
The Dynamic Adaptation of Parallel Mesh-Based

Computation

Jos�e G. Casta~nos� John E. Savage �

Abstract

We present an overview of algorithms and data structures for dynamic re�ne-
ment/coarsening (adaptation) of unstructured FE meshes on loosely coupled parallel
processors. We describe a) a parallel adaptation algorithm, b) an online parallel repar-
titioning algorithm based on mesh adaptation histories, c) an algorithm for the migra-
tion of mesh elements between processors, and d) an integrated object-oriented frame-
work for the adaptation, repartitioning and migration of the mesh. A two-dimensional
triangle-based prototype demonstrates the feasibility of these ideas.

1 Introduction

Although massively parallel computers can deliver impressive peak performances, their
computational power is not su�cient to simulate physical problems with highly localized
phenomena by using only brute force computations. Adaptive computation o�ers the
potential to provide large increases in performance for problems with dissimilar physical
scales by focusing the available computing power on the regions where the solution changes
rapidly. Since adaptivity signi�cantly increases the complexity of algorithms and software,
new design techniques based on object-oriented technology are needed to cope with the
complexity that arises.

In this paper we study problems that arise when �nite-element and spectral methods
are adapted to dynamically changing meshes. Adaptivity in this context means the local
re�nement and dere�nement of meshes to better follow the physical anomalies. Adaptation
produces load imbalances among processors thereby creating the need for repartitioning of
the work load. We present new parallel adaptation, repartioning and rebalancing algorithms
that are strongly coupled with the numerical simulation. Adaptation, repartitioning and
rebalancing each o�er challenging problems on their own. Rather than studying these
problems individually we put special emphasis on investigating the way these di�erent
components interact. By considering adaptivity as a whole we obtain new results that are
not available when these problems are studied separately.

We discuss the di�culties of designing parallel re�nement algorithms and we introduce
a re�nement algorithm based on the Rivara's bisection algorithm for triangular elements
[1], [2]. We propose a new Parallel Nested Repartitioning algorithm that has its roots in
the multilevel bisection algorithm of Barnard et al [3]. It produces high quality partitions
at a low cost, a very important requirement for recomputing partitions at runtime.

Finally we design a mesh data structure where the elements and nodes are not assigned
to a �xed processor throughout the computation but can easily migrate from one processor

�Brown University, Dept. of Computer Science

1



2

to another in order to rebalance the work. The mesh is represented as a set of C++ objects.
To permit references to mesh elements and nodes on a foreign processor, local proxies for
elements and nodes are used.

To evaluate these ideas we designed and implemented a system in C++. This program
runs on a network of workstations and uses MPI [4] to communicate between processors.
The most salient characteristic of adaptive codes is the high sophistication of their data
structures. The use of object oriented techniques has allowed us to reduce the complexity
of the implementation without signi�cantly a�ecting performance.

2 Multilevel mesh adaptation

To support dynamic adaptation of meshes we designed a data structure based on a multilevel
�nite-element mesh. We assume that the user supplies an initial coarse mesh M0(E; V )
called a 0-level mesh where E is a set of elements and V is a set of vertices. Using de�ned
adaptation criteria we select elements Ei 2 R � E for re�nement and others Ej 2 C � E

for coarsening.
For each re�ned element Ei we de�ne the Children(Ei) = fEi1; Ei2 ; : : : ; Eing to be the

elements into which Ei is re�ned and let Parent(Eik) = Ei. Also for each element Ei 2 E

we de�ne Level(Ei) = 0 if Ei is in M0 and Level(Ei) = Level(Parent(Ei)) + 1 otherwise.
A sequence of nested re�nements creates an element hierarchy. In this hierarchy each

element of the initial mesh belongs to the coarse mesh M0 and at time t > 0 each element
that it is not re�ned belongs to the �ne mesh Mt.

