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Abstract. We define a parameterization for an n-holed tori based on
the hyperbolic polygon. We model the domain using a manifold with 2n+
2 charts, and linear fractional transformations for transition functions.
We embed the manifold using standard spline techniques to produce a
surface.
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1 Introduction

We present a method for constructing n-holed tori for use in computer graphics.
The requirements are that the construction be explicit : it is not sufficient to
know that we have some description of a manifold known to be homeomorphic
to an n-holed tori. Instead, we need explicit charts in R2 and transition functions
that are easily computable.

We take a two step approach: First we take a classical description of an n-
holed torus and make that description explicit. Next, we use traditional planar
embedding techniques, such as splines, to create an embedding of the n-holed
torus. We differ from previous approaches [RP99,WP97] in that we cover the
domain with 2n + 2 charts, instead of modeling the domain as a single entity.
The embedding is then built by blending between 2n+2 individual, planar chart
embeddings, rather than making a single, multiperiodic embedding function.

Our construction method is of interest from both a mathematical standpoint
and an implementation one. Modeling arbitrary topology surfaces, especially
ones with higher-order continuity, continues to be a challenging problem. The
solution presented here is a computationally tractable natural parameterization
of n-holed tori, and has many of the desirable features of traditional modeling
techniques such as splines.

We begin with a global parameterization technique from topology [Lef49]
which takes a 4n-sided polygon and produces an n-holed torus by associating
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edges of the polygon. By recognizing (following classical complex analysis) that
this polygon can be embedded in the unit disk so that the associations on the
edges are those induced by a group action on the disk, we see immediately that
the object produced is indeed a complex manifold: our manifold structure, with
2n+ 2 charts, has transition functions that are all linear fractional transforma-
tions (see Section 4).

Once we have the explicit description of the manifold, we embed it into R3

using standard, planar embedding techniques (see Section 5).

2 Related work

The modeling of arbitrary topology surfaces has received a great deal of atten-
tion. The approaches range from parameterized ones such as hole filling with n-
sided patches [Ld89,Pet96], subdivision surfaces [CC78], and manifolds [GH95,Gri02,NG00],
to implicit methods [Blo97] and other volumetric approaches [CBC+01,FPRJ00].
n-holed tori are easy to build using implicit methods, but they lack a parame-
terization.

Research in the area of hole filling and networks of patches is extensive,
and beyond the scope of this paper to cover in detail. The basic approach is to
apply constraints to the geometry of neighboring patches in order to ensure their
continuity. These approaches are general, in that the approach works for any
valid network, and hence any topology that can be modeled by that network.
We differ from these approaches in that we specify the construction for each
genus and do not rely on constraints to maintain continuity.

Manifolds and subdivision surfaces have both been used to build smooth,
arbitrary topology surfaces without the use of constraints. Our approach differs
from these in that our parameterization has few charts and reflects the standard
structure for the n-holed surface, with no embedding-induced bias. Subdivision
surfaces have proven to be very useful to the modeling community, but they
do not easily extend to higher order continuities, nor are they parameterized,
although the characteristic map can be used to derive a local parameteriza-
tion [DKT98].

The mathematical foundations for hyperbolic-plane constructions of surfaces
go back to the 19th century and the work of Poincaré and Klein; the topologi-
cal basics are well-described in many elementary topology books [Mas77]. These
ideas were first used by Ferguson and Rockwood [FR93] to build smooth surfaces
with handles. Their basic approach begins with a function f over the hyperbolic
disk which does not agree at the boundaries. By applying a multiperiodic basis
to f , they create a function f ′ which does agree. The original paper created the
function f using a very specific construction process involving Coons patches
arranged symmetrically in the domain; this process was replaced by a more gen-
eral approach using radial basis functions in a later paper [RP99]. In this second
approach, the function f is built from a set of scattered points in the domain;
the corresponding point locations in R3 define the function f . An embedded
Delauny triangulation of the points provides a control polygon.
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Spline orbifolds [WP97] are also built on the hyperbolic plane and use a
spline-like embedding function. To create a tessellation they begin with a “sketch”
polyhedron and use it to create a group-invariant triangulation of the domain.
This sketch polyhedron is also used in a least-squares fitting approach to set the
control points of the spline function.

