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Abstract

Surface-based rendering techniques, particularly those
that extract a polygonal approximation of an isosurface,
are widely used in volume visualization. As dataset size
increases though, the computational demands of these
methods can overwhelm typically available computing re-
sources. Recent work on accelerating such techniques has
focused on preprocessing the volume data or postprocess-
ing the extracted polygonization. Our new algorithm con-
centrates instead on streamlining the surface extraction
process itself so as to accelerate the rendering of large vol-
umes. The technique shortens the conventional isosurface
visualization pipeline by eliminating the intermediate poly-
gonization. We compute the contribution of the isosurface
within a volume cell to the resulting image directly from a
simplified numerical description of the cell/surface inter-
section. Our approach also reduces the work in the remain-
ing stages of the visualization process. By quantizing the
volume data, we exploit precomputed and cached data at
key processing steps to improve rendering efficiency. The
resulting implementation provides comparatively fast ren-
derings with reasonable image quality.

1 Introduction

1.1 Background

Increasingly complex environments present an ongoing
challenge to computer graphics. A dominant source of in-
creased complexity in volume visualization is growth in
data size. Early volume datasets typically ranged from 643
to 1283 voxels, while many of today’s volumes are reaching
the 5123 to 10243 voxel range. The introduction of higher
resolution data acquisition devices and more complex sim-
ulations suggests this growth trend will continue.

The essential difficulty such growth poses is that the com-
putational complexity of most volume rendering algorithms
is O(n®) for a dataset of size nx nx n.! Thus doubling vol-
ume dimension, say from 256 to 5123, yields an eightfold
increase in computational cost. Even today’s fastest work-
stations are, at best, barely keeping pace with the demands
of rendering large volumes in reasonable amounts of time.

1.2 Prior work

Volume data has, by itself, no visible manifestation. Im-
plicit in its visualization is the creation of an intermedi-
ate representation, some visible object or phenomenon, that
can be rendered. Levoy [3] classifies volume rendering al-
gorithms by the intermediate representation they employ.

!'The notable exception is frequency-domain volume rendering [5, 9],
with a complexity of O(n?logn).
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Among the classes are surface-based techniques, those us-
ing polygons or surface patches as the representation. Such
techniques have proved popular due to their ease of use,
range of applicability, and comparatively fast execution.

Surface-based techniques are characterized by the appli-
cation of a surface detector to the data, followed by a fitting
of geometric primitives to the detected surface, and the ren-
dering of the resulting geometric representation. The tech-
niques differ primarily in their choice of primitives and the
scale at which they are defined. The primitives are typically
fitted to an approximation of an isosurface of the continuous
scalar field within cells of the volume.?

The best known of these techniques is the Marching
Cubes algorithm [4]. Processing the volume cell by cell,
the algorithm classifies each cell based on the value of its
voxels relative to that of the isosurface being reconstructed.
The classification yields a binary encoding that provides an
index into a table describing the polygonal approximation
of the isosurface within the cell. Polygon vertex positions
are computed by interpolating voxel values, as specified by
the indexed table entry. The generated polygons are trans-
ferred to a hardware or software polygon renderer for dis-
play. Gouraud shading is often used to achieve a smoother
image. To do this, the algorithm approximates the volume
gradient at voxel positions and interpolates these gradient
vectors to produce normals at polygon vertices.

Wyvill et al. [12] present a very similar technique. They
too classify cell voxels relative to isosurface value and cal-
culate polygon vertex positions by voxel value interpola-
tion. Their technique differs from Marching Cubes in that
it uses an approximate value at the center of a cell face to
select among alternate polygon configurations.

An alternative to isosurface polygonization is the point-
based Dividing Cubes algorithm [1]. It subdivides volume
cells into sub-cells with lattice spacing equal to the image
grid spacing. Data values for sub-cell vertices are interpo-
lated from the divided cell’s vertex voxels. Sub-cells inter-
secting the surface are identified as those having values both
above and below the isosurface value. For these sub-cells,
a normal vector is interpolated from volume gradients as in
Marching Cubes. This normal is used to shade the intersec-
tion point, considered to lie at the sub-cell center, which is
then projected onto the image plane where the computed in-
tensity is assigned to the appropriate pixel.

