
Optical Splitting Trees for High-Precision Monocular Imaging

Morgan McGuire
Williams College

morgan@cs.williams.edu

Wojciech Matusik
MERL

matusik@merl.com

Billy Chen
Stanford

billyc@graphics.stanford.edu

John F. Hughes
Brown University
jfh@cs.brown.edu

Hanspeter Pfister
MERL

pfister@merl.com

Shree Nayar
Columbia

nayar@cs.columbia.edu

Abstract

The authors address the problem of designing and con-
structing efficient cameras that can simultaneously capture
multiple pixel-aligned images for computational photogra-
phy applications. They introduce a design paradigm and
a prototype tool for computer-assisted design using that
paradigm. Results are reported for actual cameras with up
to eight imagers built using these techniques.

1. Introduction
Many computational photography applications require

sets images that are captured simultaneously from the same
viewpoint but have different image sensors and imaging pa-
rameters. In this paper, we address the problem of designing
efficient multi-sensor cameras that can capture such images.
Although for two- and three-sensor cameras ad-hoc designs
are often effective, the design problem becomes challeng-
ing as the number of sensors increases. We demonstrate
results on cameras created using our new design paradigm
that contain as many as eight sensors.

Why are sets of pixel-aligned images of the same scene
useful? Consider a set of images with different exposure
times as an example. Short exposures will capture detail
in the bright areas of a scene, while long exposures will
reveal details in shadows that would otherwise be under-
exposed. Fitting an intensity curve to only the correctly-
exposed images at each pixel fuses the set of images into a
single high-dynamic range (HDR) image that captures de-
tail everywhere. The output is ‘computational’ because the
final image could not have been recorded by an isolated im-
age sensor; it is produced by a battery of sensors and com-
putation. Other popular applications that require include
high-speed, super resolution, focus/defocus analysis, and
multispectral video.

We say that the image sets contain multiple monocular
views of the scene to distinguish them from stereo and other

array cameras where the optical axis is different for each
imager. Working with monocular views is ideal in many
contexts because the images have direct pixel correspon-
dance; except for calibration, they do not need to be warped
and do not exhibit parallax artifacts with depth.

The cameras that can capture multiple monocular views
differ from conventional cameras. A conventional camera
contains a single objective (lens system) and imager. To

Figure 1. Top and side images of our generic eight-view splitting
tree system, which can quickly be reconfigured to implement pre-
vious capture systems like like HDR and multispectral video, or to
meet novel applications. The superimposed laser beam shows the
recursively split optical path.

1

capture multiple views one makes an optical copy of the in-
cident light using a beam splitter, like a half-silvered mirror.
This allows two imagers to each observe the same view at
half intensity. Inserting filters and other optical elements
into the optical path between the beam splitter and the im-
ager leads to different measurements at the corresponding
pixels in each each imager. As described in the HDR ex-
ample, these measurements can be combined into an image
that represents more information (bits) than a single view,
allowing for high precision measurements. In this paper,
we consider optical systems that form optical splitting trees,
where the the optical path topology takes the shape of a tree
due to recursive beam-splitting.

Designing optical splitting trees is challenging when
many views with specific spectral properties are required.
We introduce a manual design paradigm for optical split-
ting trees and a computer-assisted design tool implements
that design paradigm to create efficient splitting-tree cam-
eras. The tool accepts as input a specification for each view
and a set of weights describing the user’s relative affinity
for efficiency, accuracy, and cost. The weights determine
the objective function of an optimizer. The output is a split-
ting tree design that implements the input specification, and
an analysis of the efficiency of each root-to-leaf path. Au-
tomatically designed trees appear comparable to those de-
signed by hand; we even show some cases where they are
superior.

Capture of multiple monocular views has previously
been demonstrated in various contexts that we review, but
rarely have more than three simultaneous views been cap-
tured. We have built the configurable optical splitting tree
system shown in Figure 1, which captures up to eight views,
and implemented several popular applications: HDR, multi-
focus, high-speed, and hybrid high-speed multispectral
video, assisted by our optimizer.