We differ from these previous approaches in our embedding and tessellation.

3 Manifold representation, group actions, and a
fundamental theorem

The standard definition of a manifold begins “Let X be a Hausdorff space, and
suppose that {Vi} is an open cover of X, and that φi : Vi −→ Ui ⊂ Rk is a
homeomorphism....” From this definition, one builds “transition functions” and
eventually completes the structure of a manifold.

Evidently the disjoint union Y of all the Ui in this standard definition have
an equivalence relation on them: pi ∈ Ui is equivalent to pj ∈ Uj if and
only if φ−1(pi) = φ−1

j (pj). Indeed, we typically define “transition functions”
ψij : Uij −→ Uji, where Uij is defined as φi(Vj), and ψij is just φj ◦ φ−1

i . The
equivalence relation then becomes pi ∼ ψij(pi). The manifold X is evidently in
one-to-one correspondence with the quotient of Y by this equivalence relation:
the point p ∈ X corresponds to the equivalence class of φi(p), where p ∈ Vi.

In the event that one does not have the space X to start with, one can build
a collection of open sets Ui and a collection of functions ψij on appropriate
subsets of them and then consider quotient of their disjoint union by the induced
equivalence relation. Under suitable conditions, the quotient will be a manifold.
This is the approach taken by Grimm and Hughes [GH95]; its advantage is that
the description provided is particularly amenable to implementation. We will
continue to use their notation, but in this particular case, we will know a priori
that the space being constructed is a manifold. We will begin with the general
notation and some mathematical preliminaries, and then, in Section 4.1, describe
the n-holed torus manifold explicitly.

The components of the Grimm and Hughes description of a (two-dimensional)
manifold are:

– A finite set, A, of n nonempty subsets {c1, . . . , cn} of R2. A is called an atlas.
Each element ci ∈ A is called a chart.

– A set of subsets, Uij ⊂ ci (j = 1, . . . , n); the subset Uii must be all of ci.
These regions act as the “overlap regions” for the manifold: we will see that
points of Uij and Uji get identified with one another. Note that Uij need not
be a connected set; nor need it be nonempty, except in the case i = j.

– A set Ψ = {ψij |i, j = 1, . . . , n} of n2 functions called transition functions.
For each (i, j), the map ψij : Uij → Uji, where Uij ⊂ ci and Uji ⊂ cj , must
be smooth of some order k, and satisfy the requirements listed below. Note
that because Uij may not be connected, ψij may be described by a set of
functions, one for each connected component of Uij .
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As noted above, there is a relation ∼ defined on Y = tc∈Ac (where t denotes
disjoint union) such that if x ∈ ci, y ∈ cj , then x ∼ y iff ψij(x) = y. We require
that the transition functions be symmetric (ψij = ψ−1

ji ), that ψii is the identity
for all i, and that they satisfy the cocycle condition, i.e., that ψij ◦ ψki = ψkj

wherever this makes sense. These requirements ensure that the relation ∼ is
an equivalence relation [Gri96]. The quotient of Y by ∼ is then (under certain
technical conditions3) guaranteed to be a manifold of class Ck.

Note that a “point” in this quotient manifold consists of a list of all of the
chart points that are equivalent under ∼, i.e., given a point pi in a chart ci, the
corresponding manifold point is all of the tuples (cj , pj) such that pi ∼ pj .

3.1 Group actions on manifolds

A group G is said to act on a manifold M if for each g ∈ G, there’s an associated
homeomorphism fg : M −→M with the following properties:

– If e is the identity element of G, then fe is the identity on M .
– If g and h are two elements of G, and k = gh, then fk = fg ◦ fh.