The selection of elements for re�nement (or coarsening) is made by examining the values
of an adaptation criterion [5]. Usually these re�nement methods cause the propagation of
the re�nement to other mesh elements so an element Ei 62 R might also be re�ned in order
to obtain a conforming mesh. Coarsening algorithms have similar problems. The Rivara
bisection re�nement algorithm applies to 2-dimensional triangular meshes. Its simplest
form bisects the longest edge of a triangle to form two new triangles.

3 The challenge of exploiting parallelism

We now describe problems introduced by parallelism that need to be solved in order to
perform the dynamic adaptation of parallel mesh-based computation.

Re�nement algorithms typically use local information to perform re�nement. Since the
re�nement of an element Ea may create a new node Vn in an internal boundary between
two processors, synchronization between the processors is necessary.

Detection of termination of a re�nement phase must be done globaly because re�nement
can propagate to adjacent processors. The adaptation of a mesh produces imbalances on
the work assigned to each processor as elements and nodes are dynamically created and
destroyed. Also mesh partitions are computed at runtime interleaved with the numerical
simulation. Finally we must keep a consistent mesh while migrating elements and nodes
between processors.

In the following sections we sketch our solution to these problems. We begin with
de�nitions and a strategy for storing meshes in a distributed memory parallel computer.

4 Implementing a parallel mesh using remote references

We assume that meshes are partitioned between processors using an element-partitioning

method. We denote with � = f�1;�2; : : : ;�pg a partition of the elements between



3

C

D

H

F

E G

B
P1

P0

H

B

P

Q

P

Q

A

P1

P0 P0

P1

b) c)a)

Figure 1: Propagation of re�nement to adjacent processors. In (a) the elements Ea; Ee; Ef

and Eg are selected for re�nement. The re�nement of these elements creates two nodes, Vp
and Vq, on the boundary between P0 and P1. P1 creates its local copies V 1

p and V 1

q and
selects the nonconforming elements Eb and Eh for re�nement (b). (c) shows the result.

processors where
S

�i = E and �i \ �j = ?; 8 i 6= j. Ea 2 �i consists of elements
assigned to processor Pi.

A remote reference is a pair (Pi; V
i
n) where Pi is a processor and V i

n is the copy of node
Vn in processor Pi. Let Ref (V

j
n ) = f(Pi; V

i
n) : V

i
n is a copy of Vn in Pi; i 6= jg. This relation

is symmetric, i.e. if (Pj ; V
j
n ) 2 Ref (V i

n) then (Pi; V
i
n) 2 Ref (V j

n ). If Vn is a node internal to
a processor, then Ref (Vn) = ?. A remote reference is a pointer to a remote address space.
Since this is not allowed in almost any programming language, we designed the remote
references as C++ objects using the notion of smart pointers.

The design of remote references is highly in
uenced by the element partitioning method.
As we shall show, they provide a very 
exible mechanism for maintaining a dynamic mesh.
When a node is moved to a new processor, it can use its reference list to �nd copies of itself
in other processors. It can then send a message to these copies telling them to update their
references to the new location. The references also simplify the task of assembling matrices
and vectors from partially assembled ones as new nodes are created and moved at runtime.

5 Parallel mesh adaptation

Using the above data structures we now introduce an algorithm to adapt the mesh in a
parallel computer. Let R be a set of elements selected for re�nement and let Ri be the
subset of the elements of R assigned to processor Pi. Each processor has all the information
it needs to re�ne in parallel its own subset Ri using a serial algorithm, but nonconforming
elements might be created on the boundary between processors as suggested in Figure 1.

5.1 Re�nement collision

A parallel re�nement algorithm can run into two synchronization problems [6]. First, if
processor Pi re�nes an element Ea and processor Pj re�nes an adjacent element Eb, it is
possible that each processor could create a di�erent node at the same position. In this case
it is important that both processors do not consider the nodes distinct when assembling the
matrices and vectors to compute the solution of the system and that the node incorporates
the contributions of all the elements around it. It may also be that a processor Pi believes
element Eb in processor Pj is nonconforming although it might have already been re�ned
there. To avoid this problem processor Pj needs to evaluate and update the propagation
requests it receives before executing them.



