
John Jannotti and Kiran Pamnany
Department of Computer Science, Brown University

{jj,kiran}@cs.brown.edu

Multithreaded Servers
Servers must take advantage of concurrency to handle
their client loads
Usual approach is multithreading
Performance at the cost of correctness

Thread accesses to every shared resource must be
properly synchronized
Miss one? Non-deterministic, hard-to-find “heisenbug”
Locking is dangerous too--deadlock, livelock, priority
inversion, convoying, starvation, etc.

•

•
•

•

•
•

Safe at Any Speed: Fast, Safe Parallelism in Servers
To be presented at 4:30 pm at the 2nd Workshop on Hot Topics in System Dependability (HotDep)

Philosophy
The Wrong Way:

Start with concurrent, incorrect application
Apply development effort until all races are fixed
Incremental gains in correctness
Miss something? Unsafe parallelism; incorrect program

The Right Way:
Parallel applications should be safe by default
Start with serial, correct application
Apply development effort to add concurrency
Incremental gains in performance
Miss something? Loss of parallelism; performance
problem
Maintain correctness throughout

•
•
•
•

•
•
•
•
•

•

3. Hue/Color Scheduling
Conservative approximation of constraints
Queue per hue and queue per color
Hue queues feed color queues
Only one pending handler invocation of a given hue in the
color queues at any time

•
•
•
•

Event-driven Servers
Program registers interest in events (callbacks)
Event loop waits for events; invokes handlers
State stored in “context” which is passed as an argument
when a handler is invoked

No synchronization required
Handlers are atomic blocks
Single threaded
Must use asynchronous calls; blocking stops progress
Difficult to exploit multiprocessors

•
•
•

•
•
•
•
•

2. Constraints
Handler A() B() C() D() ...

A() 11
B() 10 11
C() 00 00 01
D() 10 01 00 11
...

Two bits per cell
Bit 0 is on if conflict on global
Bit 1 is on if conflict through context
A() conflicts with B() through the context; they can run
concurrently if their contexts are known to be different
C() conflicts only with itself on a global; it can run concurrently
with every other handler
B() conflicts with D on a global; they can never run concurrently

•
•
•
•

•

•

1. Static Program Analysis
Conservative: may = will
Enables default safety

Conflict on global:
handle_send() reads and writes a global; handle_read() accesses the same global
Unsafe to run concurrently under any circumstances

Conflict through context:
Both handlers update the same element
Unsafe to run concurrently only if contexts are the same

•
•

•
•

•
•

handle_send(..., Context ctxt, ...)
{
 ...
 glob_ctr++;
 ...
 ctxt->state = DONE;
 ...
}

handle_read(..., Context ctxt, ...)
{
 ...
 if (glob_ctr > 0)
 ...
 ctxt->state = SEND;
 ...
}

Future Work
Program analyzer and runtime system in active
development (using CIL and libevent)
Evaluation (on thttpd)
Beyond event-driven programs--multithreading

•

•
•

Approach
Add concurrency without requiring synchronization
Run event handlers in parallel when safe to do so

Static Program Analysis:
Conservatively determine whether handlers share data
unsafely
Generate constraints on concurrent execution of
handlers
Provide detailed feedback--why do handlers conflict?

Runtime System:
Run handlers concurrently subject to the constraints
generated by the analysis

Programmer removes constraints to increase
performance

•
•

•

•

•

•

•

