(b) depict the PDFs in the prescribed model under varying
distributions of buyer strategies | in particular, w1 = 0:2 and w2 + wS = 0:8
| when S = 5 and S = 20, respectively. In both �gures, f(p) is bimodal when
w2 = 0, as is derived in Eq. 5. Most of the probability density is concentrated
either just above p�, where sellers expect low margins but high volume, or just
below v, where they expect high margins but low volume. In addition, moving
from S = 5 to S = 20, the boundary p� decreases, and the area of the no-
man's land between these extremes diminishes. In contrast, when w2; wS > 0, a
peak appears in the distribution. If a seller does not charge the absolute lowest
price when w2 = 0, then it fails to obtain sales from any buyers of type S.
In the presence of buyers of type 2, however, sellers can obtain increased sales
even when they are priced moderately. Thus, there is an incentive to price in
this manner, as is depicted by the peak in the distribution. The case in which
wS = 0: i.e., w1 +w2 = 1 is explored in more detail in the next section.

Recall that the pro�t earned by each seller is (1=S)w1(v�r), which is strictly
positive so long as w1 > 0. It is as though only buyers of type 1 are contributing
to sellers' pro�ts, although the actual distribution of contributions from buyers of
type 1 vs. buyers of type i > 1 is not as one-sided as it appears. In reality, buyers
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Fig. 1. PDFs for w1 = 0:2 and w2 + w20 = 0:8.

of type 1 are charged less than v on average, and buyers of type i > 1 are charged
more than r on average, although total pro�ts are equivalent to what they would
be if the sellers practiced perfect price discrimination. In e�ect, buyers of type 1
exert negative externalities on buyers of type i > 1, by creating surplus pro�ts
for sellers.

3.1 Endogenous Buyer Decisions

Heretofore in our analysis, we have assumed rational decision-making on the part
of the sellers, but an exogenous distribution of buyer types. It is also of interest
to consider buyers as rational decision-makers, with the cost ci of comparing
the prices of i sellers de�ned explicitly, thereby giving rise to endogenous search
behavior. As mentioned previously, rational buyers estimate the commodity's
price p̂i that would be obtained by searching among i sellers, and select the
strategy i� that minimizes p̂i + ci, provided that p̂i + ci � vb; otherwise, the
buyer does not search and does not participate in the marketplace.

Before studying the decision-making processes of individual buyers, it is use-
ful to analyze the distributions of prices paid by buyers of various types and their
corresponding averages at equilibrium. Recall that a buyer who obtains i price
quotes pays the lowest of the i prices. (At equilibrium, the sellers' prices never
exceed v since F (v) = 1, so a buyer is always willing to pay the lowest price.) The
cumulative distribution for the minimal values of i independent samples taken
from the distribution f(p) is given by Yi(p) = 1 � [1 � F (p)]i. Di�erentiation
with respect to p yields the probability distribution: yi(p) = if(p)[1� F (p)]i�1.
The average price for the distribution yi(p) can be expressed as follows:

�pi =

Z v

p�
dp p yi(p) = v �

Z v

p�
dp Yi(p) = p� +

Z 1

0

dF
(1� F )i

f
(6)

where the �rst equality is obtained via integration by parts, and the second
depends on the observation that dp=dF = [dF=dp]�1 = 1

f
. Combining Eqs. 1,

4, and 6 would lead to an integrand expressed purely in terms of F . Integration



over the variable F (as opposed to p) is advantageous because F can be chosen
to be equispaced, as standard numerical integration techniques require.

Fig. 2(a) depicts sample price distributions for buyers of various types: y1(p),
y2(p), and y20(p), when S = 20 and (w1; w2; w20) = (0:2; 0:4; 0:4). The dashed
lines represent the average prices �pi for i 2 f1; 2; 20g as computed by Eq. 6. The
blue line labeled Search{1 , which depicts the distribution y1(p), is identical to
the green line labeled w2 = 0:4 in Fig. 1(b), since y1(p) = f(p). In addition,
the distributions shift toward lower values of p for those buyers who base their
buying decisions on information pertaining to more sellers.