4

The solution to the synchronization problem is greatly simpli�ed by using the nested
elements of our multilevel algorithm. When an element Eb in processor Pj is re�ned into
two or more elements Eb1 and Eb2 the element Eb is not destroyed as it would be the case
in other re�nement algorithms. Any message arriving at Pj from Pi requesting that a copy

V
j
n be made in processor Pj that causes the re�nement of element Eb can be compared

against the status of Eb. If Eb was already re�ned in the local phase (but processor Pi did
not know about this), then Eb might not need to be re�ned again. If node Vn was already
created in the local phase of Pj then a reference is added pointing to its copy V i

n in Pi. If
the re�nement of Eb did not cause or was not caused by the creation of node Vn then its
children Eb1 and Eb2 are evaluated and the one that shares the internal boundary between
Pi and Pj is marked for re�nement using the shared node V j

n .

5.2 Termination detection

Termination is reached when no element is marked in any processor for re�nement. This
holds when Ri = ?. We assume that the re�nement is started in one special processor
referred to as the coordinator, PC . To simplify the explanation of the termination algorithm
we assume that the re�nement does not propagate cyclically from Pi to Pj and then from
Pj back to Pi.

At t = 0 PC sends a message to each Pi indicating that the re�nement phase has started.
PC can explicitly select the elements for re�nement or it can instruct the processors to select
elements based on an adaptation criterion. Pi then executes the serial re�nement algorithm
on these marked elements, possibly sending re�ne messages to neighboring processors when
a node V i

n is created in an internal boundary between them.
The termination detection procedure is based on message acknowledgments. In

particular re�ne messages received by Pj from Pi are acknowledged by Pj by sending to Pi

an ACK message. If a re�ne message from Pi to Pj causes the re�nement to propagate to
another processor Pk then Pj sends an ACK message to Pi only after it has received an
ACK from Pk . The ACK messages return the references to the newly created vertices so
that if V i

n is a vertex in Pi over a shared edge that caused a propagation to Pj and V
j
n is

its copy in Pj , a reference to V j
n is added at V i

n and vice versa.

6 Load balancing

In this section we present a strategy for repartitioning and rebalancing the mesh. We �rst
explain serial multilevel re�nement algorithms. We then introduce a new highly parallel
repartitioning method called the Parallel Nested Repartitioning (PNR) algorithm which is
fast and gives high quality partitions.

In Section 6.2 we explain a mesh migration algorithm. This algorithm receives as input
the partition obtained from the repartitioning of the mesh and migrates the elements and
nodes according to this partition.

6.1 The mesh repartitioning problem

While the PNR algorithm is based on the serial multilevel algorithms presented in [7], [8] and
[9] it also makes use of the re�nement history to achieve great reductions in execution time
and an improvement in the quality of the partitions produced. General multilevel algorithms
partition the mesh by constructing a tree of vertices. They create a sequence of smaller
graphs by collapsing vertices, then partition a suitable small graph and �nally reverse the
collapsing process to produce a partition of the larger graph. The PNR method di�ers from



5

P1

P2 P3

P1

P2 P3

P0 P0

a) b)

Figure 2: The Parallel Nested Repartitioning algorithm. (a) shows the initial mesh M0

and (b) shows the mesh Mt at the beginning of the partitioning phase.

other methods in that it uses the re�nement history of the mesh to collapse the vertices
while other methods use maximum matchings or independent sets. As a consequence we are
able to collapse vertices locally in the parallel phase without any communication overhead
unlike other methods. Our tests show that by using the re�nement history we obtain
partitions that are almost always of higher quality than those obtained by the multilevel
algorithms yet PNR is very fast. For simplicity we assume that the initial mesh �ts into
one processor and marks the transition between the serial and the parallel phase.

6.1.1 The Parallel Nested Repartitioning (PNR) algorithm
The PNR algorithm uses the fact that the �ne mesh Mt at time t was obtained as a
sequence of re�nements of a coarse initial mesh M0. Mt includes all the elements that have
no children at time t. We assume that jMtj � jM0j.

