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ABSTRACT: The Johnson–Lindenstrauss lemma asserts that an n-point set in any Euclidean space
can be mapped to a Euclidean space of dimension k = O(ε−2 log n) so that all distances are preserved
up to a multiplicative factor between 1 − ε and 1 + ε. Known proofs obtain such a mapping as a
linear map Rn → Rk with a suitable random matrix. We give a simple and self-contained proof
of a version of the Johnson–Lindenstrauss lemma that subsumes a basic versions by Indyk and
Motwani and a version more suitable for efficient computations due to Achlioptas. (Another proof
of this result, slightly different but in a similar spirit, was given independently by Indyk and Naor.)
An even more general result was established by Klartag and Mendelson using considerably heavier
machinery.

Recently, Ailon and Chazelle showed, roughly speaking, that a good mapping can also be obtained
by composing a suitable Fourier transform with a linear mapping that has a sparse random matrix
M; a mapping of this form can be evaluated very fast. In their result, the nonzero entries of M are
normally distributed. We show that the nonzero entries can be chosen as random ±1, which further
speeds up the computation. We also discuss the case of embeddings into Rk with the "1 norm. © 2008
Wiley Periodicals, Inc. Random Struct. Alg., 33, 142–156, 2008
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1. INTRODUCTION

The Johnson–Lindenstrauss lemma is the following surprising fact:

Theorem 1.1. Let ε ∈ (0, 1
2 ) be a real number, and let P = {p1, p2, . . . , pn} be a set of

n points in Rn. Let k be an integer with k ≥ Cε−2 log n, where C is a sufficiently large
absolute constant. Then there exists a mapping f : Rn → Rk such that

(1 − ε)‖pi − pj‖ ≤ ‖f (pi) − f (pj)‖ ≤ (1 + ε)‖pi − pj‖

for all i, j = 1, 2, . . . , n, where ‖.‖ denotes the Euclidean norm.

That is, every set of n points in a Euclidean space of any dimension can be “flattened”
to dimension only O(ε−2 log n) in such a way that all distances between the points are
preserved up to a multiplicative factor between 1 − ε and 1 + ε. (It is known that the
dependence of k on both ε and n is optimal up to the value of C, as was shown by Alon [3];
also see [14].)

The Johnson–Lindenstrauss lemma is an interesting mathematical fact, and it has also
become one of the basic tools in modern algorithm design. Indeed, f (P) can be regarded
as an approximate but compact representation of P. For example, while storing P exactly
requires storing n2 coordinates, f (P) can be stored in space only O(n log n) (for a fixed
ε). Moreover, the complexity of many geometric algorithms depends significantly on the
dimension, and so dimension reduction from n to O(log n) is a great advantage. See Indyk
[7] for an overview of algorithmic applications.

All known proofs of the Johnson–Lindenstrauss lemma proceed according to the follow-
ing scheme: For given n and an appropriate k, one defines a suitable probability distribution
F on the set of all linear maps Rn → Rk . Then one proves the following statement:

Statement 1.2. If T : Rn → Rk is a random linear mapping drawn from the distribution
F , then for every vector x ∈ Rn we have

Prob [(1 − ε)‖x‖ ≤ ‖T(x)‖ ≤ (1 + ε)‖x‖] ≥ 1 − 1
n2

.

Having established this statement for the considered distribution F , Theorem 1.1 follows
easily: We choose T at random according to F . Then for every i < j, using linearity of
T and Statement 1.2 with x = pi − pj, we get that T fails to satisfy (1 − ε)‖pi − pj‖ ≤
‖T(pi)−T(pj)‖ ≤ (1+ε)‖pi−pj‖ with probability at most 1

n2 . Consequently, the probability
that any of the

(n
2

)
pairwise distances is distorted by T by more than 1 ± ε is at most(n

2

)
/n2 < 1

2 . Therefore, a random T works with probability at least 1
2 .

Theorem 1.1 was discovered by Johnson and Lindenstrauss [10]. They needed it as a
lemma in a result on extendability of Lipschitz maps. In their proof, the random linear map
T is chosen as the orthogonal projection on a random k-dimensional subspace of Rn (with an
appropriate scaling factor, which turns out to be

√
n/k). This choice can still be considered

the most intuitive geometrically, and it is also not difficult technically given an appropriate
tool, namely, measure concentration on the sphere. Indeed, the proof boils down to showing
that if x is a random point on the unit sphere Sn−1 in Rn, then the length of its orthogonal
projection on the first k coordinates, or in other words, the quantity

√
x2

1 + x2
2 + · · · + x2

k , is
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sharply concentrated around
√

k/n. This is a simple consequence of measure concentration
on Sn−1; see, e.g., [14] for a detailed presentation of such a proof.

For algorithmic applications of the Johnson–Lindenstrauss lemma, it is important to
be able to generate and evaluate the random linear map T fast. Moreover, one would like
to obtain a good estimate of the constant C in the dimension bound. Finally, measure
concentration on the sphere cannot be considered a completely elementary tool (suitable
for presenting the result in a class for students of computer science, say). These were the
main motivations for an ongoing research on variants of the Johnson–Lindenstrauss lemma
in the context of combinatorics and computer science [1], [2], [5], [6], [8].

In the following discussion, let A be the k × n matrix of T ; that is, T(x) = Ax. Choosing
T as a random orthogonal projection as in the original proof of Johnson and Lindenstrauss
means that the rows of A are chosen as a random k-tuple of orthonormal vectors in Rn

(multiplied by
√

n/k for proper scaling; for simplicity, we will not mention scaling factors
for the various matrices A in the rest of the discussion in this section).