Fig. 2(b) depicts the average buyer prices obtained by buyers of various
types, when w1 is �xed at 0:2 and w2 + w20 = 0:8. The various values of i (i.e.,
buyer types) are listed to the right of the curves. Notice that as w20 increases,
the average prices paid by those buyers who perform relatively few searches
increases rather dramatically for larger values of w20. This is because w1 is �xed,
which implies that the sellers' pro�t surplus is similarly �xed; thus, as more and
more buyers perform extensive searches, the average prices paid by those buyers
decreases, which causes the average prices paid by the less diligent searchers to
increase. The situation is slightly di�erent for those buyers who perform larger
searches but do not search the entire space of sellers: e.g., i = 10 and i = 15.
These buyers initially reap the bene�ts of increasing the number of buyers of
type 20, but eventually their average prices increase as well. Given a �xed portion
of the population designated as buyers of type 1, Fig. 2(b) demonstrates that
searching S sellers is a superior buyer strategy to searching 1 < i < S sellers.
Thus, there is value in performing price searches: shopbots o�er added value in
markets in which there exist buyers who shop at random. This observation leads
us directly into a discussion of explicit buyer search costs.
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Fig. 2. (a) Buyer price distributions for 20 sellers, with w1 = 0:2; w2 = 0:4; w20 = 0:4.
(b) Average buyer prices for various buyer types; 20 sellers, w1 = 0:2; w2 +w20 = 0:8.

Initially, we model buyer search costs following Burdett and Judd [2], who
assume costs are linear in the number of searches; in particular, ci = c1+�(i�1),
where c1; � > 0 are, respectively, �xed and variable costs of obtaining price



quotes. Moreover, we assume buyers are rational decision-makers who strive to
minimize overall expenditure, and who use �pi (as in Eq. 6) as an estimate of
p̂i. Thus, an optimal buyer strategy i� satis�es: i� 2 argmin0�i�S �pi + ci. At
equilibrium, 0 < w1 � 1, since if w1 = 0, then all buyer perform some degree of
search, in which case all sellers charge the competitive price r (see Eqs. 2 and
3), from which it follows that it is in fact not rational for buyers to search at all,
leading to the contradiction that w1 = 1. Now since the buyer cost function �pi+ci
is convex, it is minimized at either a single integer value i�, or two consecutive
integer values i� and i� + 1. Thus, at equilibrium, either w1 = 1, in which case
all sellers charge the monopolistic price v, or w1+w2 = 1 and the sellers' prices
are given by the distribution f(p). 4

In the case where w1 + w2 = 1, we can obtain analytic expressions for the
average prices seen by buyers of types 1 and 2:

�p1 = p� +
(�1 +w2)

�
2w2

1+w2

+ log
�
1�w2

1+w2

��
2w2

(v � r) (7)

�p2 = p� +
(1� w2)

�
2w2 +

�
1� w2

2

�
log

�
1�w2

1+w2

��
2w2

2 (1 + w2)
(v � r) (8)

Fig. 3(a) plots �p1 (i.e., Search{1) and �p2 (i.e., Search{2) as a function of w2.
Not surprisingly, these curves are downward sloping, which re
ects the fact that
price decreases on average as the degree of search increases.

Fig. 3(b) plots the marginal cost of obtaining only one price quote rather than
searching for two. More speci�cally, this �gure displays �p1 � �p2 as a function
of w2. Notice that there exist � > 0 such that �p1 = �p2 + �. In the diagram,
� is arbitrarily set at 0:02. The points of intersection between the marginal
cost curve and � = 0:02 represent the points at which buyers are indi�erent
between obtaining a single price quote and obtaining two price quotes at price
�, but purchasing the commodity at the lower price of the two. In other words,
there are two equilibria on the curve, indicated by the colored circles. Above
the dotted line, the marginal cost is greater than �; thus, it is advantageous to
search and there is momentum in the rightward direction. On the other hand,
below the dotted line, the marginal cost is less than �, and it is therefore more
desirable not to search; hence, there is momentum in the leftward direction.
Following the direction of the arrows, we observe that the open circle represents
an unstable equilibrium, while the �lled-in circle that falls on the curve is a
stable equilibrium. In addition, there is a second stable equilibrium in the lower
left-hand corner of the graph (indicated by a second �lled-in circle) where w1 = 1
and the equilibrium price is the monopolistic price v. The unstable equilibrium
represents a boundary between two basins of attraction: initial values of w2

greater than this will migrate towards the equilibrium near w2 = 1, while those
less than this will migrate towards w1 = 1.

4 This depends on the assumption that c1 is su�ciently small such that w0 = 0.
Otherwise, the equilibria which arise are such that w1 = 1�w0 or w1+w2 = 1�w0.
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Fig. 3. An economy of buyers of type 1 and 2.

4 Shopbot Experiments

In order to explore the likely e�ect of shopbots on market behavior, we consider
three distinctive characteristics of shopbots in turn, focusing on how they a�ect
search costs and buyers' strategies.