Recent work has focused on improving the performance
of such techniques. Wilhelms and Van Gelder [11] use spa-

2We adopt the terminology of Wilhelms [10], referring to individual
volume data points as voxels, and to a region of space bounded by a set of
voxels (typically eight for regular volumes) as a cell.



tial data structures as a preprocess to reduce the work de-
voted to regions within the volume of little or no interest.
Schroeder et al. [8] reduce the number of triangles required
for the polygonal representation of objects through a post-
process, making the extracted representation renderable on
typical graphics hardware.

1.3 Motivation

As dataset size grows, the processing demands of con-
ventional techniques can severely tax even the fastest work-
stations. Consider an example. The industrial CT dataset of
the turbine blade in Figure 6 (also illustrated by Schroeder
et al. [8]) contains 300 slices, each of size 512 x512. The
isosurface created from this data by Marching Cubes con-
tains approximately 1.7 million triangles. Several stages in
the algorithm are particularly expensive when processing
such complex surfaces. The number of floating point oper-
ations required to calculate position, normal, and color in-
formation for the 5.1 million triangle vertices is enormous,
even when reusing data at shared vertices. The amount of
data transferred to the display system is also enormous: at
50 bytes per vertex, it is roughly 250 megabytes of informa-
tion. Finally, rendering 1.7 million polygons is beyond the
capabilities of all but the most advanced workstations.

The necessity of such expensive processing is an open
question. In a typical image, say 512x512 pixels, these 1.7
million polygons are each rendered at sub-pixel size. One
can well suggest that, given the small contribution of each
polygon to the final image, the tremendous work involved
in processing polygons for such a surface is probably ex-
cessive. An alternative to preprocessing the volume data or
post-processing the polygonal surface is to concentrate in-
stead on the surface extraction process itself. Our technique
streamlines the isosurface visualization pipeline by elimi-
nating the intermediate polygonization stage and reducing
the work required at the remaining stages.

2 Foundations

Our algorithm is based, in part, on three observations
about the surface-based rendering of large volumes:

Cell projections are small

In a ‘complete’ image of a large volume, a cell projects
to about the size of a pixel. If we make the correspondence
exact (i.e., volume inter-voxel spacing equals image inter-
pixel spacing), an orthographic projection of an n> volume
has a maximum image size of v/3n x /3 n pixels. For n
between 512 and 1024, the image occupies from 60-240%
of a typical workstation screen, suggesting that using such
a correspondence produces sufficiently large images.

Isosurfaces are locally almost planar

The intersection of an isosurface with a cell is almost al-
ways well approximated by a plane. The function whose
isosurface we are reconstructing was sampled in some way
to generate the volume data. Unless the original function
was band-limited before sampling, the data will contain
aliasing. We therefore assume we are reconstructing the
isosurface of the (unique) band-limited function f whose
samples constitute our volume. Such band-limited func-
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Figure 1: Geometric change resulting from data quantization.
Left: original values and placement of planar approximation of the
level 6 isosurface. Right: data quantized to a range of 3 centered
on the original isolevel, and resulting shift in isosurface position.

tions are always C~. Sard’s Theorem [6] guarantees that
for almost every (in the measure-theoretic sense) isosurface
value v, the isosurface f~! (v) contains no zeroes of the gra-
dient of f. Thus almost every isosurface is locally smooth
(by the implicit function theorem). Smooth surfaces can be
approximated by their tangent planes, to an accuracy that
depends on the surface curvature. The inaccuracy of our
method is thus quantified by the local curvature of the iso-
surface. Near singular points, this can become arbitrarily
large, but surface-based methods typically suffer from this:
cells containing singular points are generally ambiguous.

Data can be quantized

To reduce rendering expense, we want to exploit precom-
puted and cached data whenever possible (e.g., using a pre-
computed approximation of the isosurface within a cell). To
keep such data of reasonable size, we need to index it not
by full-range volume data, but by a quantized representa-
tion of a cell’s voxel values. Quantized data can produce
a reasonably accurate isosurface approximation. Figure 1
shows that quantizing the data introduces some error; in-
creasing the allowable range for the quantized representa-
tion reduces the error, but cannot eliminate it. Although we
have not formally analyzed the error due to quantization,
our empirical results suggest that the visual artifacts that re-
sult are acceptable. In any event, the quantization error is
in the sub-cell placement of the isosurface, and hence (after
projection) in the sub-pixel placement of the surface image.
If the original data indicates the presence of surface within a
cell, so too will the quantized data (if processed properly):
isosurface topology is not altered, so no spurious surfaces
or erroneous holes are introduced.