Indyk and Motwani [8] noted that the condition of orthogonality can be dropped, and in
their proof, they choose the entries of A as independent random variables with the standard
normal distribution N(0, 1). Such an A is much easier to generate. By simple properties of
the normal distribution it follows that in this case, for every fixed unit vector x ∈ Rn, the
quantity ‖T(x)‖2 has the chi-square distribution with k degrees of freedom, and one can
use known tail estimates for this distribution to prove Statement 1.2.

Dasgupta and Gupta [5] use a similar construction of T (but with each row rescaled to a
unit vector), and they give a self-contained proof based mainly on calculation with moment
generating functions.

Achlioptas [1] presented a still slightly different view of the proof, and more signi-
ficantly, he showed that T can be generated in a computationally simpler way. Namely, he
proved that the entries of A can be chosen as independent ±1 random variables (each
attaining values +1 and −1 with probability 1

2 ). Another variant of his result has the
entries of A attaining value 0 with probability 2

3 and values +1 and −1 with proba-
bility 1

6 each. This latter setting allows for computing the image T(x) about 3 times
faster than the former, since A is sparse—only about one third of the entries are
nonzero.

Recently Ailon and Chazelle [2] came up with an ingenious extension of this idea
(speeding up the evaluation of T by using a sparse random matrix A). A significant obsta-
cle they had to overcome is that once A becomes significantly sparse, with the fraction
of nonzero entries tending to 0, the length of the image ‖T(x)‖ is not sufficiently con-
centrated for some vectors, for example, for x = (1, 0, 0, . . . , 0). They proved that the
concentration is sufficient even for A sparse provided that the vector x is “well-spread,”
which can be quantified as follows: Assuming ‖x‖ = 1, we require that ‖x‖∞ = maxj |xj|
be close to 1√

n . This means that the “mass” of x has to be distributed over many
components.

In order to deal with vectors x that are not well-spread, Ailon and Chazelle defined the
matrix A as the product MHD, where

• M is a sparse k × n random matrix. Its entries are independent random variables, and
each of them attains value 0 with probability 1−q, and a value drawn from the normal
distribution with zero mean and variance 1

q with probability q. Here q ∈ (0, 1) is a
“sparsity parameter,” which can be chosen as 1

n times a factor polylogarithmic in n.
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• H is an n × n Walsh matrix (assuming n to be a power of 2). The important thing is
that H acts as a (scaled) isometry and that, given x, the product Hx can be evaluated
by O(n log n) arithmetic operations by a Fast Fourier Transform algorithm.

• D is a diagonal matrix with independent random ±1 entries.

Let x be a fixed unit vector and let y = 1√
n HDx. Then ‖y‖ = 1 and it is not difficult to show

that ‖y‖∞ = O(
√

(log n)/n) with high probability. Therefore, with high probability, the
sparse matrix M is applied only to well-spread unit vectors y, and the length of the image
is concentrated as needed.

1.1. This Article

We first consider the version of the Johnson–Lindenstrauss lemma (Theorem 3.1 below)
that allows the entries of A to be arbitrary independent random variables with zero mean,
unit variance, and a subgaussian tail. We give a complete and self-contained proof in Section
3, for expository purposes and also as a preparation for the subsequent development. Our
calculation is similar in spirit to that of Achlioptas, but slightly simpler and divided into
several independent conceptual steps, which should hopefully make it easier to grasp.

After a preliminary version of the present article was written, I learned about a preprint
of Indyk and Naor [9]. It contains, as Remark 3.1, a very concise proof (noted by Assaf Naor
long ago but not published before) of Theorem 3.1. That proof is similar in many respects
to ours, but it uses an additional beautiful trick (introducing a new “artificial” Gaussian
random variable at a right place and taking expectation with respect to it), which makes it,
on the one hand, slightly shorter and, on the other hand, less pedestrian. It should also be
mentioned that Klartag and Mendelson [11] proved a new and even more general version of
the Johnson–Lindenstrauss lemma, with the same conditions on the projection matrix (as
in Theorem 3.1) but with the log n factor in the dimension bound replaced by a structural
parameter of the considered n-point set, which is always bounded by O(log n) but can be
smaller for some sets. Their proof use the celebrated Majorizing Measure Theorem from
the theory of stochastic processes and other sophisticated tools.

We continue our development by essentially re-proving the main technical part of the
Ailon–Chazelle result (more precisely, the result concerning embeddings in Rk with Euclid-
ean norm; they also consider the case of "1 norm, which we will discuss separately). We
need to add only two simple steps to our previous proof of the Achlioptas-style result. On
the technical side, we do for the Ailon–Chazelle result what Achlioptas did for the Indyk–
Motwani version: We replace normal distribution in the definition of the sparse matrix M
with a (suitably scaled) ±1 distribution. This makes M computationally simpler to gener-
ate, and for input points with integer coordinates, all calculations can be done in integer
arithmetic. All of our proofs up to this point are self-contained and use nothing beyond
elementary calculus and probability theory.

In Section 5 we discuss a variant of the Johnson–Lindenstrauss lemma where the embed-
ding T goes in the space Rk with the "1 norm ‖.‖1, rather than with the Euclidean norm.
This case was also investigated by Ailon and Chazelle in the context of embeddings with a
sparse matrix (they actually need this setting for an algorithmic application). They obtained
sparsity whose dependence on n is better than for the Euclidean case, while the dependence
on ε is worse.
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146 MATOUŠEK

We indicate how this result can be re-proved by our approach, and we again provide an
analogous result with sparse matrices whose nonzero entries are ±1. However, this time
the sparsity achieved for this ±1 case is worse, by a factor of ε, than that in the case of
matrices with nonzero entries distributed normally. In this part our treatment is somewhat
less detailed and we also use nontrivial results of probability theory.