First of all, a typical shopbot such as the one residing at www.acses.com

permits users to choose the number of sellers among whom to search. Since the
service is free to buyers at present, and since the search is very fast (acses
searches prices at 25 book retailers within about 20 seconds), there is only a
very mild disincentive to requesting a large number of price quotations. Thus,
the e�ective search cost is only weakly dependent on the number of searches.
One way to model weak dependence on the number of searches is via a nonlinear
search cost schedule: cj = c1 + �(j � 1)�, where the exponent � is in the range
0 � � � 1. Note that � = 1 yields the linear search cost model, while � = 0
yields a search cost that is independent of the number of searches for j > 1.

Second, today's shopbots are used by only a small fraction of shoppers. This
is due at least in part to the fact that many potential users are unaware of the
existence of shopbots, and others do not know where to �nd them or how to
use them. One way of modeling buyers who do not use shopbots is to assume
that such uninformed or \irrational" users are buyers of type 1, for which they
incur �xed cost c1. This establishes a lower limit on the fraction w1, which we
denote bw1c. In particular, bw1c represents the fraction of uninformed buyers
who guarantee the sellers a strictly positive pro�t surplus. In the following two
subsections, we explore these issues in greater detail.

4.1 Nonlinear search costs

Suppose that buyers periodically (at random times) re-evaluate their search
strategies and choose the strategy j that minimizes p̂j + cj, where p̂j is their
estimate of the average price they are likely to get by using search strategy j.
One possibility is that the buyer (or an agent acting on the buyer's behalf) could
use historical data on sellers' prices to estimate p̂j. However, we shall assume



here that the buyers are perfectly knowledgeable about the sellers' marginal
production cost r and the current state of the strategy vector w, and thus they
can integrate Eq. 6 numerically to compute p̂j = �pj. As the buyers modify their
strategies in this manner, we assume further that the sellers monitor w and
instantaneously re-compute the symmetric price distribution f(p) and choose
their prices according to this distribution.

We can approximate this evolutionary process by a discrete time process
in which, at each time step, a fraction � of the buyer population is given the
opportunity to switch to the optimal strategy. Then the strategy vector evolves
according to: wi(t + 1) = wi(t) + �(�ij � wi(t)), where j is the strategy that
minimizes �pj + cj and �ij represents the Kronecker delta function, equal to 1
when i = j and 0 otherwise.

Fig. 4(a) illustrates the evolution of the components of w in a 5-seller system
when w1 is completely endogenous (bw1c = 0, and the search costs are linear
(� = 1, c1 = 0:05, and � = 0:02). The value of � is 0.005. Recall that according
to Burdett and Judd [2], w must evolve toward an equilibrium consisting of a
�nite number of type 1 and type 2 buyers. Indeed, this does occur, but what is
most interesting is the trajectory of the w on its route toward equilibrium.
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nonlinear search costs ci = 0:05+0:02(i�1)0:25 . Final equilibrium oscillates chaotically
around a mixture of strategy types 1, 2, and 3.

Initially, w0 = (0:2; 0:3; 0:0; 0:0;0:5). In this situation, the favored strategy
is type 3, and so w3 begins to grow at the expense of w1, w2 and w5. However,
as w5 diminishes, the total amount of search in the system diminishes, and f(p)

attens and shifts in such a way that eventually the favored strategy shifts from
3 to 2. Thereafter, w2 grows at the expense of w3 and the other components. In
this simulation, near but imperfect equilibrium is achieved: due to the �nite size
of � (equal to 0.005), there are small oscillations in w2 around an average value
that is close to the theoretical value of 0.9641721. This value can be derived by



identifying the value of w2 corresponding to � = 0:02 in Fig. 3(b). In Fig. 3(b),
there is a second value of w2 satisfying � = 0:02, near w2 = 0:1375564. However,
this is the unstable equilibrium, and as discussed in the previous section it marks
the boundary between two basins of attraction, one in which the �nal equilibrium
is (w1; w2) = (0:0358279; 0:9641721), and the other in which (w1; w2) = (1; 0).

The derivation of an equilibrium in which only type 1 and type 2 strategies
could co-exist was founded on the assumption that search costs are linear in the
amount of search. In order to investigate the e�ect of nonlinear search costs that
grow only weakly with the amount of search, we run the same experiment, in
which all parameters are identical except for the exponent �, which is reduced
from 1.0 to 0.25. Fig. 4(b) depicts the result. Interestingly, in this case the
system evolves to an equilibrium in which types 1, 2 and 3 co-exist: w oscillates
around the value (0:0217; 0:5357;0:4426; 0:0000; 0:0000) in a way that appears to
be chaotic, but it remains to conduct further tests of this phenomenon.While the
chaotic oscillations are an artifact of the �nite size of �, and would disappear in
the limit � ! 0, they hint that the system would undergo large-scale nonlinear
and possibly chaotic oscillations if the buyers were to revise their strategies
synchronously rather than asynchronously.