Figure 2 shows an example of an initial mesh M0 and the re�ned mesh Mt at time
t. The amount of work for processor P0 is much larger than the amount of work of the
other processors. The goal of the repartitioning algorithm is to rebalance the work so each
processor has approximately the same number of elements.

PNR allows for a very natural parallel implementation. We compute locally in parallel
a weighted graph M�1

0
that is the dual of the coarse mesh M0. Each vertex in this graph

corresponds to an element of M0. The weight of a vertex of M�1

0
is number of descendants

of the element in Mt and the weight of an edge is the number of shared nodes between
their descendant leaves. We then send the graph M�1

0
to PC which partitions M�1

0
. All

the other processors wait until PC sends back a message informing them of which elements
to migrate. PNR has a parallel and a serial phase:

� M�1

0
is constructed in parallel with no processor communication. Weights are

computed using a simple recursive algorithm. Once Pi obtains its portion of M�1

0
it

sends it to PC for the serial part of the algorithm.

� Once PC receives a message from each Pi it partitions M
�1

0
using a serial partitioning

algorithm. Since jM�1

0
j is assumed to be relatively small we use algorithms that

would be considered too expensive to apply to Mt.

� Finally PC sends a message to each processor Pi informing it of which elements to
migrate. Pi then executes the migration algorithm described bellow.



6

6.2 Using remote references for work migration

We now present an algorithm that migrates elements and nodes between processors. To
adjust the mesh according to a new partition we need to move one or more elements Ea

from Pi to Pj . Let's assume that the vertices of Ea are Adj (Ea) = fVn1 ; : : : ; Vnqg.
Our algorithm takes into account whether Pj has a local copy of these nodes or not.

� For each node Vn 2 Adj (Ea), if (Pj ; V
j
n ) 62 Ref (V i

n) (Vn is not a shared node between

Pi and Pj at time t� 1), we need to create the node V j
n in Pj and then use this node

to create the element Ea in Pj .

� Otherwise, (Pj ; V
j
n ) 2 Ref (V i

n) (Vn is a shared node between Pi and Pj at time t� 1

and Pj has a local copy V j
n ). In this case we do not create V j

n again. When Pi sends

the element Ea to Pj , it also includes the reference (Pj ; V
j
n ) instead of the node Vn.

Thus Pj can use V
j
n to create Ea. This has an important implication: Pj cannot

delete its copy of V j
n until it has received all the elements, even if Pj has already sent

the only element Ec that points to V
j
n to another processor Pk because some other

processor Pi might expect Pj to have a copy of Vn.

� If processor Pi sends elements Ea and Eb to Pj and there is a node Vn 2 Adj (Ea) \

Adj (Eb) (Vn is a vertex of both Ea and Eb) then only one copy V j
p should be created

in Pj and both Ea and Eb should refer to it.

� If Pi and Pk send the adjacent elements Ea and Eb respectively to processor Pj , and
there is a node Vn 2 Adj (Ea)\ Adj (Eb), (Pk ; V

k
n ) 2 Ref (V i

n) and (Pi; V
i
n) 2 Ref (V k

n )
and Pj should detect that V i

n and V k
n are copies of the same node.

� Finally if Pi sends an element Ea to Pj and Pk sends element Eb to Pl where Ea and
Eb are adjacent elements sharing a common node Vn, we must insure that V

k
n and V l

n

refer to each other.

7 Experimental results

To evaluate the quality and performance of our system we performed a series of tests on a
network of SUN SparcStation10 workstations. The tests covered the major components of
the system. We found that the cost of the re�nement algorithm is dominated by the serial
part. By performing a sequence of successive re�nements of the whole mesh we obtained
some very big meshes. PNR computed very high quality partitions in a very reasonable
time. In fact we were able to obtain better partitions than any other multilevel algorithm.

7.1 Re�nement of the mesh

To test the re�nement algorithm we performed successive re�nements of the mesh. In each
of these phases all the elements of the mesh were selected for re�nement. The number of
elements grew exponentially with the level of re�nement. By doing a series of successive
re�nements we were able to create meshes containing more than 2,000,000 elements.

