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Abstract

We study the Sherali-Adams lift-and-project hierarchy of linear programming relaxations of
the matching polytope. Our main result is an asymptotically tight expression 1 + 1/k for the
integrality gap after k rounds of this hierarchy. The result is derived by a detailed analysis of
the LP after k rounds applied to the complete graph K2d+1. We give an explicit recurrence for
the value of this LP, and hence show that its gap exhibits a “phase transition,” dropping from
close to its maximum value 1 + 1

2d to close to 1 around the threshold k = 2d −
√

d. We also
show that the rank of the matching polytope (i.e., the number of Sherali-Adams rounds until
the integer polytope is reached) is exactly 2d− 1.
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1 Introduction

Background. Recent years have seen an explosion of interest in hierarchies of linear or semidefi-
nite relaxations of 0-1 integer programs, such as those due to Sherali and Adams [26], Balas, Ceria
and Cornuejols [5], Lovász and Schrijver [22] and Lasserre [19, 20]. (For an excellent discussion and
comparison of these methods, see the article of Laurent [21].) Given a convex polytope P0 ⊆ Rn, the
goal is to maximize a linear function f over the associated integer polytope P = conv(P0 ∩ {0, 1}n.
The above methods construct a sequence P0 ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pn = P of successive relaxations
of P such that the nth relaxation Pn is equal to P . The relaxations are either linear or (in the case
of Lasserre and one variant of Lovász and Schrijver) semidefinite, and (under suitable assumptions
about P ) have the property that that a linear function can be optimized over Pk in time nO(k),
which is polynomial for any fixed k. The relaxations are constructed by “lifting” the current Pk to
a higher dimensional space, tightening it by adding further linear or semidefinite constraints that
are satisfied by all 0-1 vectors, and then projecting back down to Rn. For this reason, the methods
are often referred to as “lift-and-project” algorithms.

Interest in these methods has come from at least three distinct communities. First, in polyhedral
combinatorics, the structure of the successive relaxations Pk is of intrinsic interest. In particular,
one may naturally ask about the rank of P , i.e., the minimum number of rounds k for which Pk = P ,
or the rank of any particular linear inequality known to be satisfied by P . Second, in computational
complexity there has recently been a substantial sequence of results proving for several classical
combinatorial problems that, even for k = Ω(n), the kth relaxation Pk has a large integrality gap.1

The motivation for these results is that the various lift-and-project schemes encompass most known
sophisticated approximation algorithms for NP-hard problems such as Sparsest Cut and Maximum
Satisfiability; therefore, a large integrality gap after a linear (or even logarithmic) number of rounds
rules out (unconditionally) a very wide class of efficient approximation algorithms. Third, in the
area of proof complexity, the various hierarchies can be viewed as sequences of proof systems with
the goal of proving that the integer polytope P is empty (which may be equivalent to, e.g., showing
that a given formula is unsatisfiable). The inclusion of new constraints corresponds to the derivation
of new inequalities from previous ones in the proof. Again, the power of the proof system is related
to the properties of the relaxation Pk after k rounds. We briefly summarize the relevant literature
on these three directions in the Related Work section below.

Results. In this paper, we study the integrality gap of the Sherali-Adams hierarchy for the
classical matching polytope. The Sherali-Adams scheme, in addition to being the earliest of the
lift-and-project methods, is also the strongest of the linear versions and has a particularly simple
description as well as certain other advantages (see [21]). As is well known, the matching polytope
is defined for any finite graph G = (V,E) by the variables {x1, . . . , x|E|} and constraints 0 ≤ xe ≤ 1
and

∑
e:u∈e xe ≤ 1 for all u ∈ V ; the goal is to maximize f(x) =

∑
e xe. The kth Sherali-Adams

relaxation Pk is obtained by multiplying each of these constraints by a multiplier of the form∏
e∈I xe

∏
f∈J(1 − xf ) for disjoint subsets I, J ⊆ E with |I ∪ J | = k, linearizing the resulting

monomials by introducing new variables, and projecting back down to |E| dimensions. Our main
result is a precise estimate for the integrality gap after k rounds as a function of k, which is tight
up to lower order terms. This is expressed in the following theorem:

Theorem 1.1 As k tends to infinity, the integrality gap of the kth round of the Sherali-Adams
hierarchy for maximum matching is αk = 1 + 1/k + o(1/k).

Theorem 1.1 follows from a detailed analysis of the sequence of relaxations Pk applied to com-
plete graphs K2d+1 of odd cardinality; it is easy to see that, for any k, the integrality gap is always

1The integrality gap is the ratio between the optimum of f over Pk and the optimum of f over P .
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attained on such a graph. More precisely, we study the integrality ratio gk ≡ gk(K2d+1), i.e., the
ratio of the value of the kth Sherali-Adams relaxation applied to K2d+1 to that of the optimum
(which is clearly d, the size of a maximum matching in K2d+1). For the standard LP relaxation P0

this value is well known to be g0 = 1 + 1/2d. We show first that it remains at exactly this value
for 0 ≤ k ≤ d− 1, and also that it reaches 1 when k = 2d− 1. In other words, the Sherali-Adams
relaxations make no progress in the first d−1 rounds, and achieve the integer optimum after 2d−1
rounds. Between these two extremes, we observe a perhaps surprising behavior: gk exhibits a
“phase transition” in that it switches suddenly from close to its maximum value 1 + 1/2d to close
to 1 in the neighborhood of the threshold k = 2d−

√
d. The following theorem makes this statement

precise:

Theorem 1.2

(i) If k < d then gk(K2d+1) = 1 + 1/2d.

(ii) If d ≤ k ≤ 2d− ω(d1/2) then 1 + 1/2d− o(1/d) ≤ gk(K2d+1) ≤ 1 + 1/2d.

(iii) If 2d− o(d1/2) ≤ k < 2d− 1 then 1 ≤ gk(K2d+1) ≤ 1 + o(1/d).