If the maps fg are diffeomorphism, we say that “G acts by diffeomorphisms
on M .” If M has a metric structure and the maps are isometries, we say that G
acts by isometries on M .”

Such a group action defines an equivalence relation: two points m1 and m2

of M are equivalent if there’s an element g of G such that fg(m1) = m2.
As an example, the group of integers acts on the real line by translation:

fn : R −→ R : x 7→ x + n. The set of equivalence classes for this action is in
one-to-one correspondence with the interval [0, 1], except that the equivalence
classes for 0 and 1 are the same; in other words, the quotient space is a circle.
(The topology on the quotient is that of the circle as well, but this requires
careful working out of details beyond the scope of this paper.) The interval [0, 1]
is called a fundamental domain for the group action: it is a subset K of the
manifold with the property that fg(K) ∩K is entirely within the boundary of
K (for every g in G), and such that M = ∪g∈Gfg(K).

The situation exemplified in the previous paragraph is not uncommon: fre-
quently the quotient of a manifold by a group action is another manifold.

One general result [CDGM00] is all that we will need in this paper:

Theorem 1. Suppose G is a discrete group acting by isometries on a smooth
manifold M , and for every compact subset K of M , the set

G(K;K) = {g ∈ G|gK ∩K 6= φ}
3 The technical conditions have to do with being Hausdorff: consider two copies of the

real line, U1 and U2, and the maps ψ12 : U1 −{0} −→ U2 −{0} : x 7→ x, ψ21 = ψ−1
12 ,

ψ11 = idR and ψ22 = idR. These satisfy all the requirements of the description above,
but the quotient space, “the line with two origins,” is not actually a manifold, since
the two copies of the point “0” cannot be separated by open sets.
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is finite. Further suppose that the only element of G that fixes a point of M is
the identity. Then M/G is a smooth manifold as well, and the map M →M/G
is a local diffeomorphism.

We will apply this to the case where M is the open unit disk in the com-
plex plane, and G is a group of fractional linear transformations on the disk. A
fractional linear transformation can be represented by a matrix:[

a b
c d

]
,

where the numbers a, b, c, and d are complex. The associated transformation
takes the complex number z to az+b

cz+d . One can easily check that the matrix:

Q =
[
−1 i
1 i

]
takes the upper-half plane (the set of complex numbers with positive imaginary
part) to the interior of the unit disk in the complex plane.

Furthermore, the matrices with real entries and determinant one (called
SL2(R)) send the complex plane one-to-one onto itself. That means that the
matrices QMQ−1 (for M ∈ SL2(R)) send the unit disk one-to-one onto itself,
so we can say that SL(R) acts on the unit disk as well.

Serre [Ser90] describes this action and its properties in detail. In this paper,
we will build a discrete subgroup of SL2(R); the quotient of the disk by this
action will be an n-holed torus. This will actually be evident by the construction:
a fundamental domain for the action will be a regular 4n-gon in the hyperbolic
disk, and the group action will be one that identifies edges with edges in the way
described in elementary topology books. The fact that G(K;K) is finite and
that the only transformation fixing a point is the identity will be obvious from
the construction. Hence the theorem above tells us that the resulting space is,
in fact, a manifold as required.

4 Building a manifold

From topology [Lef49], we know that an n-holed torus can be built from a 4n-
sided polygon by associating the edges of the polygon as shown in Figure 1. We
use this structure to determine how many charts to use and how they overlap.
We also use it to define the transition functions, by first mapping from chart
ci to the polygon, then from the polygon to chart cj . This two-step process is
used to illustrate how the transition functions are built; the actual transition
functions map directly from one chart to the other.

We first recall the description of how an n-holed torus is constructed from a
4n-sided polygon and how we cover the polygon with 2n+2 charts (Section 4.1).
In Section 4.2 we describe the hyperbolic 4n-gon. The charts and maps to and
from the polygon are defined in Section 4.3.
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Fig. 1. An abstract 4n-sided polygon with the associated edges labeled.