2. Related Work

2.1. Beam Splitters

Both prisms and half-mirrors are popular beam splitting
mechanisms. They can be constructed to split light into two
or more paths, and the ratio of intensities directed to each
path at each wavelength can be adjusted. The most common
and economical element is a half-silvered plate mirror. A
drawback of plate mirrors is that their orientation must be
calibrated relative to the optical path. In contrast, sensors
placed immediately against the sides of a splitting prism are
automatically registered up to a 2D translation. In the case
of 3-CCD cameras, a dichroic prism that separates light by
wavelength is often used to capture three copies of the im-
age, each with a different spectral band. Prisms have also
been used for HDR imaging [6].

Our implementation places beam splitters between the

lens and the scene, which enables us to use separate lens
parameters for each sensor. An alternative is to split the
light in between the lens and the sensor [11]. That alterna-
tive shares a single lens over all sensors, which simplifies
lens calibration and reduces lens cost, but makes calibration
and filter changes more difficult.

McGuire et al. [7] use a beam splitter camera with three
views for matting. They report that it can be extended to
exhaustively sample various sampling parameters. We ex-
tend these ideas with a detailed discussion and implementa-
tion of a full, calibrated eight-view system, analysis meth-
ods, and sparse parameter sampling that allows us to cre-
ate views with completely independent characteristics. We
demonstrate more efficient and economical camera designs
for their application in Section 6.3.

2.2. Pyramid Mirrors

Another interesting way to create multiple copies uses
a pyramid mirror placed behind the lens [1, 5]. (Placing
a mirror pyramid in front of the lens, e.g. as in [13], cre-
ates panoramic field of view that is unrelated to our work.)
This arrangment creates a very compact optical path, but
has some drawbacks. It requires a large aperture, which
leads to a narrow depth of field and limits the situations to
which it may be applied. It is also non-trivial to divide light
intensity unevenly between the image copies, as might be
desirable for HDR. Furthermore, the edges between the in-
dividual mirrors cause radiometric falloffs as discussed in
[1]. Even after calibration these fall-offs reduce the effec-
tive dynamic range of each view. The defocus point spread
function from such a camera is a differently oriented tri-
angle in each view, instead of a disk as in a beam splitter
camera. This makes it difficult to fuse or compare images
in which objects are at different depths; objects outside the
depth of field appear not only defocused but also shifted
away from their true positions.

2.3. Alternatives

For flat scenes and scenes far (> 10m) from the cam-
era, there are neither parallax nor view-dependent effects.
In those cases the calibration problem is comparatively
easy since the optical centers of the sensors need not be
aligned. Dense arrays of side-by-side sensors, e.g., [14],
have captured multiple approximately-monocular views for
such cases. Arrays capture much more light than a beam
splitter system. However, a beam splitter system can cap-
ture nearby and deep scenes, and offers the possibility of
sharing optical elements like filters over multiple sensors.

One can use a mosaic of filtered CCD pixels to sam-
ple multiple parameters in a single image. The Bayer mo-
saic tiles per-pixel band-pass filters, sampling three wave-
lengths with a single monochrome sensor. Recently, filter
mosaics have been proposed for sampling other parameters

Figure 2. Physical layout of a balanced eight-view splitting tree.

Figure 3. Lexicon of symbols used in our abstract tree diagrams.

with high precision (see [9, 10]). This approach can be
implemented compactly and requires no calibration (once
manufactured), making it ideal for many applications. The
drawback is that it trades spatial resolution for resolution
along other imaging dimensions. Such a system also makes
it difficult to experiment with aperture and timing effects,
which are explored in this paper.

Previous commercial optical design systems like SYN-
OPSYS, ADOS, and ZEMAX emphasize the tracing of rays
through lenses. To the best of our knowledge, none signifi-
cantly address the issues of sampling the plenoptic function
through splitting and spectral response that we discuss.

