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Abstract

We define a new “contour person” model of the human
body that has the expressive power of a detailed 3D model
and the computational benefits of a simple 2D part-based
model. The contour person (CP) model is learned from a
3D SCAPE model of the human body that captures natural
shape and pose variations; the projected contours of this
model, along with their segmentation into parts forms the
training set. The CP model factors deformations of the body
into three components: shape variation, viewpoint change
and part rotation. This latter model also incorporates a
learned non-rigid deformation model. The result is a 2D
articulated model that is compact to represent, simple to
compute with and more expressive than previous models.
We demonstrate the value of such a model in 2D pose es-
timation and segmentation. Given an initial pose from a
standard pictorial-structures method, we refine the pose and
shape using an objective function that segments the scene
into foreground and background regions. The result is a
parametric, human-specific, image segmentation.

1. Introduction

The detection of people and the analysis of their pose
in images or video has many applications and has drawn
significant attention. In the case of uncalibrated monocu-
lar images and video, 2D models dominate while in cali-
brated or multi-camera settings, 3D models are popular. In
recent years, 3D models of the human body have become
sophisticated and highly detailed, with the ability to ac-
curately model human shape and pose [5] (Fig. 1(c)). In
contrast, 2D models typically treat the body as a collec-
tion of polygonal regions that only crudely capture body
shape (Fig. 1(a)) [6, 14, 15, 21]. Two-dimensional models
are popular because they are relatively low dimensional, do
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Figure 1. Contour Person Model. Most 2D body models (left)
are simple articulated collections of geometric primitives while
3D models have become increasingly detailed and realistic (right).
The contour person model (middle) has the realism of modern 3D
models but with the computational benefits of a 2D model.

not require camera calibration, and admit computationally
attractive inference methods (e.g. with belief propagation
[1, 8, 17, 23]). For many problems such as pedestrian de-
tection, full 3D reasoning many not be needed. While such
2D models predominate, they have changed little in 20 or
more years [14, 15].

In this paper we describe a new 2D model of the body
that has many of the benefits of the more sophisticated 3D
models while retaining the computational advantages of 2D.
This Contour Person (CP) model (Fig. 1(b)) provides a de-
tailed 2D representation of natural body shape and captures
how it varies across a population. It retains, however, the
part-based representation of current 2D models as illus-
trated by the different colors in Fig. 1(b) and the banner.
An articulated, part-based, model is required for pose esti-
mation using inference methods such as belief propagation.
Importantly, the CP model also captures the non-rigid de-
formation of the body that occurs with articulation. This al-
lows the contour model to accurately represent a wide range
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of human shapes and poses. Like other 2D body models,
the approach is inherently view-based with 2D models con-
structed for a range of viewing directions.

The contour person model factors changes in 2D body
shape into a number of causes, with each cause repre-
sented using a low-dimensional model. These include shape
changes due to 1) viewing direction; 2) identity or body
shape; 3) rigid articulation; and 4) non-rigid deformation
due to articulation. This is similar to recent work on 3D
body shape representation using the SCAPE model [2]. In
fact our 2D model is created from a 3D SCAPE model of the
human body. However, rather than model deformations of
triangles on a 3D mesh, we model deformations of line seg-
ments in 2D; this results in a simpler and lower-dimensional
body model.

We envision many applications of the contour-person
model. This paper focuses on the development of the model
and the issues involved with representing an inherently 3D
shape model in 2D while maintaining realism and accuracy.
To illustrate the application of the model we present initial
results in pose estimation and segmentation. To do so, we
build on an existing state of the art person detector that uses
a pictorial structures (PS) model [1]. This existing tech-
nique is used to initialize our model and then both the pose
and shape of the CP model are refined using a parametric
form of GrabCut [22]. Results of pose estimation and seg-
mentation are shown on a variety of images and compared
with pictorial structures for pose estimation and with tradi-
tional GrabCut for segmentation.

2. Related Work
Two-dimensional models of the human body are popu-

lar due to their representational and computational simplic-
ity. Existing models include articulated pictorial structures
models, active shape models (or point distribution mod-
els), parametrized non-rigid templates, and silhouette mod-
els. We focus here on models that explicitly represent shape
with contours and, furthermore, those that have been used to
represent non-rigid human shape and pose. There is an ex-
tensive literature on general contour models for object rep-
resentation and recognition that we do not consider here.