The results are shown in Figure 3. The serial time is the time spent creating new
elements and nodes and the communication time is the time spent propagating the
re�nement to adjacent processors. The re�nement algorithm spends most of its time in
the serial part and the communication cost is very small.



7

0

20

40

60

80

100

120

140

160

4 8 16 32

T
im

e 
(s

ec
)

Processors

Mesh Refinement (computation)

(a)

(b)
(c)

(d)

1st refinement (a)
2nd refinement (b)
3rd refinement (c)
4th refinement (d)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 16 32

T
im

e 
(s

ec
)

Processors

Mesh Refinement (communication)

(a)
(b)

(c)

(d)

1st refinement (a)
2nd refinement (b)
3rd refinement (c)
4th refinement (d)

(a) (b)

Figure 3: Successive re�nements of the mesh. In (a) we show time spent in the serial part
of the algorithm while in (b) we show the time spent on communication.

0

100

200

300

400

500

600

700

4 8 16 32

T
im

e 
(s

ec
)

Processors

Total time

(a)

(b)

(c)
(d)

(e)

no refinement (a)
1 ref PNR (b)
2 ref PNR (c)

1 ref serial (d)
2 ref serial (e)

0

200

400

600

800

1000

1200

1400

1600

1800

4 8 16 32

S
ha

re
d 

no
de

s

Processors

Shared nodes

(a)

(b)

(c)

(d)

(e)

no refinement (a)
1 ref PNR (b)
2 ref PNR (c)

1 ref serial (d)
2 ref serial (e)

(a) (b)

Figure 4: Partitioning of the mesh after none, one and two re�nements using the PNR
algorithm and the Chaco serial Multilevel Bisection algorithm. (a) is the total time. The
number of shared nodes is shown in (b).

7.2 Dynamic partitioning of the mesh

We compared the partitioning of re�ned meshes using the PNR algorithm to that provided
by serial multilevel algorithm in Chaco [10]. These results are shown in �gure 4. The
PNR not only performed faster than the serial multilevel algorithm as we increased the
re�nement of the mesh but it also produced partitions of better quality. This shows that
the information from the re�nement history can be e�ectively used to partition the mesh.

Finally, Figure 5 shows an example where the partition of the mesh is computed at
runtime and the elements and nodes are migrated according to this new partition.



8

(a) (b)

Figure 5: Migration of the mesh. In (a) the elements are assignment to the processors at
random and in (b) a new partition is computed at runtime.

References

[1] M. C. Rivara, Selective re�nement/dere�nement algorithms for sequences of nested triangula-
tions, International Journal for Numerical Methods in Engineering, Vol. 28, 2889-2906, 1989.

[2] M. C. Rivara, Algorithms for re�ning triangular grids suitable for adaptive and multigrid
techniques, International Journal for Numerical Methods in Engineering, Vol. 20, 745-756,
1984.

[3] S. T. Barnard and H. D. Simon,A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems, Proceedings of the 6th SIAM conference on Parallel
Processing for Scienti�c Computing, 711-718, 1993.

[4] Message Passing Interface Forum: MPI: A Message Passing Interface Standard, 1994.
[5] M. Mamman and B. Larrouturou, Dynamical mesh adaptation for two-dimensional reactive


ow simulations, Numerical Grid Generation in Computational Fluid Dynamics and Related
Fields, North-Holland, Amsterdam, 1991.

[6] Mark T. Jones and Paul E. Plassmann, Parallel algorithms for the adaptive re�nement and
partitioning of unstructured meshes, Proceedings of the Scalable High-Performance Computing
Conference, Knoxville, Tennessee, 1994.

[7] H. D. Simon, Partitioning of unstructured meshes for parallel processing, Computing Systems
Eng., 1991.

[8] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

[9] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, Tech. Rep. CORR 95-035, University of Minnesota, Dept. of Computer Science, 1995.

[10] B. Hendrickson and R. Leland: The Chaco user's guide, Technical Report SAND93-2339,
Sandia National Laboratories, 1993.