(iv) If k ≥ 2d− 1 then gk(K2d+1) = 1.

Theorem 1.1 follows easily from this result and the fact that αk is non-increasing. However, The-
orem 1.2 carries more detailed information about the Sherali-Adams hierarchy. Our analysis also
shows as a byproduct that the integrality ratio is strictly larger than 1 for k < 2d−1, which implies
that the rank of the matching polytope (i.e., the number of Sherali-Adams rounds needed to reach
the integer polytope) is exactly 2d− 1.

Theorem 1.3 For n = 2d + 1, the Sherali-Adams rank of the matching polytope, in the worst case
over all n-vertex graphs, is 2d− 1.

Theorem 1.3 answers for the Sherali-Adams hierarchy a question initially posed by Lovász and
Schrijver about the rank of the matching polytope in the LS+ hierarchy, which was answered by
Stephen and Tunçel [27].

Our analysis proceeds by showing that, for each k, the Sherali-Adams constraints on K2d+1 are
all captured by a much simpler family of multipliers of the form

∏
e∈I xe

∏
f∈J(1−xf ), where I is a

matching and J is a star disjoint from I. (We call these “standard multipliers.”) This simplification
allows us to explicitly write down the Sherali-Adams linear program for any k (see Theorem 4.1),
and then to express its solution exactly in the form of a recurrence relation (Lemma 4.1). While
this recurrence does not appear to have a closed-form solution, we are able to bound its value quite
tightly and hence show that it has the behavior claimed in Theorem 1.2.

Related work. The various lift-and-project hierarchies are placed in a common framework and
compared by Laurent [21], who shows among other things that the Sherali-Adams hierarchy is
stronger (i.e., gives a tighter relaxation at any given level) than LS (the linear programming version
of the Lovász-Schrijver hierarchy) but incomparable with LS+ (i.e., LS with added semidefinite
constraints); the Lasserre hierarchy is stronger than all the others.

The matching polytope was first studied in the lift-and-project context by Lovász and Schri-
jver [22], who posed the problem of determining the rank (i.e., the minimum number of rounds
until the integer polytope is reached) for complete graphs Kn. For n = 2d + 1, they showed that
the rank lies between 2d and 2d2 − 1 in the LS hierarchy, and is at most d in the LS+ hierarchy.
Stephen and Tunçel [27] subsequently proved that the LS+-rank is exactly d, and Goemans and
Tunçel [15] improved the upper bound on LS-rank to d2. Aguilera, Bianchi and Nasini [1] show that
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the LS-rank is strictly larger than d, and also that the rank in the weaker Balas-Ceria-Cornuéjols
hierarchy is exactly d2. We note that these results say very little about the Sherali-Adams hierarchy
(other than the weak upper bound of d2 on the rank inherited from LS), and do not directly address
the more detailed question of how the integrality gap behaves as a function of k.

A question similar to ours, but for a different problem and for the LS+ hierarchy, was asked
by Feige and Krauthgamer [12]. They consider the independent set problem on a random graph
G ∈ Gn,1/2, and show that the value of the SDP relaxation after k rounds of LS+ is almost surely

about
√

n/2k.
Arora et al. [3, 4] were the first to propose using lift-and-project hierarchies as a model of

computation, in order to obtain strong evidence for the hardness of approximating optimization
problems. They showed in particular that the integrality gap for Vertex Cover remains at least
2−ε after Ωε(log n) rounds of LS. Since then there has been a flurry of activity, proving larger gaps
after fewer rounds for Vertex Cover and several other classical NP-hard optimization problems; see,
e.g., [2, 8, 9, 10, 13, 14, 24, 25, 28]. Most of this work has focused on the LS and LS+ hierarchies;
exceptions are [10, 13], which consider Sherali-Adams, and [24] which considers Lasserre. We
mention also the recent work of Chlamtac [11], who uses the Lasserre hierarchy explicitly to derive
improved approximation algorithms for coloring and independent set in 3-uniform hypergraphs.

Finally, we briefly mention a third body of work that views the lift-and-project hierarchies as
proof systems. A recent paper of Pitassi and Segerlind [23] proves exponential size lower bounds for
tree-like LS+ proofs of unsatisfiability for several important classes of CNFs, and also shows that
tree-like LS+ proofs cannot efficiently simulate certain other standard proof systems. This differs
from the aforementioned work in that the lower bounds are for the size of the proofs rather than
for the rank (which corresponds to depth in the tree-like scenario). It also extends earlier results by
Buresh-Oppenheim et al. [8] on rank lower bounds, and builds on work of Grigoriev et al. [16] and
Kojevnikov and Itsykson [18] that proves lower bounds for LS+ indirectly via the more powerful
but complex proof system known as static positivstellensatz refutations.

2 Preliminaries

2.1 The Sherali-Adams hierarchy

We recall the definition of the Sherali-Adams hierarchy of progressively stronger relaxations of
integer polytopes [26, 21]. Let P0 = L0 = {x ∈ Rn : ∀`, 1 ≤ ` ≤ m,a` · x ≥ b`} be a convex
polytope contained in [0, 1]n, defined by m linear constraints, and let P = conv(P0 ∩ {0, 1}n) be
the associated 0-1 polytope. Starting from L0, the Sherali-Adams method constructs a hierarchy
of progressively stronger linear relaxations P0, P1, P2, · · · of P . For k ≥ 1, the kth iterate Pk in the
Sherali-Adams hierarchy is obtained as follows.