2D articulated person models. Most 2D articulated
person models have focused on estimating human pose and
have ignored body shape. We argue that a good body shape
representation can improve pose estimation by improving
the fitting of the model to image evidence.

The first use of a human “puppet” model was due to Hin-
ton [14] and there have been many related models since.
The classic 2D model is the “cardboard person” [15], de-
fined by a kinematic tree of polygonal regions, where each
limb may be rotated or scaled in 2D. Similarly the scaled-
prismatic model (SPM) treats the limbs as rigid templates
that can be scaled in length [6]. Both the cardboard person

and SPM approximate foreshortening caused by motion of
the limbs in depth.

More restricted models, with only rotation at the joints
(and a global scale), form the basis of most of the cur-
rent pictorial structures (PS) models [10] used for detecting
and tracking people in monocular imagery [1, 8, 9, 17, 21].
These models admit efficient search with belief propagation
(BP) due to the simplification of the representation. Sigal
and Black [23] use a 2D model that includes foreshorten-
ing and do inference with BP. The advantage of the richer
model is that it allows better prediction of 3D pose from the
estimated 2D model [23].

Our work falls solidly in the PS camp but increases the
realism beyond previous methods by modeling shape vari-
ation across bodies as well as non-rigid deformation due to
articulated pose changes.

Active shape and contour models. Active shape mod-
els (ASMs) capture the statistics of contour deformations
from a mean shape using principal component analysis
(PCA) [7]. PCA can be performed on points, control points
or spline parameters. These models have been used exten-
sively, particularly for representing human faces and their
deformations [7]. Note that facial features deform in such
models but there is no explicit representation of part rota-
tion, they have little depth variation relative to each other,
and there is no self occlusion. The articulated human body
has all these issues.

Baumberg and Hogg were the first to use ASMs for rep-
resenting the full human body [3]. Given a training set
of pedestrians segmented from the background, they de-
fine contours around each with the same number of points
and roughly the same starting locations. They analyze the
modes of variation in this contour using PCA and use this
model to track pedestrians.

In such a model, changes in body shape and pose are
combined in one PCA representation. Furthermore, with
no notion of body parts, the alignment between training
body contours is difficult to establish. This results in prin-
cipal components that capture the non-informative sliding
of points along the contour. Finally this simple PCA model
does not directly encode articulated body pose, limiting its
use for human motion and gesture analysis.

Ong and Gong [20] extend these point distribution mod-
els to deal with articulated 3D human motion of the upper
body. They construct a training vector that includes the con-
tour points of the upper body, 2D points corresponding to
the locations of the hands and head, and the 3D joint angles
of an underlying articulated body model. To deal with the
non-linearity of the contour with respect to pose, they use
a hierarchical PCA method that finds linear clusters in the
non-linear space. In contrast, we explicitly model the parts
of the body and do not use PCA to capture articulations.
Rather we use it to capture body shape variations (and cam-



era view changes). This provides a blend between the PS
models and the active contour methods.

Grauman et al. [12] map multi-view silhouettes to con-
tours and learn a low dimensional shape representation in
conjunction with 3D body pose. Like other methods they
model shape in terms of the contour points. Our model dif-
fers in that it models deformations of 2D contours and this
representation is important for explicitly modeling articula-
tion and for factoring different types of deformation.

Human models and segmentation. We evaluate our
model on the problem of segmentation; the contour of the
body defines the region inside (and outside) the body. In
early work, Kervrann and Heitz [16] define a non-rigid
model of the hand and estimate both its pose and segmen-
tation using motion and edge cues. The model is not part-
based, the deformations are not learned, and it has a limited
range of motion. Alternative formulations have explored
template-based models of the body [11, 18] that are not fully
articulated and do not factor shape and pose.

Of particular relevance is the recent work of Ferrari and
Zisserman [9] that uses a weak detector to obtain a crude
estimate of human pose in an image. This pose is then used
to initialize GrabCut [22] segmentation. Given an initial
segmentation of the scene into a foreground person and a
background, they fit a more detailed PS body model.

We use this idea of an initial guess followed by GrabCut
but with a much more detailed model. Rather than end with
a PS model, we begin with one. We use the method in [1]
to fit a PS body model to the image. This 2D body model is
used to initialize the pose and scale of our contour-person
model. We then refine the parameters of the model (pose,
view and shape) to improve the segmentation using a form
of parametric GrabCut.