We conclude the present section with several estimates for the exponential function,
which will be used throughout the article.

(E0) 1 + x ≤ ex for all x ∈ R;
(E1) ex ≤ 1 + 2x for all x ∈ [0, 1];
(E2) ex ≤ 1 + x + x2 for all x ≤ 1;
(E3) 1

2 (e
x + e−x) ≤ ex2/2 for all x ∈ R.

All of these can be verified by elementary calculus. Moreover, (E0) is standard and (E3) is
often used in proofs of Chernoff-type inequalities.

2. SUBGAUSSIAN TAILS AND A CHERNOFF-TYPE INEQUALITY

There is an extensive literature concerning concentration of random variables around their
expectation, and because of phenomena related to the Central Limit Theorem, tail bounds
similar to the tail of the standard normal distribution play a prominent role. We introduce
the following convenient terminology:

Definition 2.1. Let X be a real random variable with E [X] = 0. We say X has a
subgaussian upper tail if there exists a constant a > 0 such that for all λ > 0,

Prob [X > λ] ≤ e−aλ2
.

We say that X has a subgaussian upper tail up to λ0 if the previous bound holds for all
λ ≤ λ0. We say that X has a subgaussian tail if both X and −X have subgaussian upper
tails.

If X1, X2, . . . , Xn is a sequence of random variables, by saying that they have a uniform
subgaussian tail we mean that all of them have subgaussian tails with the same constant a.

One of the first examples of a random variable with a subgaussian tail encountered
in a course on the probabilistic method is provided by the Chernoff inequality (which
should probably be more properly attributed to Bernstein). If X = X1 + · · · + Xn, where
X1, . . . , Xn are independent random variables with each Xi attaining values +1 and −1, each
with probability 1

2 , then Var [X] = n and the normalized random variable Y = X√
n has a

subgaussian tail.
There are several directions of generalizing this fact, some of them quite deep. Most

of the generalizations encountered in the literature require that the individual variables
contributing to Y be bounded—say attain values in the interval [−1, 1]. The starting point
of the present article is the observation (which may not be new, but it doesn’t commonly
occur in textbooks and surveys) that the boundedness assumption may be replaced by
requiring a subgaussian tail of each Xi. The usual proof of Chernoff-type inequalities then
goes through with only a small enhancement.
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For our subsequent use, it will be convenient to allow for Y to be a linear combination
of the Xi with arbitrary coefficients (normalized so that the variance of Y is 1):

Lemma 2.2. Let X1, . . . , Xn be independent random variables, satisfying E [Xi] = 0,
Var [Xi] = 1, and having a uniform subgaussian tail. Let α1, . . . , αn be real coefficients
satisfying α2

1 + · · · + α2
n = 1. Then the sum

Y = α1X1 + · · · + αnXn

has E [Y ] = 0, Var [Y ] = 1, and a subgaussian tail.

Let us remark that the special case of the lemma with all the Xi having the standard
normal distribution is an immediate consequence of the 2-stability of the normal distribution
(then Y has the standard normal distribution as well).

The following lemma is commonly used as a step in proofs of Chernoff-type inequalities.

Lemma 2.3. (Moment generating function and subgaussian tail). Let X be a random
variable with E [X] = 0. If E

[
euX

]
≤ eCu2

for some constant C and for all u > 0, then

X has a subgaussian upper tail. If E
[
euX

]
≤ eCu2

holds for all u ∈ (0, u0], then X has a
subgaussian upper tail up to 2Cu0.

Proof. For all u ∈ (0, u0] and all t ≥ 0 we have

Prob [X ≥ t] = Prob
[
euX ≥ eut

]

≤ e−utE
[
euX

]
(by the Markov inequality)

≤ e−ut+Cu2
.

For t ≤ 2Cu0 we can set u = t/2C, use the above estimate, and obtain Prob [X ≥ t] ≤
e−t2/4C .

Maybe less well known is the following partial converse:

Lemma 2.4. If E [X] = 0, Var [X] = E
[
X2

]
= 1 (this is the extra condition compared to

Lemma 2.3), and X has a subgaussian upper tail, then E
[
euX

]
≤ eCu2

for all u > 0, where
the constant C depends only on the constant a in the subgaussian tail.1

Proof. Let F be the distribution function of X; that is, F(t) = Prob [X < t]. We have
E

[
euX

]
=

∫ ∞
−∞ eutdF(t). We split the integration interval into two subintervals, corres-

ponding to ut ≤ 1 and ut ≥ 1, and in the first one we use (E2). So we calculate

∫ 1/u

−∞
eutdF(t) ≤

∫ 1/u

−∞
1 + ut + u2t2dF(t) ≤

∫ ∞

−∞
1 + ut + u2t2dF(t)

= 1 + uE [X] + u2E
[
X2

]
= 1 + u2.

1A subgaussian upper tail plus E [X] = 0 do not imply E
[
euX

]
≤ eCu2

for C depending only on the constant in
the subgaussian tail (Var [X] can be arbitrarily large). Of course, if we have a (two-sided) subgaussian tail, then
we get bounded variance and thus the conclusion of the lemma.
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For the second interval we can estimate the integral by sum, for instance:

∫ ∞

1/u
eutdF(t) ≤

∞∑

k=1

ek+1Prob
[

X ≥ k
u

]
≤

∞∑

k=1

e2ke−ak2/u2 =
∞∑

k=1

ek(2−ak/u2).