3 Algorithm overview

To render an image, we start with a volume dataset, an
isolevel £, a viewing direction, and lighting information.

As we precompute an approximation of the isosurface
within a cell and index it by voxel values, our first step is to
limit the data range within the volume. We choose a range
r and quantize voxel values to an interval of length r that
contains ¢. To illustrate, let us assume that £ lies halfway
along this interval (in practice this is not a requirement).
The quantization may be as simple as clamping values to
therange {—r/2 ... £+r/2, or may involve a more compli-
cated scaling of values from a larger range, encompassing
both r and £, into the range £ —r/2 ... £+7r/2.



Next is the computation of the planar isosurface approxi-
mation data, the isoplane table (see Section 4.1). This table
depends only on r and ¢, and can therefore be precomputed.
For each possible eight-tuple of values at the cell vertices,
the table contains a description of the planar approximation
of the isosurface within that cell, including the area of the
plane within the cell and the plane normal.

The second step of the algorithm proper is initialization
of the image, corresponding to a region on the projection
plane. The inter-pixel spacing on this plane is made equal to
the inter-voxel spacing in the volume. Thus the projection
of a cell overlaps at most nine image pixels. The color and
« channels of the image are initialized to zero.

The third step in the algorithm uses the isoplane table to
compute a rendering of the isosurface. The volume is tra-
versed from front to back and each cell is examined. The
quantized voxel values at a cell’s vertices are used as an in-
dex into the isoplane table, which contains the area and nor-
mal vector for the isosurface approximation within the cell.

If the area is zero (the isosurface does not intersect the
cell), or if the dot product of the normal and the projection
direction is negative (the surface is back-facing), the cell is
ignored. Otherwise, the area is multiplied by this dot prod-
uct to find the projected area of the cell’s isosurface on the
image plane. We compute the light reflected from the sur-
face fragment (if not previously computed) and record it in
a cached data structure called the intensity table (see Sec-
tion 4.2), indexed by the cell’s eight voxel values.

We accumulate into the image the light reflected from the
surface fragment towards the image plane. Lacking precise
geometric information describing the position of the surface
within the cell, we assume that the projection of the surface
fragment is evenly distributed across that of the entire cell
onto the image plane. We can therefore clip the cell’s pro-
jection against the pixels in the image plane to compute the
fraction of the reflected light that should be composited into
each of the nine pixels the cell projection may overlap. We
avoid repeated clipping by precomputing a table describing
the projection/pixel overlap for a representative set of the
possible projection positions (see Section 4.3).

Using a modification of standard compositing (see Sec-
tion 4.4) we accumulate values in the image until the o
value for a pixel is 1.0, after which no more light is com-
posited into the pixel.

4 Algorithm details

This algorithm exploits precomputed and cached data
wherever possible, an approach that might well be termed
look-up tables everywhere. We discuss the most important
of these tables, and other implementation details, below.

4.1 Isoplane table

The precomputed planar approximation of the isosurface
within volume cells depends on the quantized data range r
and the isosurface level £ — more precisely, on the loca-
tion of £ within an interval of length r. We therefore create
a table whose entries are indexed by eight-tuples of values
[Vos-..,v7] (v; in the range O ... r—1) and associated with a
level ¢ between O and r—1.
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Suppose the vertices of the unit cube are labeled by bi-
nary numbers so that, for example, vertex 6 has coordinates
[x,3,2] = [1,1,0] (as 619 = 110;). Table entry {vo,vy,.. ]
corresponds to a cube whose vertex 0 has value v, vertex 1
has value v;, and so on. Given the values vy, ..., v7 at these
corners (whose positions we denote py, . .., p7), We approx-
imate the isosurface by a plane determined by these values.