This parametric GrabCut idea is similar to Bray et al. [4],
however they use a 3D articulated skeleton model and a dis-
tance transform from this to define 2D body shape. The re-
sult is a crude depiction of the body shape in 2D but the
interesting element of their work is the integration of 3D
pose estimation with segmentation. We also integrate para-
metric body shape and pose estimation with segmentation
but do it in 2D with a much richer model of body shape.

3. Contour Person Model
A 2D representation of shape and pose of a 3D person

presents many challenges. We seek a model that is expres-
sive enough to represent a wide range of human bodies and
poses, yet low dimensional enough to be computationally
tractable for common vision problems. We build on the
idea of the SCAPE model [2] and develop a factored repre-
sentation. In particular we factor 2D body shape into: 1) a
linear model characterizing shape change across the popula-
tion; 2) a linear approximation to distortions caused by local
camera view changes; 3) an articulation of the body parts

Figure 2. The Contour Person. Colors code the different body
parts. A range of articulations is shown.

represented by a rotation and length scaling; 4) a non-rigid
deformation associated with the articulation of the parts. An
example of the full model is shown in Fig. 2.

The CP model is built from training data generated from
a 3D SCAPE body model [2] capturing realistic body shape
variation and non-rigid pose variation. Each training body
for the CP model is generated by randomly sampling a body
shape, in a random pose, viewed from a random camera.
The bounding contour of the 3D body is projected onto the
camera plane to produce a training contour. The known seg-
mentation of the 3D model into parts induces a similar 2D
contour segmentation (Fig. 2).

3.1. Representation and synthesis

A contour C is represented discretely by N points, de-
noted {v}N

i , vi = (xi, yi). In our experiments N = 500.
The associated directed graph G is closed and linear, where
an edge ei, the difference vector between vi and vi+1, re-
sults from a scaled rotation, di, acting on li, the difference
vector between the corresponding pair of points in a tem-
plate contour T . The “deformation”, di, is defined by an an-
gle θi and scale si, or equivalently, by (si cos θi, si sin θi).
Let EC be the edge representation of C, and thus,

EC = D(Θ)ET (1)

where D(Θ) is a 2N by 2N block diagonal matrix whose 2
by 2 blocks are scaled rotation matrices defined by

siRθi = si

(
cos θi − sin θi

sin θi cos θi

)
. (2)

We write D instead of D(Θ) when it is clear. E
is the connectivity matrix of G (E takes values in
{−1, 0, +1} according to the usual convention of directed
graphs) and C and T are vectors in R2N of the form
(x1, y1, x2, y2, . . . , xN , yN )T .

Note that left multiplication of ET by D can be viewed
as an action of a Lie group [13]. However, applying a given
D will not, in general, yield a consistent (closed) contour.
Closure may be enforced by direct constraints on the de-
formations [13]. However, as noted in [13] this yields a
linear submanifold, thus losing the group structure. Unlike



[13], we use a different approach that preserves the group
structure in the generative model, and defers closure to post-
processing. Specifically, given a deformation matrix D, we
seek a contour C such that its deformed edges are close to
the desired deformed edges in a least squares sense. In ef-
fect, we minimize the sum of squared differences between
the deformed li’s in DET and the unknown new line seg-
ments, ei, in C:

N∑
i=1

‖siRθi li − ei‖2 = ‖DET − EC‖2
. (3)

The minimizer yields our contour synthesis equation:

C = E†DET (4)

where E†, the Moore-Penrose pseudoinverse of the constant
matrix E, is computed offline. The connectivity of G en-
sures the closure of C. This approach echos the one used
in [2] for computing a consistent 3D mesh, but there the
motivation was unrelated to maintaining a group structure.

Note that the minimizer is defined up to global transla-
tion. Eq. 4 shows how to synthesize C from D and the
template. Conversely, given known li and ei, we compute
the deformations di by solving the invertible (||li|| > 0)
linear system

ei = siRθi li =

(
l
(1)
i −l

(2)
i

l
(2)
i l

(1)
i

)(
si cos θi

si sin θi

)
(5)

where l
(k)
i is the kth element of the ith line segment.

We factor deformations of the template contour into sev-
eral constituent parts: pose, shape, and camera. Each of
these is described in turn below and then we show how they
are composed to derive the full model.