First, we multiply each constraint a` ·x−b` ≥ 0 by each product
∏

i∈I xi
∏

j∈J(1−xj) where I, J
are disjoint subsets of {1, . . . , n} such that |I ∪ J | = k, to produce a set of polynomial inequalities.
Add to this set all the inequalities

∏
i∈I xi

∏
j∈J(1 − xj) ≥ 0 where I, J are disjoint subsets of

{1, . . . , n} such that |I ∪ J | = min(k + 1, n).
Then, we replace each square x2

i by xi so that each expression is multilinear, and linearize each
product monomial

∏
`∈L x` by replacing it with a new variable yL (thus y{i} = xi): this defines a

new, lifted polyhedron2 Lk in higher-dimensional space Rd, d =
(n
1

)
+ · · ·+

( n
k+1

)
.

Finally, polyhedron Pk is obtained by projecting Lk back onto Rn: Pk = {x ∈ Rn : ∃y ∈
Lk,∀i = 1, . . . , n, y{i} = xi}.

2The original paper [26] introduces one additional dimension for the purpose of homogeneization, but subsequently
intersects the cone with the hyperplane y0 = 1. That is equivalent to the definition used here.
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We remark that in the above definition we may equivalently use all multipliers such that |I∪J | ≤
k; indeed, any constraint obtained from I, J with |I ∪ J | < k can be inferred by taking i /∈ I ∪ J
and adding the constraint for (I ∪{i}, J) and the constraint for (I, J ∪{i}), so such constraints are
redundant. (For some proofs it will be more convenient to include these redundant constraints.)

The following basic result is well known [26, 21].

Lemma 2.1 P0 ⊇ P1 ⊇ · · ·Pk ⊇ · · · ⊇ Pn = P .

Thus the Pk are indeed progressively stronger relaxations of the integer polytope P , and after at
most n rounds we arrive at P itself.

2.2 The matching polytope

Given a graph G = (V,E) with |V | = n and |E| = m, any subset of E can be written as a binary
vector in {0, 1}m. Consider the following linear program.

max
x

f(x) =
∑
e∈E

xe s.t. x ∈ L0 :


∑

e:u∈e xe ≤ 1 ∀u ∈ V
xe ≤ 1 ∀e ∈ E
xe ≥ 0 ∀e ∈ E

Clearly, the polytope L0 of feasible solutions is contained in [0, 1]m, and P = Conv(L0 ∩ {0, 1}m)
describes exactly the set of convex combinations of matchings of G.

Starting from L0, the kth iterate in the Sherali-Adams hierarchy defines the following lifted
polyhedron Lk. For every vertex u ∈ V , for every possible I, J disjoint subsets of E with |I∪J | = k,
we multiply the constraint 1−

∑
v:u 6=v xuv ≥ 0 by

∏
e∈I xe

∏
f∈J(1− xf ), replace each square x2

e by
xe, and replace each monomial

∏
`∈L x` by a variable yL, to obtain a linear constraint in y. Add

to this set all the inequalities obtained by linearization of
∏

i∈I xi
∏

j∈J(1− xj) ≥ 0 where I, J are
disjoint subsets of E such that |I ∪ J | = min(k + 1,m). If Pk denotes the projection of Lk onto
R|E|, we have

max{f(x) s.t. x ∈ Pk} = max{
∑
e∈E

y{e} s.t. y ∈ Lk}

Abusing notation slightly, we write f(y) =
∑

e∈E y{e}.
The integrality ratio3 gk(G) of Pk applied to a given graph G is maxx∈Pk

f(x)/ maxx∈P f(x),
which equals maxy∈Lk

f(y)/ maxx∈P f(x). The integrality gap of the kth iterate of the Sherali-
Adams hierarchy is αk = supG gk(G), which we study as a function of k. By Lemma 2.1 αk is
motonone non-increasing.

2.3 The integrality gap

Our first observation is that the integrality gap is always achieved on a complete graph of odd
cardinality. For this we require the notion of a certificate (or witness) for maximum matching,
given by the following version of the Tutte-Berge formula [7, 6].

Theorem 2.2 [7, 6] The maximum cardinality of a matching of G equals the minimum of |S1|+∑
i≥2b|Si|/2c over all partitions V = S1 ∪S2 ∪ · · · ∪S` of V into subsets such that every edge either

has exactly one endpoint in S1 or has both endpoints in the same Si with i ≥ 2. Such a partition is
called a certificate.

We can deduce the following:
3We introduce this term to distinguish the ratio on a particular graph G from the integrality gap, which is a

supremum over all G.
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Proposition 2.3 The integrality gap αk is achieved for G equal to a complete graph of odd cardi-
nality, i.e., αk = sup{gk(K2d+1), d ≥ 1}.

Proof: Let G be any graph. Let M be a maximum matching of G and {Si} be a certificate that
M is maximum, as given by Theorem 2.2. Modify G by adding edges to make every Si (i ≥ 2) a
complete graph and to make (S1, V −S1) a complete bipartite graph. This transformation preserves
the certificate, hence M is still an optimal matching, while it further relaxes the linear program.
Therefore, such a modification cannot decrease the integrality ratio. Hence, in the definition of αk,
we can restrict our attention to graphs G such that V is partitioned into an independent set S1,
cliques S2, S3, . . ., and a complete bipartite graph between S1 and V \ S1. The integer optimum
on such a graph has value |S1| +

∑
i≥2b|Si|/2c. Denoting by LPk(G) the value of the k-round

Sherali-Adams LP on graph G, we have

LPk(G) ≤
∑

e:e∩S1 6=∅
xe +

∑
i

∑
e⊆Si

xe ≤ |S1|+
∑
i≥2

LPk(K|Si|),

and therefore

gk(G) ≤
|S1|+

∑
i≥2 LPk(K|Si|)

|S1|+
∑

i≥2b
|Si|
2 c

≤ max
i

LPk(K|Si|)

b |Si|
2 c

= max
i

gk(K|Si|)

where the last equality follows from the obvious fact that the integer optimum on Kn is bn/2c.
Hence, in order to compute maxG gk(G), it suffices to restrict attention to complete graphs. Finally,
note that gk(K2d+1) ≥ gk(K2d) for all d, since adding the extra vertex does not change the integer
optimum and can only increase the value of the LP. Hence, to compute αk, it suffices to restrict
attention to complete graphs of odd cardinality.