3. Optical Splitting Trees
Optical splitting trees are schematic representations of a

tree-topology filter systems. The edges are light paths and
the nodes are optical elements. Nodes with a single child
represent filters and lenses. Nodes with multiple children
are beam splitters. Leaf nodes are sensors. The plenop-
tic field enters the system at the root. The physical path
length to each sensor’s optical center is identical. However,
the tree-depth of a sensor (the number of internal nodes be-
tween it and the root) may differ.

Figure 2 shows a schematic of a full binary splitting tree,
viewed from above, where light enters on the upper right.
This layout packs components into a small form factor with
no optical path occluded. The thick black lines are light
baffles preventing the reflective child of each splitter from
imaging stray light. Further abstracting the structure and
using the symbols in Figure 3, we can emphasize the most
significant elements. We know that all paths from the root

Figure 4. (top) Economical band pass and (bottom) efficient
dichroic mirror multispectral trees.

to the leaves have the same physical length, so the represen-
tation need not preserve distances. Angles are an artifact
of building the physical system and also need not be rep-
resented. We are left with an abstraction where only graph
topology is of significance. The tree has a branch factor
of at most two when the beam splitters are half-mirrors (as
in our implementation). Other splitting elements can pro-
duce higher degree nodes. Subtrees of beam splitters with
no intervening filters can be collapsed to a single node rep-
resentation with many children, as in Figure 13. This repre-
sentation also abstracts the nature of the of splitting element
that is being employed.

Figure 4(bottom) shows a balanced multispectral split-
ting tree. Each beam splitter is a dichroic mirror, which
divides half the remaining visible spectrum among its chil-
dren so that no light is lost, but manufacturing large dichroic
mirrors is expensive. Figure 4(top) schematically shows a
less efficient design using readily available band-pass fil-
ters. Each path receives about 1/8 of the incident light,
which is band-pass filtered immediately before the lens.
Note that both designs are useful; the splitting tree concept
makes it easy to switch between them if necessary.

Many applications require a balanced binary tree, in
which each sensor has the same tree depth and the beam
splitters divide incident light evenly between their children.
In others (like HDR) it is useful to unbalance the tree. We
may do so either by using beam splitters with uneven di-
vision ratios, or by creating a structurally unbalanced tree
where the sensors’ tree-depths vary.

4. Assisted Design
For a complex camera, manual design becomes challeng-

ing. This is in part because elements like beam splitters and
filters have non-ideal responses (see Figure 5). Manually
accounting for this spectral distortion is difficult, so peo-
ple are likely to design sub-optimal cameras, especially in
the experimental stage. Another complicating factor is that

multiple trees may satisfy a specification but differ in other
ways, e.g. Figures 7 and 4 demonstrate cost and efficiency
tradeoffs.

We now describe our method for an assisted design tool
that creates a splitting trees to meet a formal specification.
It addresses the complexity of designing large trees and can
balance non-ideal components against each other. It also
takes into account efficiency, cost, and accuracy as defined
later. The design process contains two phases. The first de-
terministically constructs an inefficient, expensive tree that
is close to the specification and then applies a determin-
istic series of simplifications to reduce the cost. The sec-
ond phase is an optimizer that performs short random walks
through the space of all possible trees, searching for similar
but better trees. It continues until explicitly terminated by
the user. Our implementation is in Matlab, using trees from
the Data Structures toolbox. All results were computed in
under an hour, although usually the first minute brought the
objective function within 10% of the peak value and the re-
maining time was spend addressing minor spectral devia-
tions.

4.1. Input Specification

Our algorithm takes a set of design specifications
{X̂, Î, Ŷ } and objective function weights (α, β, δ, ε, γ) as
input. It also contains a database of components from a real
optics catalog1The design specification is described below;
the weights are discussed in section 4.3 during presentation
of the objective function.

For each view v, the user specifies:

X̂v[λ] The desired spectral response curve, as a unitless
vector indexed by wavelengths.