3.2. Variation in body shape

To train the shape deformation model Dshape(Θshape)
we take the 3D SCAPE model and generate numerous re-
alistic bodies shapes in a canonical pose and project their
contours into the image. Since the segmentation of the body
parts is known in 3D [2], we also know the segmentation of
contour points in 2D. We use this to evenly space points
along a training part. The known segmentation prevents
points from “sliding” between parts. The result is 2D train-
ing contours with known alignment of the contour points.

For each contour we compute its deformation from a sin-
gle template contour, T , using Eq. 5. We form a matrix of
all these training deformations (subtracting the mean) and
perform PCA. This gives a linear approximation to contour
deformations caused by body shape variation paramterized
by the PCA coefficients Θshape.

Figure 3. Shape variation. Gender-neutral shape model. Red:
first PC. Black: second PC. Blue: third PC. In each color, from left
to right: -3, 0 and +3 σ from the mean in direction of respective
principal component.

Figure 4. Camera variation. The first three camera principal
components for the Female model. Red: first PC. Black: second
PC. Blue: third PC. In each color, from left to right: -3, 0 and +3
σ from the mean in the direction of the respective PC.

Note that by maintaining the Lie group structure, we can
perform PCA on the linear Lie algebra. This notion was in-
troduced by [24] in a more complicated setting. We briefly
note that in the CP case the associated computations are
simpler as our Lie group is both Abelian and of finite di-
mension. The models learned using PCA versus those us-
ing PCA on the Lie algebra are similar but the latter requires
fewer principal components to capture the same percentage
of the cumulative variance.

The first three principal components (PCs) of a shape
model learned from samples of both genders, can be seen
in Fig. 3 (similar gender-specific models are created and
used when the gender is known). The principal components
clearly capture correlated properties of human shape such
as variations in height, weight, girth and so on.

3.3. Variation in view

A procedure analogous to the above is used to capture
contour deformation due to camera pose. Training data con-
sists of contours generated from a single fixed body shape
and posture viewed by cameras of different 3D location and
tilt angle. Focal length is held fixed as it has a similar affect
on the model as person-to-camera distance.

The deformations due to camera variation are well cap-
tured by PCA, with 6 components accounting for more than
90% of the variance; i.e. Θcamera ∈ R6. The first three
principal components, for the female model, can be seen in
Fig. 4 and roughly correspond to changes in distance be-
tween the camera and the person, rotation of the camera
about the person, and foreshortening of the body caused by
tilt of the camera.

Note that the view-variation is learned on the template



person in a canonical pose and then is applied to other peo-
ple and poses; this is an approximation.

3.4. Variation in pose

In the 3D SCAPE model, deformations due to body ar-
ticulation are modeled by a two-step process. First, a rigid
rotation is applied to the entire limb or body part, and
then local non-rigid deformations are applied according to
a learned linear model. We employ a similar approach.

For example, in Fig. 5(b), a rigid motion of the upper arm
does not account for non-rigid deformations of the shoul-
der. This is corrected by applying a learned non-rigid de-
formation to the edges of the contour in the vicinity of the
joint (Fig. 5(d)). Specifically, we break the deformation into
θi = θR +∆θi and si = sR×∆si, where dR = (θR, sR) is
the rigid deformation and ∆di = (∆θi, ∆si) corresponds to
non-rigid deformation. dR has the same value for all edges,
ei, in same body part (for example, the left upper arm) while
∆di varies along the contour.

To learn the non-rigid deformation model we generate
training contours using the 3D SCAPE model, in random
poses, projected into a fixed camera view. Note that the 3D
SCAPE model already captures the non-rigid deformations
of the limbs, so that the generated 2D contour looks nat-
ural. The rigid 2D rotation, θR, and limb scaling, sR, of
each limb is computed between the template contour and
the training contour. The scale is important as it captures
foreshortening of the body parts and thus helps model out
of plane movements.

We also compute the deformations, di, between the line
segments of the template and training contours using Eq. 5.
We then remove the rigid rotation, θR, and limb scaling, sR,
from di for all line segments i affected by this body part to
derive a residual deformation Note that a rigid motion of
the upper arm affects the non-rigid deformation of the up-
per arm as well as those of the lower arm and the shoulder.
The residual is the deformation of the contour that is not
accounted for by part-rotation and part-scaling.