4.1 Building the N-holed Tori

An n-holed torus can be built by associating the edges of a 4n-sided polygon;
the two-holed torus case is shown in Figure 2. Some observations about this
construction:

– Each hole is represented by a group of four consecutive edges.
– The first pair of associated edges (a, a−1) correspond to a loop that goes

around the hole. The second pair of associated edges (b, b−1) corresponds to
a loop that goes through the hole (once the torus is embedded in 3-space by
our particular embedding; some other embedding might swap the roles.)

– All of the vertices of the polygon correspond to a single point on the final
surface. Each loop begins and ends at this point, in the order shown in
Figure 2. Note that this is not the same order as the corners in the polygon.

We use 2n + 2 charts to cover the polygon (see Figure 4). The first chart,
termed the “inside” chart, is a disk that covers much of the interior of the
polygon. The second chart, termed the “vertex” chart, is also a disk. It is centered
on the polygon vertices and covers the corners of the polygon. The remaining n
charts are termed “edge” charts and are unit squares placed so that the midline
of the chart covers most of the edge loop.

The vertex chart will cover the 4n corners of the polygon; this implies that
each 2π/(4n) wedge of the vertex chart should map to its corresponding corner of
the polygon. This mapping is greatly simplified if the corners of the polygon each
have an angle of 2π/(4n), which is clearly not possible with Euclidean geometry.
We therefore use a hyperbolic polygon.
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Fig. 2. Left: An 8-sided polygon with edges and vertex corners labeled. Right: A sketch
of a 2-holed torus with the loops and vertex corners labeled.

4.2 Hyperbolic polygon

In Figure 3 we see 4n circles arranged evenly around a unit disk. Each circle
meets the unit circle orthogonally. Neighboring pairs of circles intersect at an
angle of 2π/(4n). The part of the unit disk that is not inside any of the circles
is therefore a regular 4n-gon (with curved edges) and with vertex angles each
2π/(4n).

A brief digression about this polygon is in order: the unit disk is one of several
models for hyperbolic geometry. In this model, the geodesics (“straight lines”)
are (a) the diameters of the disk, and (b) circle-arcs that meet the boundary or-
thogonally; the isometries in this geometry are fractional linear transformations
that map the disk to the disk. Therefore, what we have constructed is a regular
4n-gon in the hyperbolic plane; the edges of this 4n-gon, although curved from
a Euclidean perspective, are straight lines in the hyperbolic perspective. Just as
one can take an equilateral triangle in the Euclidean plane and flip it over one
edge, then over another, and so on, and thus “fill out” the entire plane with a
tiling by equilateral triangles, one can take this hyperbolic 4n-gon and “flip” it
over its edges repeatedly to fill out the entire hyperbolic disk. The “flips” are
not reflections in the Euclidean sense, but rather are fractional linear transfor-
mations that map the disk to itself, leaving the “flip edge” fixed.

To return to the construction: the small circles are defined by their distance
from the origin (h) and their radius (r). Their angular spacing is:

ω =
2π
4n

(1)
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Fig. 3. The hyperbolic polygon for the two-holed torus, labeled with α (corner angle),
ω (2 π/(4n)), β (edge-chart interior corner), h, r, and γ (length to polygon boundary).

The constraint that the circles meet the disk-boundary orthogonally introduces
the following relationship between h and r:

r =
√
h2 − 1 (2)

By changing r (and consequently h) we can create nearly any desired angle
between the intersecting circles. The choice of h that makes the angle ω is:

h =

√
cos(ω) + 1

cos(ω) + 1− 2 sin2(ω/2)
(3)

We will also need the distance to the vertex (α) and to the middle of the edge
(γ).