We do this by one of three methods, all variants of the
same technique. Certain vertices of the cube are marked,
and those vertices alone are used to find a least-squares best-
fit plane. That is to say, we seek the function

flx,y,2) =Ax+By+Cz+D
such that

> (flpi)— v;)?, where M = {marked vertices}

ieM
is minimized. This is a straightforward least-squares prob-
lem in the unknowns A, B, C, and D.

The three methods differ in the choice of which cell ver-
tices to mark. The first method marks all vertices, yield-
ing a least-squares solution using all available data. We call
this method all-voxels. In the second, we mark only cube
edge endpoints with values on opposite sides of the isosur-
face level. The method, called edge-crossings, is analogous
to Marching Cubes’ identification of polygon vertex loca-
tions. In the third method, if any vertex has a value at either
extreme of the quantized data range, and all three neighbor
vertices (those connected to it by an edge) share the same
value, then that vertex is unmarked; all others vertices are
marked. This approach reduces the error in the approxima-
tion of the plane equation by eliminating data values that
violate the assumption of linearity due to the limited range
of the table. We term this technique sans-clamped. For
any cell intersecting the isosurface, there are at least four
marked voxels for any of the three methods, so the least-
squares problem always has a unique solution.

Having found the function f above, we consider the
plane f(x,y,z) = £ to be our ‘best linear approximation’
to the isosurface. We clip this plane to the bounds of the
cell, compute the area remaining, and record this in the table
along with A, B, and C, which constitute the plane normal.

The table as described has % entries. We store the area
and normal data as floating-point numbers. At four bytes
per value, we have sixteen bytes per table entry. Using ten
megabytes as a rough limit for such precomputed data, the
maximum allowable r is 5.

Fortunately, we can exploit the symmetry of the cube to
give us a table compression scheme. A cube centered at the
origin has many geometric symmetries: rotations about the
x-, y- and z-axes, reflections in the xy-, yz-, and xz-planes,
and combinations of these. For any eight-tuple of values la-
beling the cube’s vertices, we consider the labelings derived
from it by applying such symmetries to the cube as equiv-
alent. That is, the area of the planar isosurface approxima-
tion for each is the same, and the surface normals are sim-
ple transformations of one another. We wish to map each
such equivalence class to a single entry in our compressed
isoplane table. Doing so requires that we produce just one



Data Uncompressed | Compressed | Compression
range size size factor

2 256 65 3.94

4 65,536 5,995 10.93

6 1,679,916 100,446 16.72

8 16,777,216 793,650 21.14

10 100,000,000 4,076,215 24.53

Table 1: Isoplane table information for r in the range 2-10. Shown
are the number of entries for the uncompressed and compressed
forms, and the compression factor for each r value.

entry for the equivalence class in generating the table, and
that we can identify that entry and appropriately transform
the stored data when accessing the table.

To identify a canonical element for the equivalence class,
we permute the eight-tuple of cell vertex values [vg, ..., ]
(using only permutations allowable under rotation and re-
flection) so that the value at py is the smallest of the eight
and the values at p;, p,, and p, satisfy the relation v) < v, <
v4. In generating the table, we limit ourselves to one entry
per equivalence class by iterating over values that obey the
stated restrictions. Using this scheme, the size of the iso-
plane table for a range r is

r—=1 r=1r-1 r-1

2 XY Y Y (r-af

a=0 b=a c=b d=c
an eighth-degree polynomial in r. In the limit, as r — oo, the
size approaches 1/48r%. Table 1 gives size information for
representative values of r.

In accessing the compressed table, the voxel values at cell
vertices are permuted according to the above scheme, and
the permuted tuple is used for table look-up. The permuta-
tion is a linear transformation of the cell, so we apply the
inverse adjoint of this transformation in extracting the nor-
mal vector. The processing required to access data from the
compressed table is approximately double that for the un-
compressed table. Only with such compression though, is
this precomputation technique feasible for larger values of
r. In practice, we observe an actual increase in rendering
time with compressed isoplane tables of only 1-10%. That
this is lower than the raw increase in access time suggests,
makes sense; isoplane table access is not the only step in
rendering, nor do all cells intersect the isosurface (access
time for ‘empty’ cells is the same for both table forms).

The incentive to use as large an r as possible is strong,
as the quantized data range is a major factor in determin-
ing image quality. Figure 2 shows the result of using tables
of varying r value. As expected, image quality improves
with larger tables.> We typically keep precomputed tables
for ranges of 2, 4, 6, and 8, with ¢ at the range midpoint.
The first two tables are usually kept uncompressed, and the
latter two in compressed form.