Given many such ∆di and dR (of the same i, but from
different training contours) we learn a linear predictor from
the rigid transformation parameters to the non-rigid defor-
mations. Such a model is defined by(

∆θi

∆si

)
=
(

α1(i) · · · α2n(i)(i) α0(i)
β1(i) · · · β2n(i)(i) β0(i)

)
p, (6)

where p =
(
θR
1 , sR

1 , . . . , θR
n(i), s

R
n(i), 1

)T

∈ R2n(i)+1 is a
vector of rigid transformations, n(i) is the number of parts
affecting di, and the α’s and the β’s are parameters to be
learned. Once the model is learned, for every choice of dR,
we compute the associated ∆di’s. Then we can compute the
full di’s, and define Dpose is a similar way to Dshape and
Dcamera. The difference is that Θpose does not represent

(a) (b) (c) (d)

Figure 5. Non-rigid deformation. (a) template with left arm
marked in blue. (b) rigid transformation of upper arm. (c) same
as (b) but with parts which should be non-rigidly deformed due to
the rigid motion marked in red. (d) final deformed contour with
the non-rigidly deformed parts marked in red.

PCA coefficients. Instead, it represents the different scales
and rotations of each body part.

A crucial point is that the CP model utilizes 3D infor-
mation when it is constructed; this is quite different from
standard 2D models. This point is illustrated in the way it
deals with self occlusions as well as out of the plane rota-
tions, as depicted in Fig. 2. In a standard contour model,
the ordering of the points would be poorly defined (cf. [3]).
Since our contours are generated from a 3D mesh, we have
known correspondence between contour points and their re-
spective points and body parts on the 3D mesh. This pro-
vides the correct connectivity of the contour even when it
crosses itself in 2D.

3.5. The full model

We train each deformation model independently above
and then compose them. Because of our representation in
terms of deformations this composition of factors is simply
matrix multiplication. This is a key advantage over con-
tour representations that use vertices directly. Since 2D ro-
tation matrices commute, the composition order is immate-
rial. Given parameters for shape, pose, and camera view,
the overall deformation is given by the deformation synthe-
sis equation:

D(Θ) = DposeDshapeDcamera, (7)

where Θ = {Θpose, Θshape, Θcamera}. D(Θ) can be sub-
stituted into Eq. 4 to produce a new C. Here we use 24
pose parameters (12 joints ×2), 10 shape coefficients and 6
camera coefficients, for a total of 40 parameters.

This factored model is an approximation, but one that
works well. Example contours synthesized from the gen-
erative model are shown in Fig. 6. Note that PCA gives a
Gaussian probabilistic model defined by the variance long
the principal component directions. This works well for
body shape and camera pose where the training samples are
roughly normally distributed. The figure shows camera- and
shape-variations sampled from this model. The joint angles
and limb scaling are sampled uniformly over a predefined



Figure 6. Contour people sampled from the model. Large deviations from the mean body are shown for shape, pose, and camera. Row
1: variations in body shape. Row 2: variations in pose. Row 3: variations in camera view. Row 4: all variations together.

range. Note that, because the 2D model is generated from
3D, there are correlations in 2D joint angles and scaling that
could be modeled; this is future work.

4. Segmentation
As an example application of this model, we consid-

ered the problem of segmenting images of humans. The
CP model provides a strong prior over human body shape
that can be used to constrain more general segmentation
algorithms such as GrabCut [22]. Specifically we search
over the CP parameters that optimally segment the image
into two regions (person and non-person) using a cost func-
tion that 1) compares image statistics inside the contour
with those outside; 2) favors contours that align with im-
age edges; 3) enforces our prior model over shape, pose and
camera parameters.

Initialization. We initialize the CP model using the out-
put of a standard pictorial structures algorithm [1]. The
PS model is lower dimensional than the full CP model and
hence provides a more efficient initialization. We simply set
the rigid deformation parameters (rotation and scale) in the
CP model to be equal to those of the PS model. While the
PS model defines a segmentation of the image, it is a crude
depiction of the human form. Consequently we refine the
segmentation using the CP model.