α = h cos(ω/2)−
√

(h cos(ω/2))2 − 1 (4)
γ = h− r (5)

Finally, we need the point β, which will be used to set the vertex chart size
and in the tessellation (Section 5.2).

The derivations of these equations and of β are given in Appendix A.

4.3 Mapping to the polygon

As mentioned above, the isometries of the hyperbolic plane model are all linear
fractional transformations (LFTs). We will be describing our transition functions
in terms of these.
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Fig. 4. From left to right: The inside chart, an example edge chart, and the vertex
chart. The edge chart is split in two, with the left half mapped to the lower left edge,
the right half mapped to the lower right edge. Each wedge of the vertex chart is mapped
to a different corner.

If T and S are LFTs with matrices K and L, then the transformation with

matrix KL is T ◦ S. If K is the matrix
[
a b
c d

]
then the matrix

[
d −b
−c a

]
(6)

represents the transformation T−1.
We use two types of LFT. The first rotates and scales, the second translates:

S(p) =
[
p 0
0 1

]
T (p) =

[
1 p
p 1

]
(7)

The domain for the inside and vertex charts is the disk given in polar coor-
dinates by 0 ≤ r ≤ 0.5, i.e., the set of complex numbers {r cos θ + ir sin θ|0 ≤
r < 1

2 , θ ∈ [0, 2π]}). The domain for the edge charts is a square centered at the
origin, i.e., {x+ iy| − 1

2 < x, y < 1
2}.

The inside chart is mapped to the polygon by scaling the disk until it almost
touches the edges of the polygon:

S(γ)(a+ bi) (8)

The edge charts are mapped so that the chart is split vertically, with the left
half mapping to the part of the disk near edge a, and the right half mapping to
edge a−1 (see Figure 4). Each piece of the chart is rotated, then translated out
to the matching edge. The right half chart is rotated by π before translating,
so as to orient the mid-line in the opposite direction. The edge charts are first
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scaled by 7/8 so they cover most, but not all, of the edge (the remainder will be
covered by the vertex chart). Let j be the chart number (going counter-clockwise
around the circle). Recall that the edges come in groups of four, aba−1b−1, so
that the a charts overlap edges 4j and 4j + 2, while the b charts overlap edges
4j + 1 and 4j + 3.

pl = cos((4j + j mod 2)ω) + i sin((4j + j mod 2)ω) (9)
pr = cos((4j + 2 + j mod 2)ω) + i sin((4j + 2 + j mod 2)ω) (10)
pf = cosπ + i sinπ (11)

S(pl)T (h− r)S(7/8)(a+ bi) a < 0.5 (12)
S(pr)T (h− r)S(7/8)S(pf )(a+ bi) a ≥ 0.5 (13)

The vertex chart is mapped to the polygon with 4n maps, one for each vertex
of the polygon. Note that the order of the wedges in the chart is not the same
as the order of the polygon corners. The order can be determined by following
the associated edges around the polygon (see Figures 2 and 4). The mapping
first rotates the chart by (R), then translates it to the appropriate corner C so
that the correct chart wedge is facing inwards. The vertex chart is scaled by δ
so that the boundary passes through β (see Appendix A). The general form of
the mapping is:

pc = cos((C + 1/2)ω) + i sin((C + 1/2)ω) (14)
pr = cos(−Rω) + i sin(−Rω) (15)

S(pc)T (α)S(pr)S(δ) (16)

The wedges in the vertex chart are indexed clockwise, with the first wedge
centered on the negative real axis. The polygon corners are indexed counter-
clockwise, with the first corner at ω/2 (or C = 0). As we walk around the
wedges in the vertex chart (incrementing R by 1) then C is updated by:

C = (C − 3) mod 4n (C mod 4) = 1, 2
C = (C + 1) mod 4n (C mod 4) = 0, 3

In other words, we either move to the next corner, or back three.
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4.4 Alternative description

To describe the charts differently, we begin by describing a group of isometries
of the disk. For each identified edge-pair (e.g., a and a−1) there is an orientation-
preserving isometry of the disk that carries one edge to the other. In the case
of the octagon, this map is a rotation by π/2 about the origin, followed by a
(hyperbolic!) rotation of π/2 about the midpoint of the edge labelled a−1. Similar
maps take edge b to edge b−1, and so on. If one writes the maps out explicitly,
it is clear that their only fixed points are on the unit circle, hence outside the
domain we are considering. By taking all possible repeated compositions of these
isometries, we get a tiling of the hyperbolic disk by hyperbolic octagons.