For u ≤ √
a/2 we have 2−ak/u2 ≤ −a/2u2 and the sum is bounded by the geometric series

with both first term and quotient e−a/2u2 ≤ e−1 < 1
2 . So the sum is at most 2e−a/2u2 = O(u2)

(to see the last estimate, we can start with ex ≥ 1 + x > x, take reciprocal values to obtain
e−x ≤ 1

x for x > 0, and finally substitute x = a/2u2). Hence E
[
euX

]
≤ 1 + O(u2) ≤ eO(u2).

For u >
√

a/2, the largest terms in the considered sum are those with k near u2/a, and
the sum is O(eu2/2a). So here we also arrive at E

[
euX

]
≤ eO(u2) as desired.

Proof of Lemma 2.2. We have E [Y ] = 0 by linearity of expectation, and Var [Y ] =∑n
i=1 α2

i Var [Xi] = ∑n
i=1 α2

i = 1 since the variance is additive for independent random
variables.

We want to check that Y has a subgaussian tail. Since E
[
euXi

]
≤ eCu2

by Lemma 2.4,
we have

E
[
euY

]
=

n∏

i=1

E
[
euαiXi

]
≤ eCu2(α2

1+···+α2
n ) = eCu2

,

and Y has a subgaussian tail by Lemma 2.3 (and by symmetry).

3. A JOHNSON-LINDENSTRAUSS LEMMA WITH INDEPENDENT
SUBGAUSSIAN PROJECTION COEFFICIENTS

Here we present an elementary proof of the following version of Statement 1.2 (with the
probability 1/n2 replaced with a new parameter δ):

Theorem 3.1. Let n be an integer, ε ∈ (0, 1
2 ], and δ ∈ (0, 1), and let us set k = Cε−2 log δ

2 ,
where C is a suitable constant. Let us define a random linear map T : Rn → Rk by

T(x)i = 1√
k

n∑

j=1

Rijxj, i = 1, 2, . . . , k,

where the Rij are independent random variables with E
[
Rij

]
= 0,Var

[
Rij

]
= 1, and a

uniform subgaussian tail (the constant C above depends on the constant a in the subgaussian
tail). Then for every x ∈ Rn we have

Prob [(1 − ε)‖x‖ ≤ ‖T(x)‖ ≤ (1 + ε)‖x‖] ≥ 1 − δ.

This contains both the Indyk–Motwani result and the results of Achlioptas (possibly
with worse constants). As was mentioned in the introduction, another short and elementary
proof can be found in [9].

The theorem is easily proved from the following proposition, which in turn can be derived
using Lemma 2.2 and calculations very similar to those in the proof of Lemma 2.4.
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Proposition 3.2. Let k ≥ 1 be an integer. Let Y1, . . . , Yk be independent random variables
with E [Yi] = 0, Var [Yi] = 1, and a uniform subgaussian tail. Then Z = 1√

k
(Y 2

1 + Y 2
2 +

· · · + Y 2
k − k) has a subgaussian tail up to

√
k.

Assuming this proposition, the proof of Theorem 3.1 is standard:

Proof of Theorem 3.1. Let x ∈ Rn be a fixed unit vector and let us set Yi = ∑n
j=1 Rijxj.

Then by Lemma 2.2, E [Yi] = 0, Var [Yi] = 1, and the Yi have a uniform subgaussian tail.
So Proposition 3.2 applies and shows that Z = 1√

k
(Y 2

1 +· · ·+Y 2
k −k) has a subgaussian tail

up to
√

k. We note that for x fixed and unit, the quantity ‖T(x)‖2 − 1 is distributed as 1√
k
Z .

Thus, still with x fixed and unit, Prob [‖T(x)‖ ≥ 1 + ε] ≤ Prob
[
‖T(x)‖2 ≥ 1 + 2ε

]
=

Prob
[
Z ≥ 2ε

√
k
]
. Since we assume ε ≤ 1

2 , we are in the allowed range and the last

probability is at most e−a(2ε
√

k)2 = e−4aε2Cε−2 log(2/δ) ≤ 1
2δ for C ≥ 1

2a . The calculation
showing Prob [‖T(x)‖ ≤ 1 − ε] ≤ 1

2δ is almost the same.

The real work in proving Proposition 3.2 is in the proof of the next lemma:

Lemma 3.3. If Y is as the Yi in Proposition 3.2, then there are constants C and u0 such

that for all u ∈ [0, u0] we have E
[
eu(Y2−1)

]
≤ eCu2

and E
[
eu(1−Y2)

]
≤ eCu2

.

Proof. We begin with the first inequality. First we note that E
[
Y 4

]
is finite (a constant);

this follows from the subgaussian tail of Y by direct calculation, or in a simpler way, from
Lemma 2.4 and from t4 = O(et + e−t) for all t.

Let F be the distribution function of Y 2; that is, F(t) = Prob
[
Y 2 < t

]
. We again split

the integral defining E
[
euY2

]
into two intervals, corresponding to uY 2 ≤ 1 and uY 2 ≥ 1.

That is,

E
[
euY2

]
=

∫ 1/u

0
eutdF(t) +

∫ ∞

1/u
eutdF(t).