4.2 Intensity table

In examining each cell, we look up its isosurface ap-
proximation in the isoplane table and apply the user-defined

3The test sphere, with its large, constant-curvature surface, highlights
the effects of the quantization and linear approximation; lower r values fre-
quently produce satisfactory images on real-world datasets.

Figure 2: Test volume containing a ‘spherical’ isosurface, ren-
dered using isoplane tables with different values of r. Clockwise
from upper left, values for r are 2, 4, 6, and 8.

lighting definition to the data found there, computing the
color of light reflected from the cell’s isosurface fragment.
To avoid repetitive calculations, we cache this information
in the intensity table, indexed by the cell’s voxel values.
With an uncompressed isoplane table, we could add the in-
formation to that table at run-time, but for a compressed ta-
ble, the need to permute the surface normal makes this im-
possible.

In principle, this table is of size 5. To limit the size in
practice, we allocate space for the intensity table in parts.
We first allocate a table of pointers of size r*, indexed by
the cell’s first four voxel values. This part of the table is
quite small, requiring only 4,096 pointers for r = 8. We al-
locate ‘data pages’ only when we must compute the light
intensity for a given eight-tuple of values on that page. The
data pages are of size r*, and are indexed by the cell’s last
four voxel values. Individual entries on the data pages are
computed only as needed, and are reused by later cells with
the same eight voxel values.

To minimize space requirements, we use only four bytes
per entry, one byte each for the red, green, and blue color
values plus a byte for flags used in table management. This
follows the heuristic that eight bit color values are adequate
in image compositing, but higher accuracy is required for
the a-channel. We compute the o value elsewhere in the
rendering process (using the projected area of the cell’s iso-
surface) and do not cache it in the intensity table.

This approach provides what we feel is the best tradeoff
among access time, memory usage, and time spent comput-
ing intensity values. In practice, cell voxel values are not
evenly distributed (they tend to cluster), so for typical r val-
ues (4 and above) we rarely allocate all data pages or com-
pute a large percentage of the entries on allocated pages.

4.3 Cell projection table

As we restrict ourselves to parallel projections, the pro-
jections of any two cells onto the image plane are congruent.
By precomputing a limited set of cell projections, we can

(See color plates, page CP-33.)
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approximate the projection of any volume cell and avoid the
expense of repeated projection operations. We exploit this
in computing the contribution to the image of a cell’s pro-
jected isosurface fragment.

At the start of rendering, we project the vertices of a sin-
gle cell onto the image plane and compute their convex hull,
thus providing the polygonal projection of the whole cell.
We calculate the position of the lower left corner of the pro-
jected polygon’s bounding rectangle and designate it as the
projection marker (see Figure 3). The polygon is translated
so that the projection marker lies at the origin of the im-
age plane: the polygon now lies on a 3 x 3 pixel grid whose
lower left corner has coordinates [0,0]. We clip the polygon
to each of the nine pixels and record the fraction of its area
lying within each. If we offset the position of the polygon
so that its marker lies at each of a discrete set of sub-pixel
positions in the region [0, 1) x [0, 1), performing the clip and
record operation each time, we then have a reasonable ap-
proximation of the cell’s projected area over the 3x 3 grid
for any projection (and hence any cell) position. We use a
20x20 array of sub-pixel positions, which can be computed
quickly and provides reasonable accuracy.

We can compute the position of the projection marker for
each cell intersecting the isosurface, and use the fractional
part of that position (modulo the discretization rate) as an
index into the cell projection table. The corresponding ta-
ble entry gives the fraction of the light contributed by the
cell to be composited into each of the nine pixels its pro-
jection may overlap. Exploiting the congruency further, we
need perform the complete projection marker calculation
only for the first cell visited; the position of any other pro-
jection marker can be computed via a simple offset from the
first cell’s marker, based on the x, y, and z offset of the cell’s
position relative to that of the initial cell.

Distributing the light contributed by a surface fragment
evenly across the cell’s projection is an approximation.
Some approximation is necessary to avoid the prohibitive
expense of storing in the isoplane table a precise geomet-
ric description of the isosurface intersection. Using an even
distribution is roughly equivalent to averaging over all posi-
tions within the cell of a fragment with that area and normal.