Îv The (unitless, scalar) importance of this sensor rel-
ative to others.

Ŷv[p] A vector of the scalar imaging parameters (p):
aperture area, exposure time, polarization sensi-
tivity, time shift, horizontal and vertical sub-pixel
shift, focal length, and focus depth.

In this notation, a hat over the variable distinguishes a spec-
ification variable from its counterpart that is adjusted during
optimization. The subscript v denotes the sensor that a vari-
able describes.

Note that no layout hints are provided with the specifica-
tion; the tool begins from scratch.

4.2. Efficiency(q)

Efficiency is a desirable quality in a camera; this section
rigorously defines the efficiency q of a camera. Efficiency is

1Edmund Optics Catalog 2005

Figure 5. Actual efficiency curves for nominally ‘uniform’ compo-
nents: beam-splitter #854, neutral-density filter #726, and a Prosil-
ica CCD. Because these curves are not ideal flat, horizontal lines,
naive manual design loses efficiency. In contrast, our design tool
considers the actual curves and can exploit imperfections in the
filters to boost overall light efficiency.

not an explicit part of the specification but is instead a term
in the optimization process.

The specification {X̂, Î, Ŷ } dictates how the tree dis-
tributes light, but the scale is necessarily relative because at
input time the light loss inherent in the design is unknown.
Likewise, each component in the catalog must be annotated
with a curve describing its transmission (for a filter), split
ratio (for a beam splitter), or digital output sensitivity (for a
sensor) at several wavelengths. Figure 5 shows examples of
these curves.

We call this curve the quantum efficiency of a compo-
nent. We represent it with a vector q describing the ratio
of output to input light at a node, sampled at twelve wave-
lengths between 400nm and 950nm. Because our compo-
nents are passive, q[λ] ≤ 1. For a view v, let qv =

∏
qi

over every component i on the path from v to the root. Let
scalar q̄v be the mean efficiency of that view with respect to
λ, and let q̄tree =

∑
views q̄v , denote the efficiency of the

entire camera. With these definitions, X̂v = qv/q̄v specifies
the shape of the desired response and Îv = q̄v/q̄tree is the
fraction of measured light captured by v.

4.3. Objective Function

The optimizer seeks camera designs that maximize the
goals of efficiency, accuracy, and cost. The objective func-
tion is the weighted sum of expressions representing each
of these goals,

obj(tree) = αq̄tree (1)

−∑
views

(∣∣∣β
(
Xv − X̂v

)∣∣∣
2

(2)

+|δ
(
Iv − Îv

)
|2 (3)

+
∣∣∣~ε

(
Yv − Ŷv

)∣∣∣
2)

(4)

−γ
∑

nodes c2
i . (5)

These expressions drive the optimizer as follows:

Efficiency (1): maximize the total light measured;

Spectral accuracy (2): minimize the difference from the
color specification;

Relative importance (3): respect the specified splitting ra-
tios;

Parameter accuracy (4): minimize difference from the
specified pixel shift, temporal shift, polarization, mo-
tion blur, and defocus; and

Economy: (5): minimize the dollar cost.

Each expression is quadratic to create stable maxima.
Recall that X and Y are vectors, so | · |2 is a dot product,
and that the hats denote specification variables.

Greek-letter variables are user-tunable weights, which
may vary from zero (which ignores a term) to arbitrarily
large positive numbers (which demand that the optimizer
exactly meet the specification). They are all scalars except
for ~ε, which is a vector so that each imaging parameter may
be weighted independently.

We choose initial weights so that each of the five expres-
sions has approximately the same magnitude. (Note that
this depends on the units selected for Y). Result quality is
most sensitive to α because preserving accuracy introduces
filters that absorb light. Other weights can vary within a
factor of two without affecting the output, since cost and
accuracy are less contentious when many filter choices are
available.