Remark: For graphs of any fixed size n, the integrality ratio is also determined by the values
LPk(Kj), for by the above proof we can write

gk(G) = maxΣisi=n

∑
i
LPk(Ksi )∑

i
b si

2
c .

By Proposition 2.3, it is enough to study the integrality ratio gk(K2d+1) as a function of k
and d. When k = 0 we are dealing with the basic LP relaxation, for which it is well known that
the integrality ratio is 1 + 1/2d:

Lemma 2.4 For every d, we have g0(K2d+1) = 1 + 1
2d .

Proof: The integer optimum is d, and summing all the constraints of the linear program shows
that any feasible solution has value at most

∑
e

xe =
1
2

∑
v

∑
e:v∈e

xe ≤ (2d + 1)/2.

Hence the integrality ratio is at most 1 + 1/2d. On the other hand, setting xe = 1/2d for every e
clearly gives a feasible solution, and its value is also

(2d+1
2

)
1
2d = 2d+1

2 .

Of course, the above is the maximum possible value of the integrality ratio for any fixed d.
Presently we shall see (Corollary 3.10) that in fact gk(K2d+1) remains at its maximum value

1 + 1/2d for all k ≤ d − 1, and also (Corollary 3.11 and Theorem 1.3) that gk(K2d+1) reaches 1
exactly at k = 2d− 1. We will also describe in some detail the decrease of the ratio between these
two extreme values.
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3 An explicit linear program

Our goal in this section is to find a simple, explicit form for the linear program obtained after
k rounds of Sherali-Adams lifting applied to G = K2d+1.4 This explicit form can be found in
Theorem 3.9 at the end of the section. The key to our analysis is the observation that, among all
the multipliers that give rise to Sherali-Adams constraints, only a much smaller special set that we
call “standard multipliers” are needed. These have a simple description as follows.

Definition 1 A standard multiplier is a polynomial M in the variables {xe : e ∈ E}, of the form∏
e∈I xe

∏
f∈J(1− xf ), where the edges of J are a star over some vertex set W and the edges of I

are a matching over some vertex set W ′ disjoint from W .

We will also need some notation for the following linearization procedure.

Definition 2 Let C be a polynomial over {xe}, and let φ(C) denote the linear combination of
variables z1, z2, . . . which is obtained by expanding C, linearizing each monomial (i.e., replacing xm

e

by xe for each e and each m > 1), and replacing each
∏

e∈L xe by 0 if L is not a matching and by
z|L| otherwise.

The key step is to show that only standard multipliers are needed to define the k-round lifted
linear program Lk:

Proposition 3.1 Let G = K2d+1. Then the value of Lk equals the value of the following linear
program L′

k:
max

z1,z2,...,zk+1

(2d+1
2

)
z1 subject to

1. ∀i > d, zi = 0;

2. all the constraints of the form φ((1−
∑

v:u 6=v xuv)M) ≥ 0, where u ∈ V and M is a standard
multiplier of degree at most k over a vertex set not containing u;

3. all the constraints of the form φ(M) ≥ 0, where M is a standard multiplier of degree at most
k + 1.

The proof is through a sequence of lemmas. The first two of these determine the variables in
the linear program.

Lemma 3.2 If I is not a matching then yI = 0.

Proof: Let e ∈ I. Multiplying the constraint xe ≥ 0 by
∏

f∈I\{e} xf yields yI ≥ 0.
Up to relabeling, assume that I = {01, 02} ∪ I ′. Multiplying the constraint (1−

∑
i6=1 x1i ≥ 0)

by x01
∏

e∈I′ xe, replacing x2
01 by x01, and simplifying, yields −

∑
i≥2 x01x0i

∏
e∈I′ xe ≥ 0. For each

i ≥ 3, multiplying the constraint x01 ≥ 0 by x0i
∏

e∈I′ xe yields x01x0i
∏

e∈I′ xe ≥ 0. Summing, we
obtain −x01x02

∏
e∈I′ xe ≥ 0. Linearizing yields −yI ≥ 0.

Hence yI = 0.

Lemma 3.3 There exists an optimal solution y = (yL) ∈ Lk and associated projection x = (xe) ∈
Pk realizing the fractional optimum maxx∈Pk

f(x) such that yL = z` is the same for every set of
` = |L| edges forming a matching.

Proof: See the Appendix.
4In this section, we use the definition of the Sherali-Adams construction with |I ∪ J | ≤ k rather than |I ∪ J | = k.
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The next sequence of lemmas show that the only constraints we need to consider are those
associated with standard multipliers.

Lemma 3.4 Consider the constraint defined by I, J and u:

C =
∏
e∈I

xe

∏
f∈J

(1− xf )(1−
∑

v:u 6=v

xuv).

Without loss of generality, we can assume that I is a matching, that vertex u does not belong to
any edge of I ∪ J , and that the vertices spanned by J are disjoint from the vertices spanned by I.

Proof: If I is not a matching, then no monomial in C is a matching and thus by Lemma 3.2 we
have φ(C) = 0. If vertex u belongs to an edge of I, then by Lemma 3.2 again we have φ(C) = φ(C ′),
where C ′ =

∏
e∈I xe

∏
f∈J(1− xf ) is a constraint of the form covered in Lemma 3.5 below.

The remaining two cases are handled by induction on the number of factors in C (this is
where we use the fact that we take the variant of the definition where |I ∪ J | < k). First, if
vertex u is an endpoint of an edge {u, w} in J , then C = (1 − xuw)(1 −

∑
v:u 6=v xuv)C ′, and since

by Lemma 3.2 the linearization of (1 − xuw)(1 −
∑

v:u 6=v xuv) equals (1 −
∑

v:u 6=v xuv), we have
φ(C) = φ((1 −

∑
v:u 6=v xuv)C ′). Since the latter argument has one fewer factor than C, we can

apply induction to it. Finally, if some vertex w appears in both an edge {w1, w} of I and an edge
{w2, w} of J , then C = xw1w(1 − xw2w)C ′ and by Lemma 3.2 we have φ(C) = φ(xw1wC ′) and we
can again apply induction.