Clipping the cell’s projection to pixel boundaries is
equivalent to convolving the projection with a box filter and
point sampling at pixel centers. It would be straightforward
to extend the method to use arbitrary filters, and as the cell
projection table is precomputed the cost would be negligi-
ble. Our experience, however, indicates that box filtering,
in conjunction with the averaging operation just discussed,
yields sufficiently good results.

4.4 Compositing

As described above, for each cell containing a front-
facing piece of the isosurface we compute the amount of
light reflected toward the image plane, and then distribute
that light to the nine pixels onto which the cell projects.
In essence we are compositing a series of 3 x 3 pixel sub-
images into an accumulating larger image. Porter and
Duff’s image compositing algebra [7] assumes that the con-
tents of two pixels being composited are randomly dis-
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Figure 3: Projection of a cell onto the image plane. The fraction of
the projected area lying within each of the nine pixels is stored in
the cell projection table, which is indexed by the sub-pixel location
of the projection marker.

tributed. In our situation this assumption is almost always
false, so we extend the algebra by a new operator to com-
pensate.

Consider the case where adjacent cells both project onto
the same image pixel and contain adjoining bits of the iso-
surface (see Figure 4). As the first cell’s surface fragment is
composited onto the target pixel, the pixel becomes partly
covered; as the second cell’s surface fragment is compos-
ited, the previously uncovered part of the pixel becomes
completely covered. Let us call the first cell’s projection
the foreground pixel A and the second cell’s projection the
background pixel B, and assume that the o value for each is
0.5. Using the Porter-Duff over operator, where

F,=1.0 and Fg = 1.0—04,
the o value of the composited pixel (A over B) is
(Fax04)+(Fpxop) = (1.0x0.5)+(0.5%x0.5) =0.75.

The composited pixel has less coverage than expected and
appears too dark.

In this case, the contents were not at all independently
distributed. To address this situation we replace over with
a new compositing operator, add. For add the values of F
and Fp are

F,=10 and Fp :min((l.O—(xA)/(xB, 1.0).
The o value of the composited pixel (A add B) is now
(FA X(XA)+(FBX(IB) = (10X05)+(10X05) =1.0.

This gives the composited pixel the expected (full) cover-
age and the correct intensity.

The assumption that the contributions from multiple cells
to a single pixel is not independent fails in some cases.
If non-neighboring cells contribute to the same pixel, the
Porter-Duff independence assumption is valid. We there-
fore expect slightly-too-bright edges when multiple silhou-
ette edges project onto the same pixel. We have not ob-
served this in practice, nor do we expect to: a pixel gener-
ically is the projection of the interior of a surface, and be-
ing on the projection of a silhouette is unusual. Being on
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Figure 4: The isosurface projected from adjacent cells is not inde-
pendently distributed within the image pixel.

the projection of two silhouettes is very unlikely, and should
happen only at isolated pixels. The error is dual to that made
by a Z-buffer renderer, in which a nearby polygon that par-
tially covers a pixel can totally obscure a distant polygon
that completely covers the pixel, yielding a too-dim image.

5 Algorithm extensions

The algorithm as described makes every effort to reduce
the work at key steps in the rendering process. The char-
acteristics of the volume data and its rendered image that
make the acceleration possible also limit the types of data
we can process and the kinds of image we can render. Lim-
itations include quantizing the volume as a whole prior to
rendering, restricting processing to regular-uniform data®,
and rendering only orthographic views.

These limitations are not, however, fundamental: each
can be relaxed or eliminated, at some additional cost. We
have extended the algorithm in various ways. The more im-
portant extensions implemented so far are described below.
We give the user control in enabling these extensions, so
that the visualization needs can dictate the tradeoff between
flexibility and speed.

5.1 Cell-based quantization

Our extensive use of precomputed and cached data re-
quires restricting the volume’s datarange, so that we can use
the cell voxel values as a look-up table index. Normally this
involves processing the volume once per isosurface level,
prior to the start of rendering. This quantization requires
visiting each voxel only once, and is comparatively fast.