Region term. The region term of the segmentation ob-
jective compares intensity and color histograms inside and
outside the body contour. We take the pixel mask m(Θ)

consisting of all pixels of the image plane Ic within the con-
tour and compare the normalized histograms H in

c (I,m) =
hist(Ic(m)) and Hout

c (I,m) = hist(Ic(m̄)) using the χ2

histogram distance:

dc(I,m) = 2 −
∑

i

(
H in

c (i) − Hout
c (i)

)2
H in

c (i) + Hout
c (i)

. (8)

We follow Martin, et al. [19] in treating intensity his-
tograms and color histograms as separate features (we use
the YCbCr colorspace)

ESt(I, m) = λ1dY (I,m) + λ2dCb(I, m) + λ3dCr(I, m).

Edge term. The segmented contour should also follow
image edges. We detect image edges using a standard edge
detector and apply a thresholded distance transform to de-
fine an edge cost map normalized to [0, 1]. We use the trape-
zoid rule to evaluate the line integral of the set of all model
edges over the edge cost image. This defines an edge cost,
EEg(I, Θ), that is included in the objective function.

Prior. We use a loose prior, EPr(Θ), on shape, pose
and camera only to prevent values significantly outside what
the model is trained on. This prior remains zero until the
parameters are three standard deviations from the mean and
then rises linearly from there.

Objective. The full cost function is then E(I, Θ) =
ESt(I, m)+λ4EEg(I, Θ)+λ5EPr(Θ), which we optimize
using a gradient-free direct search simplex method.



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Results. Row 1: Pictorial Structures result. Row 2: CP initialization from PS (red) and CP result (green). Row 3: CP result.

Figure 8. Comparison to GrabCut. GrabCut with a manual initialization step and no manual cleanup, compared to fully automatic CP
segmentation.

5. Experimental Results

The CP model realistically captures a large range of real
human poses in the space in which it was trained (Fig. 7).
This enables it to find segmentations which, while not per-
fect, are guaranteed to be plausibly human, unlike more
general segmentation methods (Fig. 8). This is a fairly sim-
plistic segmentation approach which is designed only to il-
lustrate the CP model; note that the parametric segmenta-
tion method here is similar in spirit to PoseCut [4].

Note that the model is not clothed and consequently will
produce segmentations that tend to ignore clothing. While
the optimization could be made explicitly robust to clothing
[5], for segmentating clothed people it might be preferable
to explicitly model clothing.

Given our simplistic segmentation method, the model
can also make mistakes such as those in Figs. 7(a) and 7(b),

where the optimization latches on to a strong edge at the
hairline and finds that the hair matches the background color
statistics better than the foreground statistics; this pushes
the shoulders down, causes the head to be smaller than the
torso and legs would otherwise indicate, so the camera gets
detected as tilted upwards, which in turn causes the shoul-
ders to narrow and the arms to shorten. In Fig. 7(g) the PS
initialization is far enough off that a simple direct search op-
timization method cannot escape the local minimum; note
though that only the left arm was poorly initialized and that
only the left arm remains poorly localized and segmented.
Another failure case is typified by the left hand in Fig. 7(f).
We train this model without varying the angle of the wrist
and our training data consists of exclusively closed fists.
Consequently the model does a poor job representing open
hands and bent wrists.



6. Conclusions

We have defined a new type of 2D human body model
that retains the standard part-based structure of classical
pictorial structures models. It goes beyond previous models
in several significant ways. First, it factors 2D body shape
into several causes. Deformations from a training template
are used to describe changes in shape due to camera view,
body shape, and articulated pose. The approach is similar
to the 3D SCAPE model in that deformations are combined
into a complete generative model. Second, the CP model
captures the non-rigid deformations of the body that re-
sult from articulation. Like SCAPE, these are learned from
training examples. The result is a fairly low-dimensional
model that represents realistic human body contours and
can be used for vision applications such as person detection
and tracking.

Our 2D model is view-based and here we have have only
shown examples for frontal bodies. A key next step is to
extend this to other discrete views. A general solution to
the human pose and shape estimation problem will require
an inference method to search over the discrete set of views.

The part-based structure of the CP model makes the use
of a PS-style inference method like BP appealing. There
are several challenges, however: 1) the non-rigid articulated
deformations mean that the body does not fully factor into
independent parts; 2) the camera view and body shape are
“global” properties; 3) the contour is constructed from de-
formations via least squares optimization. These proper-
ties mean that the simple tree-structure of the PS graphical
model is lost, complicating inference.

Future work will explore the estimation of 3D body
shape parameters directly from the 2D body shape parame-
ters. We will also explore the inference of gender from the
2D shape. Finally, the 2D contour person model should be
extended to model loose-fitting clothing.
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