Each point of the disk is in exactly one of these polygons (or perhaps on
the boundary of two or more of them). Thus we can define a chart that sends
some domain into the disk, partly inside and partly outside of the fundamental
octagon; the part that is outside the fundamental octagon corresponds (under
one of the isometries) to some set of points that’s inside another part of the
octagon. In figure 4, we have drawn the charts this way, showing, for example,
an edge chart having an image that lies partly outside the fundamental octagon.
We have also drawn the edge-chart followed by an isometry, and the part that
lay outside is now within, and vice-versa.

4.5 The transition functions

Fig. 5. The overlap regions Uij for the different cases.

The transition functions are the composition of chart i’s map to the polygon
with chart j’s inverse map. Some care must be taken to ensure that the correct
pairs are combined, since each connected overlap region will have a different
LFT. Refer to Figure 5:
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– The inside chart overlaps with each edge chart in two regions, one in the left
half and one in the right half.

– Each edge chart overlaps with two different edge charts. The overlap region
has one, two, or three connected components each covering one of the corners.

– The vertex chart overlaps the inside chart in 4n places.
– The vertex chart overlaps each edge chart in two disconnected regions. Note

that there are two possible constructions for these transition functions, but
both yield the same LFT.

With the charts described and the transition functions described, we have all
the components necessary for the Grimm-Hughes description of a manifold. The
only question that remains is whether the resulting quotient object is, in fact,
a manifold. In general, that requires proving the quotient is Hausdorff, but in
this case the answer is simple: the group of isometries described above evidently
acts without fixed points (except for the identity transformation), and because
the regular 4n-gon is a fundamental region for the group action, it is clear that
for any compact subset K of the disk, the set G(K;K) of all transformations T
such that T (K) intersects K is finite. Hence the theorem from Section 3 applies,
and the quotient space is actually a manifold, indeed, a complex one-dimensional
manifold.

5 Embedding

In this section we describe how to embed our manifold in 3-space and how to
tessellate the domain in order to produce a mesh for rendering.

5.1 Defining an embedding

To embed the manifold we first define a spline patch [BBB87] Ec : C → R3

and a blend function bc : C → R for each chart C. The blend function and its
derivatives must be zero by the boundary of the chart. The blend functions must
also form a partition of unity; fortunately, Ck blend functions, for any desired k,
can be built from spline basis functions [GH95]. The surface embedding is then:

S(p) =
∑
c∈A

bc(αc(p))Ec(αc(p)) (17)

where αc is the point corresponding to p in chart c, if there is one. If p does not
correspond to a point for chart c then bc is defined to be zero. (Note that “cor-
responding to” in this case is simple: a point p in the manifold is an equivalence
class of points in the charts, i.e., a list of 2n+ 2 or fewer chart-points.)

For the edge charts we use the tensor product of two spline basis functions,
each of which has a support of [0, 1]. For the vertex and inside charts we use the
distance from the chart center and a single spline basis function whose support
is the diameter of the chart. This produces a radially symmetric blend function.
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Fig. 6. Example embeddings. The mesh in the upper left hand corner is the n-holed
mesh we fit to initially, to produce the surface in the lower left hand corner. The right
two surfaces were created by editing this initial surface.