4.4. Deterministic Phase

The goal of this phase is to construct a tree that accu-
rately meets the view specifications. To simplify the pro-
cess, economy and efficiency are left unconstrained. The
system first groups the views into separate binary trees of
similar X̂ to increase the later likelihood of shared filters
and then links those trees into a single large tree.

All splitters are “50R/50T” half-mirrors at this stage. To
satisfy the X̂ values, the system evaluates the actual X at
each leaf and introduces band pass filters immediately be-
fore the sensors to optimize the spectral accuracy term. It
then sets all parameters as dictated by Ŷ . Finally, it evalu-
ates I at each leaf and inserts neutral-density filters until the
importance accuracy term is optimized.

4.5. Search Phase

From the deterministically computed tree we search for
steps in the design space that increase obj using the uphill
simplex method. Each step begins with a randomly chosen
transformation. Because many transformations require pa-
rameter changes to be beneficial, the Y vectors are adjusted
to increase spectral and importance accuracy before obj is
evaluated for the altered tree.

Figure 6. This ‘right rotation’ transformation at the root reparents
node B. Both designs create the same measurement, but the de-
sign on the right is twice as efficient. However, this is not always
advantages. After the transformation, the spectral filter on A and
B is duplicated, which might make the system too expensive.

Several transformations preserve x and I while poten-
tially reducing the cost of the tree or increasing q̄tree. These
“tree identities” are:

1. No transformation (allows Y change without tree change).
2. If the same filter appears on both children of a beam splitter,

move it to the parent of the splitter.
3. Replace a chain of filters with a single, equivalent filter.
4. Reorder the filters in a chain (tends to encourage #2 and #3).
5. Node Rotation: e.g., in Figure 6.
6. Replace a splitter and filters on its children with a splitter

whose R/T ratio that approximates the filter ratio.

Other transformations can change X and I and are there-
fore less likely to improve the tree. Nonetheless, they pro-
vide reachability to the entire design space and therefore
allow the optimizer to theoretically find the best tree given
infinite time. These include:

1. Add, remove, or change a filter at random.
2. Rotate a sub-tree right or left without adding filters.
3. Replace a beam-splitter at random.
4. Swap two sub-trees.

5. Experimental System

To test our design framework we built a physical con-
figurable splitting tree system with eight computer vision
sensors that uses 100 × 100mm half-mirror and hot-mirror
beam splitters (see Figure 1; the black baffles in the top view
were removed for bottom view).

The sensors are 640×480 Bayer-filter A601fc color cam-
eras and monochrome A601f cameras by Basler. Each sen-
sor is equipped with a Pentax 50mm objective. The tree
exactly fits on a 2 × 2ft2 optical breadboard with 1/2′′ in
hole spacing. The sensors are connected to a single 3 GHz
P4 PC using the FireWire interface. We wired the hardware
shutter trigger pins to each of the eight data pins of the PC
parallel port, which can be precisely controlled by writing
bit masks to that port through a special Win32 driver2.

2http://www.logix4u.net/inpout32.htm

5.1. Calibration

The difficulty of calibration increases with the number of
elements. Sensors that share an optical center are also more
difficult to calibrate than array systems where the views are
not expected to align perfectly.

We first orient the half-mirror beam splitters at 45◦ to the
optical axis. To orient these, we place a lens cap over each
camera and shine a laser along the optical axis to illuminate
a single point near the center of each lens cap. Working
through the splitting tree from the root to the leaves, we
rotate the beam splitters until each dot appears exactly in
the center of the lens cap.

Second, we construct a scene containing a nearby target
pattern of five bulls eyes on transparent plastic and a distant,
enlarged pattern on opaque poster board so that the two tar-
gets exactly overlap in view 1. We then translate all other
sensors until the target patterns also overlap in their views.
This ensures that the optical centers are aligned.