Quantizing prior to rendering gives the best speed-up, but
limits our accuracy in approximating the isosurface within
a cell. The range of values across cells intersecting the
isosurface is not always the same, and can be much less
than the data range over which we quantize the volume as
a whole. We can therefore achieve a more accurate approx-
imation if we quantize voxels on a cell-by-cell basis rather
than once per volume. Unfortunately, cell-by-cell quanti-

“Regular volumes are those with voxels arranged on a regular lattice,
with constant spacing along each axis. Uniform refers to equal spacing
along all axes.

Figure 5: Test volume illustrating the potential difference between
quantization strategies. Left: volume quantized as a whole prior to
rendering. Right: volume processed during rendering using cell-
based quantization.

zation may give a voxel different quantized values depend-
ing on the cell being evaluated. To do this as a preprocess
would require storing multiple values per voxel, which is
prohibitively expensive for large volumes.

We do, however, allow cell-based quantization. When
specified, we skip the quantization preprocess and quantize
during the rendering. For each cell that contains isosurface,
we copy its voxel values to local storage and quantize using
the data range over just that cell. We then use these quan-
tized values as our table look-up index.

For certain data, this processing can produce a marked
improvement in image quality, particularly surface smooth-
ness. The dataset for Figure 5 is a 256° volume, with full-
range eight bit data. The volume contains a ‘spherical’ iso-
surface, of radius 120, at a level of 127.5. The data in the
vicinity of the surface ranges from 0 to 255, via a linear
ramp, over a distance of eight voxels. Prequantizing the
volume from the full range of 256 into a range of 8 (cor-
responding to the isoplane table range used for rendering)
leaves us roughly one bit of accuracy per voxel value, for
cells intersecting the surface. Using cell-based quantization
allows us to achieve almost the full three bits allowed by the
isoplane table. The resulting improvement in image quality
is clear. While in practice, only a limited number of vol-
umes actually exhibit such characteristics, the feature is al-
ways available for use as desired.

5.2 Non-uniform volumes

The isoplane table data is computed for cubical cells. If
the voxel spacing in the volume is not uniform, so that the
cells are parallelepipeds, we typically resample the volume
to make it uniform. By modifying our algorithm slightly we
can avoid this resampling. The transformation from a cube
to a general parallelepiped is just a non-uniform scaling, so
we can still use the precomputed isoplane table data. The
area and normal information extracted from the table must,
however, be transformed prior to its use.

Let us denote the inter-voxel spacing along the three axes
of the non-uniform volume by Sy, Sy, and S;. We index
into the isoplane table using the quantized cell values, as de-
scribed previously. Before using the isosurface fragment’s
area and normal though, we must first compute its ‘scale-
transformed’ normal and area, N’ and A’ respectively.

We transform the normal vector N by the scale transfor-

(See color plates, page CP-33.)
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mation, saving the result as the vector U to be used in com-
puting N' and A’. U is calculated as

U= [(NX/Sx)v (Ny/sy)a (Nz/Sz)] .
To compute N', we normalize U,
N =U/|U|.

The transformed area A’ is

AI

1/2
A (VLSS + (N 5:5.% + (NS5, )?)
A(S:8,5) U]

The factor (SxS,S;) can be computed once for the en-
tire volume. The net expense of this non-uniform scaling is
therefore three divides, one vector normalization, and two
multiplications per cell.

‘We must also adjust the size of our pixel grid in the cell
projection table, since the projection of a cell in the non-
uniform volume may not always lie within a 3x3 pixel area
(for a 1 x1x2 inter-voxel spacing, the projection may cover
any of the pixels in a 4 x4 region).

6 Results

We illustrate the algorithm’s use with datasets from the
medical and industrial communities. The data was pro-
cessed and rendered on Hewlett-Packard Series 700 work-
stations, typically with machines having sufficient real
memory to contain both the volume data and the precom-
puted/cached tables. No graphics hardware acceleration
was used. All images were rendered with a r =8, edge-
crossings, compressed isoplane table.