The first integral is estimated using (E2) by

∫ 1/u

0
1 + ut + u2t2dF(t) ≤

∫ ∞

0
1 + ut + u2t2dF(t)

= 1 + uE
[
Y 2

]
+ u2E

[
Y 4

]
= 1 + u + O(u2)

The second integral can be estimated by a sum:

∞∑

k=1

ek+1Prob
[
Y 2 ≥ k/u

]
≤ 2

∞∑

k=1

e2ke−ak/u.

We may assume that u ≤ u0 = a/4; then k(2 − a/u) ≤ −ka/2u, and the sum is of order
e−&(1/u). Similar to the proof of Lemma 2.4 we can bound this by O(u2), and for E

[
euY2

]

we thus get the estimate 1 + u + O(u2) ≤ eu+O(u2).
Then we calculate E

[
eu(Y2−1)

]
= E

[
euY2

]
e−u ≤ eO(u2) as required.
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The calculation for estimating E
[
e−uY2

]
is simpler, since (E2) gives e−ut ≤ 1−ut +u2t2

for all t > 0 and u > 0:

E
[
e−uY2

]
=

∫ ∞

0
e−utdF(t) ≤

∫ ∞

0
1 − ut + u2t2dF(t)

= 1 − uE
[
Y 2

]
+ u2E

[
Y 4

]
≤ 1 − u + O(u2) ≤ e−u+O(u2).

This yields E
[
eu(1−Y2)

]
≤ eO(u2).

Proof of Proposition 3.2. For Z = 1√
k
(Y 2

1 + · · · + Y 2
k − k) and 0 < u ≤ u0

√
k, with u0

as in Lemma 3.3, we calculate E
[
euZ

]
= E

[
e(u/

√
k)(Y2

1 +···+Y2
k −k)

]
= E

[
e(u/

√
k)(Y2−1)

]k
≤

(eCu2/k)k = eCu2
. Lemma 2.3 implies that Z has a subgaussian upper tail up to 2C

√
k ≥

√
k

(assuming, as we may, that 2C ≥ 1). The calculation for the lower tail is identical.

4. SPARSE PROJECTION MATRICES

Here we prove an analog of Statement 1.2 for a random mapping T with a “sparse” matrix.
As was explained in the introduction, this is similar to the results of Ailon and Chazelle,
but the particular probability distribution for the matrix entries is computationally more
convenient than theirs. As we have also mentioned, the statement cannot hold for all vec-
tors x, but we must assume that x has a sufficiently small "∞ norm (or something in that
spirit).

Theorem 4.1. Let n, ε ∈ (0, 1
2 ), δ ∈ (0, 1), and α ∈ [ 1√

n , 1] be parameters. Let us set

q = C0α
2 log(n/εδ)

for a sufficiently large constant C0, and let us assume that q ≤ 1. Let S be a random variable
with

S =






+q−1/2 with probability 1
2 q,

−q−1/2 with probability 1
2 q,

0 with probability 1 − q.

Let us set k = Cε−2 log 4
δ

for a sufficiently large constant C (assuming k integral), and let
us define a random linear mapping T : Rn → Rk by

T(x)i = 1√
k

n∑

j=1

Sijxj, i = 1, 2, . . . , k

with the Sij independent and distributed as S. Then for every unit vector x ∈ Rn satisfying
‖x‖∞ ≤ α we have

Prob [(1 − ε)‖x‖ ≤ ‖T(x)‖ ≤ (1 + ε)‖x‖] ≥ 1 − δ.

First we check that the components T(x)i have subgaussian tails at least up to a suitable
threshold.
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Lemma 4.2. Let α2 ≤ q ≤ 1, let x ∈ Rn be a unit vector with ‖x‖∞ ≤ α, and let
Y = ∑n

j=1 Sjxj, where the Sj are independent and distributed as S in Theorem 4.1. Then Y
has a subgaussian tail up to

√
2q/α.

Proof. We have

E
[
euY

]
=

n∏

j=1

E
[
euxjS

]

=
n∏

j=1

(q
2

euxj/
√

q + q
2

e−uxj/
√

q + 1 − q
)

≤
n∏

j=1

(
qeu2x2

j /2q + 1 − q
)

using (E3). For u ≤ u0 = √
2q/α we have u2x2

j /2q ≤ 1 for all j, and so we can estimate,

using (E1), qeu2x2
j /2q + 1 − q ≤ q(1 + u2x2

j /q) + 1 − q = 1 + u2x2
j ≤ eu2x2

j . Then E
[
euY

]
≤

eu2‖x‖2 = eu2
, and the proof of Lemma 4.2 is finished by applying Lemma 2.3.

Proof of Theorem 4.1. Let x be fixed and let Y = ∑n
j=1 Sjxj be the random variable as in

Lemma 4.2. By the same reasoning as in the proof of Theorem 3.1, we get that E
[
Y 2

]
= 1

(using Var [S] = 1) and that ‖T(x)‖2 − 1 is distributed as 1√
k
Z , where Z = 1√

k
(Y 2

1 + · · · +
Y 2

k − k). Thus it suffices to prove

Prob
[
|Z| ≥ 2ε

√
k
]

≤ δ.

This time we cannot use Proposition 3.2 for Y directly, since the subgaussian tail of Y is
guaranteed only up to the threshold λ0 =

√
q

α
. (It can actually be shown that Y may indeed

fail to have a subgaussian tail everywhere.)
A way of bringing Proposition 3.2 into play is to define a new random variable Ỹ by

Ỹ =
{

Y if |Y | ≤ λ0,
0 otherwise.