Lemma 3.5 Consider the constraint defined by I and J :

C =
∏
e∈I

xe

∏
f∈J

(1− xf ).

Without loss of generality, we can assume that I is a matching and that the vertices spanned by J
are disjoint from the vertices spanned by I.

Proof: Similar to the proof of Lemma 3.4.

The following straightforward fact will be needed in the proof of the next lemma.

Proposition 3.6 Let C,D and F be polynomials in {xe} such that the set of vertices spanned by
the edges in the support of C or D are disjoint from the set of vertices spanned by the edges in the
support of F . If φ(C) = φ(D) then φ(CF ) = φ(DF ).

Lemma 3.7 Let J be a multiset of edges over some vertex set W (where the same edge can be
present several times), and let C =

∏
e∈J(1 − xe) . Then there exists a set C1, C2, . . . of standard

multipliers over W , and positive coefficients λ1, λ2, . . ., such that φ(C) =
∑

i λiφ(Ci).

Proof: The proof is by induction over the cardinality of J (degree of C) and over the number t
of vertices of W that have more than one adjacent vertex in J . (Note that these adjacent vertices
must be distinct. Multiple edges to the same neighbor count as a single adjacency.)

Base case: If t = 1, or if t = 0 and J spans only two vertices, then J is a star, possibly with some
duplicate edges. If there are no duplicate edges, then the conclusion of the lemma holds and we are
done. Otherwise, we write C =

∏
v∈S(1−xu0v)mv , where mv ≥ 1 is the multiplicity of edge {u0, v}.

Observing that the linearization of (1−xe)2 equals (1−xe), it follows that φ(C) = φ(
∏

v∈S(1−xu0v))
and we are done.
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General case: Otherwise, let v1, v2 be two vertices that both have neighbors outside {v1, v2},
let A be the multiset of edges from v1 to neighbors in V \ {v2}, and let B be the multiset of edges
from v2 to neighbors in V \ {v1}.

Define B′ as the multiset of edges obtained from B by replacing each occurrence of an edge
{v2, b} by an occurrence of {v1, b}, and define the multiset J ′ = (J \ B) ∪ B′, where edges are
counted with multiplicity. Let C ′ =

∏
e∈J ′(1− xe).

The matchings of J which do not have both an edge from A and an edge from B are in bijection
with the matchings of J ′. The other matchings of J have both an edge e1 from A and an edge e2

from B. Thus it is easy to check that

φ(C) = φ(C ′) +
∑

e1∈A

∑
e2∈B

φ(xe1xe2

∏
e∈J\(A∪B)

(1− xe)).

Note that J ′ has the same number of edges as J , but in J ′ vertex v2 has at most one adjacent
vertex (namely, v1), so we can apply induction to C ′. Now consider xe1xe2

∏
e∈J\(A∪B)(1− xe). By

Lemma 3.5 we have φ(xe1xe2

∏
e∈J\(A∪B)(1 − xe)) = φ(xe1xe2

∏
e∈J ′′(1 − xe)), where J ′′ is the set

of edges in J \ (A ∪ B) that have no vertex in common with e1 ∪ e2. Applying induction to J ′′

(which has smaller degree than J) and using Proposition 3.6 to multiply by F = xe1xe2 concludes
the proof.

Lemma 3.8 Let u be a vertex and C,D be polynomials in {xe}’s such that the set of vertices
spanned by the edges in the support of C or D does not contain u. If φ(C) = φ(D) then φ(C(1 −∑

v xuv)) = φ(D(1−
∑

v:u 6=v xuv)).

Proof: See the Appendix.

Armed with the foregoing lemmas, we now prove Proposition 3.1.

Proof of Proposition 3.1: From Lemmas 3.2 and 3.3, we can simplify Lk by defining a new set
of variables, with variable zi denoting the common value of yI for every matching I of size i and
by replacing yI by 0 whenever I is not a matching. In other words, we take the intersection of the
polytope with the subspace of equations yI = 0 for I a non-matching and equations yI = yJ for
I, J matchings of equal size. This transforms Lk into an equivalent linear program with variables
(zi)i≥1. Since G has

(2d+1
2

)
edges, the objective function

∑
e∈E y{e} becomes

(2d+1
2

)
z1.

Since the maximum matching of G has size d, this implies that yI = 0 whenever |I| > d, and
therefore zi = 0 for i > d. This establishes the first set of constraints.

The second set of constraints is trivially obtained by multiplying the appropriate constraint
(1 −

∑
v:u 6=v xuv ≥ 0) by the appropriate standard multiplier. We now proceed to prove that any

other constraints which can be obtained from 1−
∑

v:u 6=v xuv ≥ 0 can be expressed as positive linear
combinations of these constraints. By Lemma 3.4 we only need to examine constraints obtained
by multiplying 1−

∑
v:u 6=v xuv ≥ 0 by

∏
e∈I xe

∏
f∈J(1− xf ), where I is a matching not containing

u, and J spans a set of vertices W which is disjoint from I and from u. Let C =
∏

f∈J(1 − xf ).
Applying Lemma 3.7 to C, we have

φ(C) =
∑
I′,J ′

αI′,J ′φ(
∏
e∈I′

xe

∏
f∈J ′

(1− xf )),

where the coefficients αI′,J ′ are non-negative, I ′ is a matching in W , and J ′ is a star in W disjoint
from I ′. By Proposition 3.6 the equality still holds when each term is multiplied by

∏
e∈I xe. Finally,

by Lemma 3.8 the equality still holds when each term is multiplied by 1 −
∑

v:u 6=v xuv. Hence the
constraint φ(C) ≥ 0 is a positive linear combination of the constraints described in Proposition 3.1.
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Similarly, the third set of constraints is trivially obtained by multiplying the appropriate con-
straint (xe ≥ 0 or 1 − xe ≥ 0) by the appropriate standard multiplier. Proving that any other
constraints that can be obtained from xe ≥ 0 or 1 − xe ≥ 0 are linear combinations of these
constraints is analogous to the argument of the previous paragraph (using Lemma 3.5 in place of
Lemma 3.4 and omitting the final step involving Lemma 3.8).