Third, we compute a software homography matrix to
correct any remaining registration error. We find corre-
sponding points in 3D by filming the free movement of
a small LED light throughout the scene. Let Cs be the
N × 3 matrix whose rows are homogeneous 2D positions,
i.e. [x y 1], of the light centroid at subsequent frames in view
number s. The transformation mapping pixels in view 1 to
those in view s is

Hs = argmin(|HsCs − C1|2) = C1C
†
s , (6)

where † denotes a pseudo-inverse. We solve this system
by singular value decomposition because it is frequently ill-
conditioned. For color calibration, we solve the correspond-
ing system in color space using pixel values sampled from
a Gretag Macbeth color chart instead of 2D positions.

6. Applications and Results

We implemented various video capture applications us-
ing a mixture of data acquisition trees that were hand-
designed using the framework and ones produced automati-
cally by the optimizer. Working from scratch, it often takes
several days to assemble and calibrate a new computational
photography camera for a single application. Because our
hardware system is configurable and most splitting trees
form subsets of the full tree that we pre-build on the optical
table, we can configure for different applications compara-
tively quickly. For each of the examples described here we
were able to reconfigure and calibrate the system in about
two hours, even when outside the laboratory. Paired with
the assisted design tool, this allows for much greater exper-
imental flexibility than we had previously enjoyed.

In each example, the result figures and videos demon-
strate accurate color, temporal, and spatial image capture

Figure 7. HDR video trees that vary a) exposure, b) aperture, c)
filters, and d) structure. The latter is the most efficient.

and registration across many more monocular views than in
previous work.

The deterministic phase always produces a viable de-
sign, so optimization will technically never fail. However,
in about two out of ten cases, it takes longer to adjust the
weights than it would to simply adjust the output of the
deterministic phase manually. In its current form, the op-
timizer is therefore most useful when applied to designs
with many sensors, significantly non-uniform components,
or tricky spectral constraints.

6.1. High Dynamic Range

Figure 7 shows several splitting trees for a simple high
dynamic range camera where the relative intensities ob-
served by the views are powers of two. We designed these
by hand based on previous work and verified that with
appropriate weights the optimizer rediscovered equivalent
structures. In (a), a large economy weight γ gives the in-
expensive variable exposure solution [4]. The drawbacks of
that approach are inconsistent motion blur between cameras
and low q̄tree = 15/32 efficiency. Increasing the exposure
weight and decreasing the aperture weight in ~ε leads to (b),
where the aperture varies. Now motion blur is correct but
the depth of field varies and q̄tree is still low.

An alternative is to use neutral-density filters as in (b),
similar to Mitsunaga et al. [8]. Compared to Debevec et
al.’s method, this corrects both motion blur and depth of
field but not efficiency. Our optimizer did not re-discovered
this approach–instead it found a better design!

Tree (d) has q̄tree = 30/32. Instead of blocking light
with the iris, shutter, or filters, it redirects excess light at a
sensor to other sensors that can measure it. Aggarwal and
Ahuja [1] mention this design, but it produces asymmet-
ric point spread functions on their pyramid camera and was
never implemented.

Figure 8 shows results from two HDR experiments. In
sequence number one (top), the actor is brightly lit and the
city lights are dim in the background. In sequence number

Figure 8. Frames from two HDR sequences. Images on the left are
four simultaneously captured views. The large images on the right
are the corresponding tone-mapped composites.

two (bottom), the actor is inside a dark office and the sky
and city in the distance are bright. On the right are result-
ing tone-mapped HDR images. These combine frames from
four different sensors to keep all scene elements visible and
within the dynamic range of the display.

6.2. Multiple Focus and Defocus

Images focused at multiple depths can be used to recover
depth information [11, 2, 15] and to form images with an
infinite [12] depth of field. Many systems (e.g., [11]) split
the view behind the lens. Splitting in front of the lens allows
us to vary not only the location but also the depth of the field
by changing the aperture.

To capture images with varying depths of field like those
in Figure 9 we use a full binary tree with with eight cameras.
Each sensor is focused at a different depth, ranging from
20cm from the optical center (about 4cm from the first beam
splitter) to 20m (effectively infinity). We use wide f/1.4
apertures for a narrow depth of field on each sensor.