4.2 Lower limit on w1

In order to explore the consequences of some proportion of users failing to
adopt low-cost search methods (perhaps due to ignorance about their exis-
tence or about how to use them), we now impose a lower limit on w1, de-
noted bw1c. Fig. 5(a) depicts the result of imposing bw1c = 0:04, with linear
search costs ci = 0:05 + 0:005(i � 1). Starting from an initial strategy vector
w0 = (0:04; 0:20; 0:00;0:00;0:76), the system evolves to an equilibrium in which
only types 1 and 4 co-exist, with w1 = 0:04 and w4 = 0:96.
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Fig. 5. (a) Evolution of indicated components of buyer strategy vector w for 5 sellers,
with linear search costs ci = 0:05 + 0:02(i � 1) and bw1c = 0:04. Starting from the
initial w indicated in the text, the strategy vector evolves towards an equilibrium in
which only types 1 and 4 are present. (b) Two-dimensional cross-section of basin of
attraction for (bw1c ; �) = (0:04; 0:005).



In numerous experiments with linear search costs, we have observed that the
�nal equilibrium always consists of a mixture of types 1 and i, where i is not
necessarily 2, as it must be when w1 is determined in an entirely endogenous
fashion. The strategy i depends on the values of bw1c and �. Table 1 illustrates
the dependence of the strategy i that mixes with strategy 1 upon bw1c and the
incremental cost �. Higher values of bw1c lead to higher equilibrium strategies i
(more extensive search) while higher incremental costs � lead to lower equilibrium
strategies i (less extensive search). For the table entries (bw1c ; �) = (0:04; 0:005)
and (bw1c ; �) = (0:20; 0:020),multiple equilibria are obtained. In these cases, the
initial setting of the strategy vector determines which equilibrium is obtained.

The e�ect of initial conditions on equilibrium selection in the case (bw1c ; �) =
(0:04; 0:005) is illustrated in Fig. 5(b). Four equilibria are possible, all of the form
w1+wi = 1, for i = 2; 3; 4; 5. The set of initial conditions leading to equilibrium
i | its \basin of attraction" | forms a contiguous, smoothly bounded region,
a two-dimensional cross-section of which is depicted in Fig. 5(b).

bw1c � = 0:001 � = 0:005 � = 0:020
0.01 5 2 2
0.04 5 2{5 2

0.20 5 5 2{3

Table 1. Search strategy or strategies that co-exist with type 1 search strategy, as a
function of bw1c and incremental cost �.

5 Conclusions and Future Work

Our desire to explore the economic impact of shopbots in obtaining price and
product information has led us to a model that is similar in spirit to those
that have been investigated by economists interested in understanding the phe-
nomenon of price dispersion. Our goals, however, are prescriptive, rather than
descriptive, leading us to consider somewhat di�erent causes and e�ects than
are typical of price dispersion studies. Ultimately, we are interested in designing
economically-motivated software agents, as well as an infrastructure that will
support their interactions; thus, we have emphasized the constructive computa-
tion of price distributions and averages, rather than merely providing classical
proofs of existence and other properties of equilibria.

Arguing that nonlinear search cost schedules are likely to exist naturally, or
might even be adopted intentionally by shopbots, we studied their e�ect within
the context of our model; our �ndings reveal that nonlinear search costs can lead
to more complicated mixtures of buyer strategies and more extensive search than
occur with linear costs. Another practical assumption, namely the existence of
a positive number of uninformed buyers who do not use search mechanisms,



can lead to similar outcomes. Taking evolutionary dynamics of buyer strategies
into account, we found that the �nal equilibrium strategy vector depends on its
initial value, and the route toward equilibrium can be surprisingly complicated.

In closing, we brie
y mention two promising areas for future work. First, com-
bining the evolutionary dynamics of buyers with more interesting and realistic
models for seller pricing behavior such as those described in [7,8] would be of
practical importance, and are certain to lead to interesting dynamics. Secondly,
since shopbots are beginning to provide additional information about product
attributes, it would also be of interest to analyze and simulate a model that
accounts for both horizontal [1] and vertical di�erentiation.
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