If the blend and embedding functions are Ck continuous then the resulting
surface is Ck. To produce a visually pleasing surface it is best if the spline
patches agree where they overlap, i.e., Ei(αi(p)) = Ej(αj(p)); this ensures that
the blending above is purely a formality.

To create our initial embedding we first build an n-holed mesh by taking a
sphere and punching n holes in it. We then split this mesh apart along boundary
lines such as the ones shown in Figure 2. We flatten this mesh into the hyperbolic
polygon using Floater’s [Flo97] to produce a bijection between the mesh vertices
and the points on the manifold. We then solve for control points for each patch
in a least-squares [FB91] fashion:

bc(αc(pi))Ec(αc(pi)) = Pi (18)

Each mesh vertex produces one linear constraint on some subset of the spline
patches.

Once the initial surface is created we let the user edit it by direct manipu-
lation. The user clicks on a point of the surface, which selects a point on the
manifold. When the user moves the mouse we solve for the smallest change in
the control points that moves the surface point to the new location (again using
equation [FB91]. Figure 6 shows some an example mesh and initial surface for
the two-holed case, and two edited surfaces.

5.2 Tessellation

We tessellate the domain in order to produce a mesh to render. The tessellation
has two parameters, te and tr, which control the resolution of the mesh. The
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coarsest level tessellation (te = 1, tr = 1) partitions the domain into 2n + 2
regions, one for each chart (see Figure 7).

The lowest resolution tessellation places a square in each edge chart. The size
of this square is chosen so that the corners of the squares of neighboring edge
charts map to the same point in the polygon, which is the point β in Figure 3.
The edges of these squares form 4n consecutive arcs in the vertex and inside
charts, enclosing a disk region in the center of the chart.

The first tessellation parameter, te, specifies the number of divisions in the
square. This produces a grid inside each edge chart, and a wheel with the inside
and vertex charts. The second parameter, tr, specifies the number of divisions
along the spokes of the wheel.

Fig. 7. Upper left: The coarsest tessellation. Upper right: Subdividing the tessellation.
Bottom: The tessellation in the interior of each chart type.

6 Conclusion

We have presented a technique for modeling n-holed tori, based upon a natu-
ral parameterization for n-holed tori, suitable for implementation in computer
graphics.
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Several areas remain open, however. The group of fractional linear transfor-
mations that we have used can probably be adjusted to become a subgroup of
the modular group (2 × 2 matrices with integer entries and determinant one);
this would result in a description of the n-holed torus as a natural branched
cover of the unit sphere S2. Meromorphic functions on these n-holed tori might
well be used to define maps into the k-fold product (S2)k ⊂ (R3)k, which might
then be projected to give particularly nice maps from the n-holed torus to R3,
rather than the somewhat ad-hoc spline-based embeddings we have described.
We hope to pursue this in the future.

A Derivations

To derive r =
√
h2 − 1 we note that the triangle formed by the center of the

two circles and their intersection point is a right-angled one (by construction).
Therefore r2 + 12 = h2.

Let ω = cos(ω)+i sin(ω) be the unit vector from the origin through the point
where the first two circles intersect. Let αω be the intersection point. Then

cos(ω/2) = ω · (αω − h)⊥

r
(19)

If z and w are unit vectors, then their dot product is Re(zw̄. Applying this,
and z⊥ = iz, we have:

cos(ω/2) = Re(ωi
(αω − h)⊥

r
(20)

= ±h
r
(sinω) (21)

Applying cos(2x) = 2 cos2 x− 1:

cos(ω) =
2h2 + sin2 ω + 1

h2 − 1
(22)

Solving for h we get:

h =

√
cos(ω) + 1

cos(ω) + 1− 2 sin2(ω/2)
(23)

To solve for β we note that we are looking for the number s such that:

m0(−s+ is) = m1(−s+ i− s) (24)
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where m0 and m1 are the LFT that take the upper half of chart 0 and chart 1
to the polygon. This reduces to:

m00, 0(−s+ is) +m0(0, 1)
m0(1, 0)(−s+ is) +m0(1, 1)

=
m10, 0(−s+ i− s) +m1(0, 1)
m1(1, 0)(−s+ i− s) +m1(1, 1)

(25)

which reduces to a quadratic equation in s. Once we have s we can derive δ in
a similar manner.