Figure 9 shows an artificially wide depth of field
achieved by a weighted sum of each view. The weight at
each pixel is proportional to the local contrast (luminance
variance) in the view, squared.

6.3. Matting and Other Designs

Two matting algorithms from the computer graphics lit-
erature use custom cameras that can be expressed within
our framework. We compare the originally published de-
signs against new ones created by our optimizer from their
specifications.

McGuire et al. [7] capture three monocular views, each
with focal length f = 50mm and each at equal impor-
tance: a pinhole camera with a f/12 aperture, and two
f/1.6 views focussed at different depths. Their design uses

Figure 9. Multifocus images. Eight simultaneous views with dif-
ferent focus depths, and a fused infinite depth-of-field result.

Figure 10. Optimized matting camera based on McGuire et al. [7].

two “50R/50T” beam splitters and two filters.
Our optimizer created the alternative tree in Figure 10.

Compared to the original, this design achieves higher effi-
ciency through a “70R/30T” beam splitter; a single, weaker
neutral-density filter shared across two views to reduce cost;
and a short pass filter to attenuate the color sensors’ un-
desirable IR response. The optimizer adjusted exposures
slightly to compensate for imperfections at the “50R/50T”
beam splitter, where it chose a low quality component to
reduce cost. During optimization the short pass filter sep-
arately originated at each leaf and was propagated to the
root.

We performed a similar experiment on Debevec et

Figure 11. 240 fps video of a soda can opening. Each of the eight sequential frames shown was captured by a different sensor. The tree is
on the right; note the 1/120s overlapping exposures, longer than is possible for a single-sensor high speed camera.

al. [3]’s matting system that uses a half-mirror and an IR
filter to capture two monocular views. The optimizer sim-
ply replaced the half mirror with a hot mirror to increase
efficiency at no additional cost.

The matting cameras are simple. Figure 12 shows the
tree computed for an arbitrary complex specification. The
optimizer correctly created an efficient HDR (c,d,e) sub-
tree. However, it failed to place a hot mirror between (a) and
(b), probably because we weighed accuracy much higher
than efficiency for this test. The six plots show how well
it did match the desired accuracy; it even chose between
different brands of neutral-density filters based on their q-
curves.

6.4. High Speed
Figure 11 shows eight frames from a high speed se-

quence of a soda can opening and the capture tree used.
Each frame has an exposure time of 1/120s and the entire
sequence is captured at 240fps, so the views overlap tem-
porally. This gives q̄tree = 1/4, which is lower than the
q̄tree = 1 for an array like the one by Wilburn et al. [14].
The advantage of our approach is that the sensors share an
optical center for accurate capture of scenes with depth vari-
ation and view-dependent effects.

6.5. Multimodal High Speed
HDR, high speed, etc. are sampling strategies. They are

useful for building high-level applications, like surveillance
in an HDR environment. It is natural to build hybrid sam-
pling strategies, which are easy to express and experiment
with within our splitting tree framework.

We use the configuration from Figure 13 designed by
the optimizer to capture hybrid high-speed visible/IR video.
A hot-mirror directs IR down the right sub-tree and vis-
ible light down the left sub-tree. Each subtree has four
cameras with temporal phase offsets, so the entire system
yields 120fps video with four spectral samples. Figure 14
shows a frames from a sequence in which a person catches
a tumbling IR remote control and then transmits at the cam-
era.Because the configuration captures four spectral sam-

Figure 12. Plots of (I ·x) vs. λ nanometers for a complex camera.
Dashed lines are the specification, solid lines are the final design.
The design tool independently matched each spectral efficiency
curve close to the specification, taking into account imperfections
in the actual filters.

Figure 13. Hybrid high speed, multimodal visible + IR camera.

ples at 120fps, the high-frequency IR pattern transmitted by
the remote is accurately recorded, as is the fast tumbling
motion at the beginning of the sequence.