The following theorem writes in algebraic form the constraints of the linear program L′
k defined

implicitly in Proposition 3.1. The proof is deferred to the appendix.

Theorem 3.9 Let G = K2d+1. For k ≤ d− 1, the value of the k-round Sherali-Adams lifted linear
program is equal to the value of the following linear program:

max
z1,z2,...,zk+1

(
2d + 1

2

)
z1 s.t.

{
zj − (2d− 2j)zj+1 ≥ (k − j)(zj+1 − (2d− 2j − 2)zj+2) (0 ≤ j ≤ k)

zk+1 ≥ 0,

with the special extreme case z0 = 1.
For k ≥ d, the value of the k-round Sherali-Adams lifted linear program is equal to the value of

the following linear program:

max
z1,z2,...,zk+1

(
2d + 1

2

)
z1 s.t.

{
zd+1 = . . . = zk+1 = 0

zj − (2d− 2j)zj+1 ≥ βj(zj+1 − (2d− 2j − 2)zj+2) (0 ≤ j ≤ d),

with the special extreme case z0 = 0 (j=0) and with the notation βj = min(k − j, 2d− 2j − 1).

We close this section by deriving two immediate corollaries about the behavior of the integrality
ratio gk(K2d+1) at the lower and upper extremes. (These are parts (i) and (iv) of Theorem 1.2
stated in the Introduction.)

Corollary 3.10 For k ≤ d− 1 we have gk(K2d+1) = 1 + 1/2d.

Proof: By Lemma 2.4 it suffices to prove this for k = d − 1. Define z1 = 1/2d and zj+1 =
1/((2d − 2j) · · · (2d − 4)(2d − 2)2d). Then zk+1 ≥ 0 and all other constraints are tight, so this is
feasible and has value (2d + 1)/2. Since the integer optimum is d, the result follows.

Corollary 3.11 For k ≥ 2d− 1 we have gk(K2d+1) = 1.

Proof: We know [21, 26] that for k equal to the number of variables in the basic linear program,
which in our case is

(2d+1
2

)
, the integrality ratio is 1 and the value of the lifted linear program

is equal to the integer optimum. But Proposition 3.1 implies that the value of the lifted linear
program is the same for every k ≥ 2d − 1; this follows because the maximum possible degree of a
standard multiplier in G(K2d+1) is 2d, so for k ≥ 2d no new constraints are added. Hence the ratio
is 1 for every k ≥ 2d− 1.

4 Solving the linear program

Finding the optimal value of the linear program L′
k of Theorem 3.9 is now a purely algebraic

problem. The result is given by the following recurrence relation. (Note that, by Corollaries 3.10
and 3.11, we need only consider the range d ≤ k ≤ 2d− 2.) We defer the proof to the Appendix.
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Lemma 4.1 Let d ≤ k ≤ 2d− 2. The optimal value of L′
k is

d(2d + 1)
(k + 2d)− 2k(d− 1)/ρ2d−k−2

,

where (ρi)0≤i≤2d−k−2 is given by the recurrence{
ρ0 = 2(k − d) + 3;
ρi = 4(k − d) + 3 + 3i− (2(k−d)+i+1)(2(k−d)+2i)

ρi−1
(for i ≥ 1).

One of our main theorems stated in the Introduction, Theorem 1.3 on the rank of the matching
polytope, follows immediately from the above lemma.

Proof of Theorem 1.3: We just need to observe that g2d−2(K2d+1) > 1 (since we already know
from Corollary 3.11 that g2d−1(K2d+1) = 1). This follows by plugging k = 2d− 2 into Lemma 4.1,
so that ρ2d−k−2 = ρ0, whence the integrality ratio is easily seen to be 1 + 1/(4d2 − 2) > 1.

Although we are not aware of any closed form for the solution of the recurrence in Lemma 4.1,
by using it we can compute numerically the exact value of the linear program for any fixed number
of rounds k and graph size 2d + 1. Additionally, by doing some asymptotic analysis we can prove
tight bounds on that solution, and hence prove the threshold behavior for gk(K2d+1) claimed in
Theorem 1.2 in the Introduction.

Proof of Theorem 1.2: Parts (i) and (iv) are exactly Corollaries 3.10 and 3.11 respectively.
Now, assume d ≤ k < 2d − 1. Recalling the definition of the integrality ratio gk(K2d+1), and

using the obvious fact that the integer optimum on Kn is bn
2 c together with Theorem 3.1 and

Lemma 4.1, we see that

gk(K2d+1) =
value(Lk)

b(2d + 1)/2c
=

value(L′
k)

d
=

(2d + 1)
(k + 2d)− 2k(d− 1)/ρ2d−k−2

,

with (ρi)i defined as in Lemma 4.1. It only remains to analyze the recurrence relation defining
(ρi)i. Let εi be given by ρi = (2(k − d) + 2i + 2)(1 + εi). The recurrence becomes: ε0 = 1

2(k−d)+2 ;

εi =
(
1− i+1

2(k−d)+2i+2

)
εi−1

1+εi−1
≡ ri

εi−1

1+εi−1
(for i ≥ 1).