Figure 6 shows a CT scan of a turbine blade. The original
dataset comprised 300 slices, each of size 512x 512, with a
1x1x2 cell aspect ratio. To obtain cubical cells, we resam-
pled the volume to size 512x512x600, using trilinear inter-
polation. The image shows fine detail and smooth shading.
The holes on the leading edge of the blade, the slots along its
tail, and the serial number on the base are all clearly visible.
The concave surface of the blade is smoothly shaded. The
slightly rough texture on the surface of the base results from
features in the original data (either noise or actual surface
information) that are visible when viewing slices in isola-
tion. The few minor artifacts visible along some flat sur-
faces are caused by the limited range of normals available
due to data quantization. The image took 10 minutes, 9.6
seconds to render.

Figure 7 shows a human pelvis CT study. The original
data contained 56 slices, each of size 256 x 256. To obtain
cubical cells we again interpolated intermediate slices, this
time using a cubic B-spline. The resulting 256 x 256 x 111
volume was rendered in 18.1 seconds. Notice the smooth
shading along bone surfaces and the fine detail visible on
the spinal column.

Figure 8 is an image of an angiography dataset showing
vasculature in the pelvic region. The dataset was 80 slices,
with 256 X256 samples each. We resampled the volume to
384 x 384 x 240 for rendering, both to obtain cubical cells
and provide a larger volume for testing. The original data

Figure 6: Industrial CT scan of a turbine blade [volume size: 512x
512 x 600 — isoplane table range: 8].

is fairly noisy, but the algorithm nonetheless extracts suffi-
cient fine detail to interpret the key elements of the blood
vessel structure. Although rendered with a r =8 isoplane
table, for data of this type smaller ranges (e.g., r=4) pro-
duce nearly identical results. Rendering time for the image
was 86.5 seconds.

In considering the rendering performance, note that the
algorithm currently make no use of spatial data structures,
such as octrees or bounding volumes, to accelerate the ren-
dering. As such, every cell in the volume is examined in
generating the surface representation. Clearly spatial data
structures can reduce the effort expended on regions of the
volume not intersecting the isosurface, yielding a corre-
sponding improvement in performance. We chose to focus
on reducing the work at cells containing isosurface, know-
ing that spatial acceleration techniques could be integrated
later. Based on existing work using such approaches (e.g.,
Wilhelms and Van Gelder [11], Laur and Hanrahan [2]) and
our own observations on the small percentage of cells that
intersect a typical isosurface, we expect a substantial speed-
up from using such a technique, quite likely a factor of ten
or more.

7 Future work

After integrating a spatial acceleration mechanism, next
on our list of future work items is an error analysis of the
algorithm. The approximations made at various stages of
the rendering process to minimize cost introduce some ‘er-
rors’ into the resulting image. The main sources of error are
data quantization, the approximation of the surface within a
cell by a plane, and the projection of that surface approxi-
mation onto the image plane. It is fairly straightforward to
quantify the error at each stage. The more difficult problem
is relating the separate error metrics in a way relevant to ac-
tual image quality.

(See color plates, page CP-33.)
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Figure 7: CT study of a human pelvis [volume size: 256 %256 x
111 — isoplane table range: 8].

We could use such error measures to improve accuracy,
even if we cannot develop a single quality metric. For in-
stance, we could store an error value based on the closeness
of the planar surface approximation, for each isoplane ta-
ble entry. We could use this value, alone or in combination
with some quantization error measure, to decide whether
the surface approximation for a given cell is sufficiently ac-
curate. If not, we could subdivide the cell, interpolating in-
terior values as necessary, and recursively apply our surface
approximation method to the resulting sub-cells.

‘We are also interested in examining higher-order isosur-
face approximations that could be stored in a minimum of
space. One motivation for this stems from what we term
ambiguous cells. For a cell intersecting the isosurface, it is
possible for the least-squares solution in Section 4.1 to have
A=B=C=0. Such ambiguous cases have reflectance func-
tions that are not well approximated by the reflection func-
tion of a plane. An extended algorithm might enhance the
isoplane table in these cases by storing a second-order ap-
proximation of the reflectance function.

Finally, we hope to develop a parallel or distributed im-
plementation of the algorithm. The minimal processing in
the main rendering loop, mostly table index generation and
look-up table access, makes the algorithm comparatively
simple to implement in a multiprocessor environment. Its
object-order nature also provides for convenient data par-
titioning without replication across processing nodes. The
only communications-intensive step would be compositing
sub-images to produce a complete image of the isosurface.
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