The k independent copies of Ỹ are denoted by Ỹ1, . . . , Ỹk , and Z̃ = 1√
k
(Ỹ 2

1 + · · · + Ỹ 2
k − k).

Since Y has a subgaussian tail up to λ0, we have Prob
[
Ỹ *= Y

]
≤ 2e−aλ2

0 . Then we can
write

Prob
[
|Z| ≥ 2ε

√
k
]

≤ Prob
[
|Z̃| ≥ 2ε

√
k
]

+ Prob
[
Ỹi *= Yi for some i

]

≤ Prob
[
|Z̃| ≥ 2ε

√
k
]

+ ke−aλ2
0 .

With our choice of parameters, the second term is at most δ
2 , and so it suffices to deal with

the first term.
Now Ỹ has a subgaussian tail, and it might seem that Proposition 3.2 can be used imme-

diately to estimate Prob
[
|Z̃| ≥ 2ε

√
k
]
. However, by passing from Y to Ỹ we possibly
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decreased the variance, so the assumptions of Proposition 3.2 are not met by Ỹ . Indeed, if
we knew nothing else about Y but that it has zero mean, unit variance, and a subgaussian tail
up to λ0, it could even happen that Var [Ỹ = 0] (for example, we could set M = eaλ2

0 > λ2
0

and have Y attain value
√

M with probability 1
2M , value −

√
M with probability 1

2M , and
value 0 otherwise). So we need to use more information on Y . In the considered case, we
know that max |Y | ≤ nα/

√
q. Therefore,

1 = E
[
Y 2

]
≤ E

[
Ỹ 2

]
+ max(Y 2) · Prob [|Y | ≥ λ0] ≤ E

[
Ỹ 2

]
+ n2α2

q
e−aλ2

0 ≤ E
[
Ỹ 2

]
+ ε.

Let us write Var
[
Ỹ
]

= 1 − ν ≥ 1 − ε. The random variable ˜̃Y = 1√
1−ν

Ỹ already has

E
[ ˜̃Y

]
= 0, Var

[ ˜̃Y
]

= 1, and a subgaussian tail, so we can apply Proposition 3.2 to it, and

obtain that for all positive λ ≤
√

k we have Prob
[ ˜̃Y 2

1 + · · · + ˜̃Y 2
k ≥ k + λ

√
k
]

≤ e−aλ2
and

Prob
[ ˜̃Y 2

1 + · · · + ˜̃Y 2
k ≤ k − λ

√
k
]

≤ e−aλ2
. Then

Prob
[
Z̃ ≥ 2ε

√
k
]

= Prob
[
Ỹ 2

1 + · · · + Ỹk ≥ (1 + 2ε)k
]

= Prob
[

˜̃Y 2
1 + · · · + ˜̃Y 2

k ≥ 1 + 2ε

1 − ν
k
]

≤ Prob
[ ˜̃Y 2

1 + · · · + ˜̃Y 2
k ≥ k + 2εk

]
≤ e−4aε2k ≤ δ

4
,

and

Prob
[
Z̃ ≤ −2ε

√
k
]

= Prob
[
Ỹ 2

1 + · · · + Ỹ 2
k ≤ (1 − 2ε)k

]

= Prob
[

˜̃Y 2
1 + · · · + ˜̃Y 2

k ≤ 1 − 2ε

1 − ν
k
]

≤ Prob
[ ˜̃Y 2

1 + · · · + ˜̃Y 2
k ≤ (1 − ε)k

]
≤ e−aε2k ≤ δ

4
.

Theorem 4.1 is proved.

Remark. The sparsity parameter q in Theorem 4.1 is essentially optimal in the following
sense: If α is not too large, say α ≤ n−0.1, and if we set q = α2ϕ, where 1 ≤ ϕ = ϕ(n) =
o(log n), then the random variable Z = 1√

k
(Y 2

1 + · · · + Y 2
k − k) doesn’t necessarily have a

subgaussian tail up to
√

k, e.g., for k = log n (which is a value of interest for the Johnson–
Lindenstrauss lemma with ε = 1

2 ). To see this, we consider an x with m = α−2 components
equal to α and the rest zero. In this case Y1 is the sum of m independent random variables,
attaining values ±ϕ−1/2 with probability ϕ

2m and value 0 otherwise. The probability of the
event E that r of these variables give +ϕ−1/2 and the rest 0 is

(m
r

)
( ϕ

2m )r(1 − ϕ

2m )m−r . For
r not too large this is roughly ( const·ϕ

r )re−const·ϕ . Setting r = √
2kϕ, we calculate that the

last expression is at least n−o(1). If the event E occurs, it causes deviation of Y 2
1 from its

expectation by r2/ϕ = 2k, and hence a deviation of Z by at least
√

k. However, if Z
had a subgaussian upper tail up to

√
k, such a deviation should have probability at most

e−&(k) = n−&(1).

5. THE !1 CASE

As was mentioned in the introduction, for some algorithmic purposes it is also interesting
to investigate almost-isometric embeddings of an n-point set in a Euclidean space into the
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normed space (Rk , ‖.‖1). It turns out that the basic version of the Johnson–Lindenstrauss
lemma can be proved with the same dependence of k on n and ε. (To prevent confusion,
we stress that we are talking about "1 norm in the target space. No analog of the Johnson–
Lindenstrauss lemma holds for point sets in Rn with the "1 norm; such sets generally cannot
be almost-isometrically “flattened” to a logarithmic dimension [4], [13].)