(1)

Then it is easy to see that the ratio gk = gk(K2d+1) satisfies

1 +
1− (2d + 1)ε

2d
≤ gk =

2d + 1
2d + k ε

1+ε

≤ 1 +
1− kε

1+ε

2d
, (2)

where ε ≡ ε2d−k−2. To prove parts (ii) and (iii) of the theorem, we use (2) to derive upper and
lower bounds on gk in the relevant ranges of k.

Lower bound on gk for d ≤ k ≤ 2d− ω(d1/2)
To prove the bound in part (ii), by (2) it suffices to show that ε = o(1/d). Let k = (2− γ)d where
γ = ω(d−1/2). Note that then 2d− k − 2 = γd− 2. Consider the quantity ri defined in (1). Since
ri decreases monotonically with i, for all i in the range γd

2 ≤ i ≤ γd− 2, we have

ri ≤ rγd/2 = 1− γd/2 + 1
2(1− γ)d + γd + 2

≤ 1− γ

4
.
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Hence, from the recurrence in (1) we get

ε2d−k−2 ≤ ε0

γd−2∏
i=γd/2

ri ≤ ε0

(
1− γ

4

)γd/2−2

≤ ε0 exp

(
−γ2d

8
+

γ

2

)
. (3)

Now if k ≥ 3
2d then from (1) ε0 ≤ 1

2d+2 , and therefore (3) together with the fact that γ = ω(d−1/2)
implies that ε = o(1/d). If on the other hand k < 3

2d then γ ≥ 1
2 and (3) again implies ε = o(1/d).

The left-hand side of inequality (2) now completes the proof of part (ii) of the theorem.

Upper bound on gk for k ≥ 2d− o(d1/2)
To prove the bound in part (iii) of the theorem, by (2) it suffices to show that kε

1+ε = 1− o(1). And

since k ≥ 2d− o(d), it suffices to show ε = 1−o(1)
2d .

Let k = 2d−β, where β = o(d1/2). Then 2d− k− 2 = β− 2. In this case, for 1 ≤ i ≤ β− 2 and
sufficiently large d we have

ri ≥ rβ = 1− β + 1
2d + 2

≥ 1− β

d
and

εi

1 + εi
≥ εi

1 + ε0
=
(

1− 1
2(d− β) + 3

)
εi.

Thus from the recurrence (1) we get

ε ≡ ε2d−k−2 ≥ ε0

β−2∏
i=1

ri

1 + ε0
≥ 1

2(d− β + 1)

(
1− 1

2(d− β) + 3

)β−2 (
1− β

d

)β−2

.

Since β = o(d1/2) we see that the first factor is 1−o(1)
2d , and the second and third factors are each

1−o(1). Hence ε = 1−o(1)
2d , which in conjunction with the right-hand side of inequality (2) completes

the proof of part (iii) of the theorem.

Finally, our main result on the integrality gap, Theorem 1.1 stated in the Introduction, follows
almost immediately from the above theorem.

Proof of Theorem 1.1: By Proposition 2.3, we know that αk = sup{gk(K2d+1), d ≥ 1}.
For a lower bound on αk, choose d = d(k) such that k = 2d− γ where ω(

√
d) < γ < o(d). This

implies that d = k
2 + o(k). By part (ii) of Theorem 1.2, we have αk ≥ gk(K2d+1) ≥ 1 + 1−o(1)

2d =
1 + 1

k + o( 1
k ).

For an upper bound on αk, note from part (iv) of Theorem 1.2 that gk(K2d+1) = 1 for d ≤ k
2 ,

and hence αk ≤ max{gk(K2d+1) : d ≤ k/2}. But by part (i) of the theorem this is at most
max{1 + 1

2d : d ≤ k/2} = 1 + 1
k .
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Appendix

Proofs omitted from the main text

Proof of Lemma 3.3: Starting from an optimal solution y of Lk, define n! optimal solutions by
considering all possible permutations of the vertices: y(σ) = (y(σ)

L ) = (yσ(L)). By symmetry of
K2d+1, y(σ) is also an optimal solution of Lk. Averaging over all these solutions defines z.

Proof of Lemma 3.8: Let C =
∑

`

∑
M :|M |=` αM

∏
e∈M xe+C ′, and D =

∑
`

∑
M :|M |=` α′

M

∏
e∈M xe+

D′, where M is a matching, and C ′, D′ are polynomials whose monomials are all non-matchings.
The fact that φ(C) = φ(D) =

∑
` β`z` means that, for every `, we have β` =

∑
M :|M |=` αM =∑

M :|M |=` α′
M .

Now, since every matching of size ` spans exactly 2` of the 2d neighbors of u, the coefficient of
z` in both φ(C(1−

∑
v xuv)) and φ(D(1−

∑
v xuv)) is β`− (2d−2`)β`−1. The lemma follows.

Proof of Theorem 3.9: Consider the linear program L′
k defined in Proposition 3.1. From the

first set of constraints, if k ≥ d then we have zj = 0 for every j > d.
We now rewrite the second set of constraints of Proposition 3.1. Consider the basic constraint

C = (1−
∑

1≤`≤2d x0`). Take a standard multiplier such that |I| = j ≤ k:

Mj =
∏

m:0≤m≤j−1

x2d−2m,2d−2m−1 ·
∏

i:2≤i≤|J |+1

(1− x1i).

13



φ(CMj) = φ

 ∏
m:0≤m≤j−1

x2d−2m,2d−2m−1 · (1−
∑

1≤`≤2d−2j

x0`)(1−
∑

i:2≤i≤|J |+1

x1i)

 .

φ(CMj) = zj − (2d− 2j + |J |)zj+1 +
∑

1≤`≤2d−2j

∑
2≤i≤|J |+1

χ(` /∈ {1, i})zj+2.

The number of non-zero terms in the double sum is (2d − 2j − 1)|J | − |J | · 1 = (2d − 2j − 2)|J |,
hence we obtain the constraint

zj − (2d− 2j)zj+1 ≥ |J |(zj+1 − (2d− 2j − 2)zj+2).