References

[BBB87] R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1987.

[Blo97] Jules Bloomenthal, editor. Introduction to Implicit Surfaces. Morgan Kauf-
mann, 1997.

[CBC+01] Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell,
W. Richard Fright, Bruce C. McCallum, and Tim R. Evans. Reconstruction
and Representation of 3D Objects With Radial Basis Functions. Proceedings
of ACM SIGGRAPH 2001, pages 67–76, 2001.

[CC78] Ed Catmull and J. Clark. Reursively generated B-spline surfaces on arbi-
trary topological meshes. Computer Aided Design, 10:350–355, September
1978.

[CDGM00] Virginie Charette, Todd Drumm, William Goldman, and Maria Morrill.
Complete Flat Affine and Lorentzian Manifolds. In Proceedings of the Work-
shop “Crystallographic Groups and their Generalizations II,” Contemporary
Mathematics 262, pages 135—146. American Mathematical Society, 2000.

[DKT98] Tony D. DeRose, Michael Kass, and Tien Truong. Subdivision Surfaces in
Character Animation. SIGGRAPH 98, pages 85–94, 1998.

[FB91] B. Fowler and R. H. Bartels. Constraint based curve manipulation. Siggraph
course notes 25, July 1991.

[Flo97] Michael S. Floater. Parametrization and smooth approximation of surface
triangulations. Computer Aided Geometric Design, 14(3):231–250, 1997.
ISSN 0167-8396.

[FPRJ00] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R.
Jones. Adaptively Sampled Distance Fields: A General Representation of
Shape for Computer Graphics. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, pages 249–254.
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, July 2000.
ISBN 1-58113-208-5.

[FR93] H. Ferguson and A. Rockwood. Multiperiodic functions for surface design.
Computer Aided Geometric Design, 10(3):315–328, August 1993.

[GH95] Cindy Grimm and John Hughes. Modeling Surfaces of Arbitrary Topology
using Manifolds. Computer Graphics, 29(2), July 1995. Proceedings of
SIGGRAPH ’95.

[Gri96] C. Grimm. Surfaces of Arbitrary Topology using Manifolds. PhD thesis,
Brown University (in progress), 1996.

[Gri02] Cindy Grimm. Simple Manifolds for Surface Modeling and Parameteriza-
tion. Shape Modelling International, May 2002.



Lecture Notes in Computer Science 17

[Ld89] Charles Loop and Tony deRose. A multisided generalization of bezier sur-
faces. ACM Transactions on Graphics, 8(3):204–234, July 1989.

[Lef49] S. Lefschetz. Introduction to Topology. Princeton University Press, Prince-
ton, New Jersey, 1949.

[Mas77] William S. Massey. Algebraic Topology: An Introduction. Springer Verlag,
New York, 1977.

[NG00] J. Cotrina Navau and N. Pla Garcia. Modeling surfaces from meshes of arbi-
trary topology. Computer Aided Geometric Design, 17(7):643–671, August
2000. ISSN 0167-8396.

[Pet96] Jorg Peters. Curvature continuous spline surfaces over irregular meshes.
Computer-Aided Geometric Design, 13(2):101–131, February 1996.

[RP99] A. Rockwood and H. Park. Interactive design of smooth genus N objects
using multiperiodic functions and applications. International Journal of
Shape Modeling, 5:135–157, 1999.

[Ser90] Jean Pierre Serre. A Course in Arithmetic. Springer Verlag, New York,
1990.

[WP97] J. Wallner and H. Pottmann. Spline orbifolds. Curves and Surfaces with
Applications in CAGD, pages 445–464, 1997.