When considering embeddings in Rk with the Euclidean metric, we were dealing with a
random quantity of the form

∑k
i=1 Y 2

i , where Yi = ∑n
j=1 Rijxj, ‖x‖ = 1 is unit, and the Rij

were suitable independent random variables with zero expectation and unit variance. For
‖.‖1 as the target norm we need to deal with the quantity

∑k
i=1 |Yi| instead.

To prove a Johnson–Lindenstrauss type result, we need to verify that the considered
quantity has the right expectation, and that it is sufficiently concentrated. In the "1 case
there is no problem with the concentration: actually, weaker conditions on the Yi suffice
than for the Euclidean case. However, the expectation poses a new challenge. Indeed, in the
Euclidean case, E

[
Y 2

i

]
is just the variance of Yi, which equals

∑n
j=1 Var

[
Rij

]
x2

j and is thus
exactly the same for all (unit) x. In contrast, E [|Yi|] generally does depend on x. For example,
if the random coefficients Rij are independent uniform ±1, then Khintchine’s inequality from
the geometry of Banach spaces tells us that E [|Yi|] is between two absolute constants, but
this is all one can say in general. Hence we generally do not obtain an Achlioptas-style
result, analogous to Theorem 1.1, for ‖.‖1 as the target norm. (More precisely, we can get
an embedding with distortion bounded by a constant in this way, but not with distortion
arbitrarily close to 1.)

There is one distribution of the random coefficients Rij where this obstacle doesn’t arise. If
the Rij are independent with the standard normal distribution N(0, 1), then the Yi have exactly
the standard normal distribution, and hence E [|Yi|] doesn’t depend on x. (We have E [|Yi|] =√

2/π , as is well known and not difficult to calculate.) This is a consequence of a remarkable
property of the normal distribution, known as 2-stability: If X and Y are independent and
normally distributed, then X + Y is normally distributed too (and Var [X + Y ] = Var [X] +
Var [Y ] by independence).

Fortunately, in the case considered by Ailon and Chazelle, we deal only with “well-
spread” vectors x, and it turns out that in this case E [|Yi|], although not completely
independent of x, varies sufficiently little with x, even if the sparse matrix has the nonzero
entries ±1. This is a consequence of a quantitative version of the Central Limit Theorem, as
we will see below (Lemma 5.3). However, the sparsity we can afford for ±1 coefficients is
worse (by a factor of ε) than the one obtained by Ailon and Chazelle, who consider nonzero
entries distributed normally.

Below we give an alternative proof of the "1 result of Ailon and Chazelle using the tools
built above, and we also establish the version with ±1 coefficients.

Theorem 5.1. Let n, ε ∈ (0, 1
2 ), δ ∈ (0, 1), and α ∈ [ 1√

n , 1] be parameters, and let
k = Cε−2 log 4

δ
(C a sufficiently large constant). Let β0 = √

2/π .

(i) (Ailon and Chazelle [2]) Let q = 2α2/ε ≤ 1, and let T : Rn → Rk be given by
T(x)i = 1

β0k

∑n
j=1 σijxj, with the σij independent and attaining value 0 with probability

1 − q, and a value drawn from the normal distribution with zero mean and variance
1
q with probability q. Then

Prob [(1 − ε)‖x‖ ≤ ‖T(x)‖1 ≤ (1 + ε)‖x‖] ≥ 1 − δ.

for every unit x ∈ Rn with ‖x‖∞ ≤ α.
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(ii) Let q = C1α
2/ε2 ≤ 1 for a suitable constant C1, and let T : Rn → Rk be given by

T(x)i = 1
β0k

∑n
j=1 Sijxj, where the Sij are as in Theorem 4.1 (0 with probability 1 − q,

and +q−1/2 or −q−1/2 with probability 1
2 q each). Then

Prob [(1 − ε)‖x‖ ≤ ‖T(x)‖1 ≤ (1 + ε)‖x‖] ≥ 1 − δ.

for every unit x ∈ Rn with ‖x‖∞ ≤ α.

We begin the proof with a concentration result, which is an "1 version of Proposition 3.2.

Proposition 5.2. Let k ≥ 1 be an integer. Let Y1, . . . , Yk be independent random variables
with E [Yi] = 0, Var [Yi] = 1, E [|Yi|] = β (where β ∈ (0, 1) is a constant) and a
uniform exponential tail, meaning that for some constant b > 0 and all t ≥ 0 we have
Prob [Yi ≥ t] ≤ e−bt and Prob [Yi ≤ −t] ≤ e−bt . Then Z1 = 1√

k
(|Y1|+|Y2|+· · ·+|Yk|−βk)

has a subgaussian tail up to
√

k.

Proof. First we imitate the proof of Lemma 3.3. We let F be the distribution function of
|Y |, where Y satisfies the conditions imposed on the Yi, and we estimate

E
[
eu|Y |] ≤

∫ 1/u

0
1 + ut + u2t2dF(t) +

∫ ∞

1/u
eutdF(t)

≤ 1 + uE [|Y |] + u2E
[
Y 2

]
+

∞∑

k=1

ek+1Prob
[
|Y | ≥ k

u

]

≤ 1 + βu + u2 +
∞∑

k=1

e2k · 2e−bk/u.

The sum is the one we have encountered in the proof of Lemma 3.3, and for u ≤ u0 = b/4
it is bounded by O(u2). So we obtain E

[
eu|Y |] ≤ eβu+O(u2) for u ≤ u0. Then, as in the proof

of Proposition 3.2, for 0 < u ≤ u0

√
k we have

E
[
euZ1

]
=

k∏

i=1

E
[
e(u/

√
k)(|Yi |−β)

]
≤ (eO(u2/k))k = eO(u2).