Depending on the sign of the coefficient of |J |, the critical constraint as |J | varies is either for |J |
minimum, |J | = 0, or for |J | maximum. What is the maximum value of |J |? Since |I|+ |J | ≤ k, we
must have |J | ≤ k− j. Since the total number of vertices spanned by the edges of I ∪ J is at most
2d (all vertices except vertex 0) and I spans exactly 2j, J must span at most 2d − 2j. Since the
set of edges defined by J is a tree, it has at most 2d− 2j − 1 edges: we obtain that the maximum
value is |J | = min(k − j, 2d− 2j − 1). Hence the second set of constraints can be written as:{

zj − (2d− 2j)zj+1 ≥ 0 (0 ≤ j ≤ min(k, d))
zj − (2d− 2j)zj+1 ≥ min(k − j, 2d− 2j − 1)(zj+1 − (2d− 2j − 2)zj+2) (0 ≤ j ≤ min(k, d))

For j = min(k, d) the two equations coincide, and so, for any j, the first inequality is subsumed by
the second inequality. Also note that if k ≤ d−1 then d ≤ 2d−k−1, so every j has j ≤ 2d−k−1,
and therefore k − j ≤ 2d− 2j − 1 so that min(k − j, 2d− 2j − 1) = k − j. Thus the above system
is equivalent to:

If k ≥ d then zj−(2d−2j)zj+1 ≥ min(k−j, 2d−2j−1)(zj+1−(2d−2j−2)zj+2) (0 ≤ j ≤ d) (4)

If k ≤ d− 1 then zj − (2d− 2j)zj+1 ≥ (k − j)(zj+1 − (2d− 2j − 2)zj+2) (0 ≤ j ≤ k) (5)

For the third set of constraints, take a standard multiplier such that |I| = j ≤ k + 1.

Mj =
∏

m:0≤m≤j−1

x2d−2m,2d−2m−1 ·
∏

i:2≤i≤|J |+1

(1− x1i).

φ(Mj) = zj − |J |zj+1.

The critical constraint is for |J | = 0 or for |J | maximum. What is the maximum value of |J |? Since
|I| + |J | ≤ k + 1, we must have |J | ≤ k + 1 − j. Since the total number of vertices spanned by
the edges of I ∪ J is at most 2d + 1 (all vertices) and I spans exactly 2j, J must span at most
2d− 2j + 1. Since the set of edges defined by J is a tree, it has at most 2d− 2j edges: we obtain
that the maximum value is |J | = min(k− j + 1, 2d− 2j). Hence the third set of constraints can be
written as: {

zj ≥ 0 (0 ≤ j ≤ min(k + 1, d))
zj −min(k + 1− j, 2d− 2j)zj+1 ≥ 0 (0 ≤ j ≤ min(k + 1, d))

Again, for j = min(k + 1, d), the two inequalities coincide, and so for any j, the first inequality is
implied by the second inequality. Again, if k ≤ d − 1 then k − j ≤ 2d − 2j − 1 for every j and so
k − j + 1 ≤ 2d− 2j, so that min(k + 1− j, 2d− 2j) = k + 1− j. Thus this is equivalent to:

If k ≥ d then zj −min(k + 1− j, 2d− 2j)zj+1 ≥ 0 (0 ≤ j ≤ d) (6)

If k ≤ d− 1 then zj − (k + 1− j)zj+1 ≥ 0 (0 ≤ j ≤ k + 1) (7)

Consider the case k ≥ d. Then Equation (4) implies that zj − (2d− 2j)zj+1 ≥ 0 for 0 ≤ j ≤ d,
which implies (6), and so we obtain the claimed linear program.

Now, consider the case k ≤ d − 1. Then it is easy to see that Equation (5) implies (7) for
0 ≤ j ≤ k since 2d − 2j ≥ k + 1 − j. For j = k + 1, (7) is simply zk+1 ≥ 0. Thus we obtain the
claimed linear program.
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Proof of Lemma 4.1: Let us write the constraints of L′
k more explicitly. There are two cases,

depending on how k − j compares to 2d− 2j − 1. If j ≤ 2d− k − 1 then k − j ≤ 2d− 2j − 1 and
so βj = k − j. If j > 2d− k − 1 then k − j > 2d− 2j − 1 and so βj = 2d− 2j − 1. We can rewrite
L′

k as:
max

(2d+1
2

)
z1 s.t.

(
(k + 2d)− 2k(d−1)

z1/z2

)
z1 ≤ 1 (j = 0)

zj

zj+1
≥ (k − j) + 2(d− j)− (k−j)(2(d−j)−2)

zj+1/zj+2
(1 ≤ j ≤ 2d− k − 1)

zj

zj+1
≥ 4(d− j)− 1− (2(d−j)−1)(2(d−j)−2)

zj+1/zj+2
(2d− k ≤ j ≤ d− 2)

zd−1

zd
≥ 3 (j = d− 1)

zd ≥ 0 (j = d)

Clearly, the optimum is obtained when the ratio z1/z2 is minimized. This optimum is obtained
when every inequality in the system (other than the last line) is an equality. Solving this system
of equalities with unknowns zj/zj+1 for j ∈ [2d − k, d − 1] gives zj/zj+1 = 2(d − j) + 1: true for
d− 1, and by induction

4(d− j)− 1− (2(d− j)− 1)(2(d− j)− 2)
2(d− j − 1) + 1

= 4(d− j)− 1− (2(d− j)− 2) = 2(d− j) + 1.

For j = 2d− k− 1 we get ρ0 = zj/zj+1 = 2(k− d) + 3. Letting ρi = zj/zj+1 with i = 2d− k− 1− j
and substituting for i = 0, 1, 2, . . . yields the formula of the Lemma.
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