Figure 14. Frames of high-speed video with visible and IR chan-
nels. Note the IR-only illumination on the subject’s right and at
the LED on the remote control.

7. Conclusions and Future Work
We presented a framework useful for manual camera de-

sign and an algorithm for automatic design. We also im-
plemented a configurable system that samples multiple pa-
rameters per frame and demonstrated its utility. Using our
framework and this system, high-precision imaging applica-
tions become easier to develop and produce results of com-
parable or better quality than alternative solutions.

Manual designs are easily understood but rely exces-
sively on the notion of ideal components. Automatically
designed trees contain surprising and complex element
choices. These micro-balance the true response curves of
components and are frequently more efficient.

As future work,we are investigating multispectral HDR
for surveillance, alternative multi-focus approaches for mat-
ting, and multispectral high-speed for material testing in the
context of splitting trees. Another area of future work is
addressing the limitations of the current automatic design
approach to find more efficient and general designs. For ex-
ample, element cost should be a function of tree depth, since
filters closer to the root must be larger to fill the field of
view. Genetic algorithms are naturally suited to tree combi-
nation and should be more effective than our uphill simplex.

The optical elements form a filter system that terminates
at digital sensor. In an application, this is always followed
by a digital filter system. The next step is to simultaneously
design both the optical and software filter systems.

References
[1] M. Aggarwal and N. Ahuja. Split aperture imaging for

high dynamic range. International Journal of Com-

puter Vision, 58(1):7–17, June 2004. 2, 6
[2] S. Chaudhuri and A. Rajagopalan. Depth from Defo-

cus: A Real Aperture Imaging Approach. Springer-
Verlag, 1998. 7

[3] P. Debevec, A. Wenger, C. Tchou, A. Gardner,
J. Waese, and T. Hawkins. A lighting reproduction
approach to live-action compositing. ACM Trans. on
Graphics, 21(3):547–556, July 2002. 8

[4] P. E. Debevec and J. Malik. Recovering high dy-
namic range radiance maps from photographs. In SIG-
GRAPH, pages 369–378. ACM Press, 1997. 6

[5] R. P. Harvey. Optical beam splitter and electronic
high speed camera incorporating such a beam splitter.
United States Patent US5734507, 1998. 2

[6] E. Ikeda. Image data processing apparatus for pro-
cessing combined image signals in order to extend dy-
namic range. U.S. Patent 5801773, Sept. 1998. 2

[7] M. McGuire, J. Hughes, W. Matusik, H. Pfister, and
F. Durand. Defocus matting. Trans. on Graphics,
24:567–576, 2005. 2, 7

[8] T. Mitsunaga and S. Nayar. High dynamic range imag-
ing: Spatially varying pixel exposures. In CVPR, vol-
ume 1, pages 472–479, 2000. 6

[9] S. Nayar and T. Mitsunaga. High dynamic range imag-
ing: Spatially varying pixel exposures. In CVPR,
pages I: 472–479, 2000. 3

[10] S. Nayar and S. Narasimhan. Assorted pixels: Multi-
sampled imaging with structural models. In ECCV,
page IV: 636 ff., 2002. 3

[11] S. K. Nayar, M. Watanabe, and M. Noguchi. Real-time
focus range sensor. Trans. on PAMI, 18(12):1186–
1198, 1996. 2, 7

[12] M. Subbarao. Parallel depth recovery by changing
camera parameters. In ICCV, pages 149–155, Decem-
ber 1988. 7

[13] K.-H. Tan, H. Hua, and N. Ahuja. Multiview mirror
pyramid cameras. Trans. on PAMI, 26(7):941–946,
July 2004. 2

[14] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and
M. Horowitz. High speed video using a dense cam-
era array. In CVPR, June 2004. 2, 8

[15] Y. Xiong and S. Shafer. Depth from focusing and de-
focusing. In DARPA93, pages 967–, 1993. 7