The calculation for E
[
e−uZ1

]
is analogous but simpler, and we omit it. Hence Z1 has a

subgaussian tail up to
√

k, and Proposition 5.2 is proved.

Next, we establish a result needed for dealing with the expectation of the Yi.

Lemma 5.3. Let x ∈ Rn with ‖x‖ = 1 and ‖x‖∞ ≤ α.

(i) (Ailon and Chazelle [2]) Let Y = σ1x1 + · · · + σnxn, where the σi are as the σij in
Theorem 5.1(i) (with q = 2α2/ε). Then β0 − ε

2 ≤ E [|Y |] ≤ β0.
(ii) Let Y = S1x1 + · · · + Snxn, where the Sj are as the Sij in Theorem 5.1(ii) (with

q = C1α
2/ε2). Then β0 − ε

2 ≤ E [|Y |] ≤ β0 + ε
2 .

Proof. For part (i), we essentially reproduce the neat argument in [2], for the reader’s
convenience and delight.
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Let I1, . . . , In be independent random variables, each attaining value 1 with probability
q and value 0 with probability 1 − q. Then we can write Y = q−1/2

∑n
j=1 Ijγjxj, with the γj

independent N(0, 1). We set Z = ∑n
j=1 Ijx2

j . Conditioning on Z = z, the random variable Y
has the normal distribution with mean 0 and variance z

q . Hence E [|Y ||Z = z] = β0
√

z/q,

and E [|Y |] = β0q−1/2E
[√

Z
]
.

By convexity we have E[
√

Z] ≤ √
E[Z] = √

q. For bounding E[
√

Z] from below we
use the inequality

√
1 + t ≥ 1 + t

2 − t2, valid for all t ≥ −1, with t = Z
q − 1. Then

E[
√

Z] = √
q · E[

√
1 + t] ≥ √

q(1 + 1
2 E[Z/q − 1] − E[(Z/q − 1)2]) = √

q(1 + 0 −
q−2Var [Z]). Now Var[Z] = ∑n

j=1 x4
j Var[Ij] ≤ ∑n

j=1 x4
j q ≤ qα2

∑n
j=1 x2

j = qα2, and hence
E[

√
Z] ≥ √

q(1 − α2/q) ≤ √
q(1 − ε

2 ). This proves part (i).
For part (ii), we follow a derivation of a similar fact in König, Schütt, and Tomczak-

Jaegermann [12], remark on page 20 (who in turn followed an advice of Schechtman). They
use the following quantitative version of the Central Limit Theorem, related to the Berry–
Esséen theorem: Let X1, X2, . . . , Xn be independent symmetric random variables (symmetric
meaning that −Xi has the same distribution as Xi) with

∑n
i=1 E

[
X2

i

]
= 1, let F(t) =

Prob [X1 + X2 + · · · + Xn < t] be the distribution function of X1 + X2 + · · · + Xn, and let
-(t) = 1√

2π

∫ t
−∞ e−x2/2dx be the distribution function of the standard normal distribution.

Then

|F(t) − -(t)| ≤ C
1 + |t|3 ·

n∑

i=1

E
[
|Xi|3

]

for all t ∈ R, with C a constant.
We apply this with Xi = Sixi, where we have

∑n
i=1 E

[
|Xi|3

]
= ∑n

i=1 q · q−3/2|xj|3 ≤
q−1/2α

∑n
i=1 x2

i = C−1/2
1 ε. Then

|E [|Y |] − β0| =
∣∣∣∣

∫ ∞

−∞
|t|dF(t) −

∫ ∞

−∞
|t|d-(t)

∣∣∣∣

≤
∫ ∞

−∞
|F(t) − -(t)|dt ≤ Cε√

C1

∫ ∞

−∞

dt
1 + |t|3 ≤ ε

2

if C1 is sufficiently large. (The first inequality in this chain can be derived by considering
the integral

∫ K
−K , integrating by parts, and then taking the limit for K → ∞.) Lemma 5.3 is

proved.

Proof of Theorem 5.1. In both (i) and (ii), we consider x unit and fixed and we set β =
E [|Yi|]. Lemma 5.3 shows that β ∈ [β0 − ε

2 , β0 + ε
2 ]. In order to apply Proposition 5.2,

we need to check that the Yi have an exponential tail. (Unlike in the Euclidean case in the
previous section, here we need not “trim” the Yi.)

For case (ii), we have calculated in Lemma 4.2 that E
[
euYi

]
≤ eu2

for u ≤ u0. The proof

of Lemma 2.3 gives Prob [Yi ≥ t] ≤ e−u0t+u2
0 = O(e−u0t). This is almost an exponential

(upper) tail, up to the multiplicative constant eu2
0 . However, one can easily check that the

multiplicative constant doesn’t really matter in the proof of Proposition 5.2. (Alternatively,
we could derive an exponential tail with multiplicative constant 1 by dealing with small t
separately using Var [Yi] = 1, the symmetry of Yi, and the Chebyshev inequality.)

In order to obtain an exponential tail for the Yi in case (i), we can more or less repeat
the calculation in the proof of Lemma 4.2, but we use the standard fact that for an N(0, 1)
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random variable X we have E
[
euX

]
= e−u2/2 for all u ≥ 0. After that we proceed as above.

This concludes the proof of Theorem 5.1.
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